UNIVERSITETET I OSLO
 Det matematisk-naturvitenskapelige fakultet

Examination in: \quad\begin{tabular}{l}
INF1100 -

programming
applications

Introduction

with
\end{tabular} scientific

Day of examination: Thursday, October 10, 2013
Examination hours: 15.00-19.00.
This examination set consists of 5 pages.
Appendices: None.
Permitted aids: None.

Make sure that your copy of the examination set is complete before you start solving the problems.

- Read through the complete exercise set before you start solving the individual exercises. If you miss information in an exercise, you can provide your own reasonable assumptions as long as you explain that in detail.
- The maximum possible score on the exam is 25 points. The maximum number of points is listed for each exercise (a correct answer of a subquestion ((a), (b), etc.) gives 1 point).

Exercise 1 (10 points)

What will be the output of the print statement in the programs below? Assume that the Python codes are run by version 2.x (e.g., version 2.7), not version 3.x.
(a)

```
counter1 = 10
counter2 = counter1
counter1 = 11
print 'counter2=%d' % counter2
```

(b)

```
counter1 = 10
counter2 = counter1
counter1 = 11
counter2 += 2 + counter1
print counter2
```

(c)
$\mathrm{A}=[1,2,3,-1]$
if $\mathrm{A}[2]<3$:
$\mathrm{A}[2]=0$
else:
$\mathrm{A}[2]=10$
if $\mathrm{A}[-1]<=0$:
A. append (4)
print A
(d)
$B=[2 * x+1$ for x in range(5)]
print $\mathrm{B}[1:-1]$
(e)

```
from numpy import linspace
x = linspace(0, 2, 3)
\(\mathrm{v}=\mathrm{x}+2\)
for \(x_{-}, v_{-}\)in \(\operatorname{zip}(x, v)\) :
    print '\%.1f \%.1f' \% (x_, v_)
```

(f)
def $Q(y)$:
$r=4 * y$
$r=r+1$
return r
$\mathrm{x}=2$
print ${ }^{\prime} \mathrm{Q}(\% \mathrm{~g})=\%$ ' \% ($\mathrm{x}, \mathrm{Q}(\mathrm{x})$)
(g)

```
x = range(1, 17, 5)
y = x
for x_ in x[1:-1]:
        for y_ in y[1:-1]:
            if x_ != y_ and x_ > y_ + 1:
                print x_, y_
```

(h) The following program, called prog.py,

```
import sys
try:
r1 = float(sys.argv[1])
print r1
r2 = float(sys.argv[2])
print r2
r3 = float(sys.argv[3])
print r3
except IndexError:
    print 'Not enough command-line arguments!', sys.argv[1:]
except ValueError:
    print 'Illegal conversion to float!'
```

is run as

Terminal> python prog.py 36 hello world
(i)
$\mathrm{u}=[-1,-2]$
$\mathrm{v}=[1,2]$
print u + v
from numpy import array
u = array (u)
v = array(v)
print u + v
(j)

```
def equal(a, b, eps=1E-14):
    """Test if a==b with tolerance eps."""
    return abs(a - b) < eps
def some_function(Q):
    if Q < 0:
            raise ValueError('Q<0 is not allowed')
        if equal(Q, 0):
            return 0, None
        else:
            return 1, 2
def run_some_function():
```

```
    try:
        r1, r2 = some_function(-1)
        print 'Something is wrong with some_function(-1)!'
        ok = False
    except:
        ok = True
    r1, r2 = some_function(0)
    if not equal(r1, 0) or not r2 == None:
        print 'Something is wrong with some_function(0)!'
        ok = False
r1, r2 = some_function(2)
if not equal(r1, 1) or not equal(r2, 2):
    print 'Something is wrong with some_function(2)!'
        ok = False
    if ok:
        print 'All tests passed!'
    else:
        print 'Some test(s) failed!'
run_some_function()
```


Exercise 2 (3 points)

We want to write a program that can compute values of the function $g(t)=$ $e^{-a t}$ and its derivative $g^{\prime}(t)=-a e^{-a t}$, where a is some known parameter. Write a Python function $\mathrm{g}(\mathrm{t})$ that evaluates and returns the values of $g(t)$ and $g^{\prime}(t)$. The parameter a can be a global variable. Demonstrate how the function is called and how the returned result can be stored in variables. Write out the computed value of $g^{\prime}(t)$ to the screen.

Exercise 3 (3 points)

Extend the program in Exercise 2 such that the t and a values are read from the command line. Add a try-except block to handle the cases that the user has failed to provide enough command-line arguments or when the command-line arguments cannot be interpreted as real numbers. Stop the program in those cases.
Hint: You may get inspired by code snippets elsewhere in this exam. Even if you did not succeed in writing the function in Exercise 2, you can just assume that it is available as described.

Exercise 4 (3 points)

Assume that you have the function that evaluates $g(t)$ and $g^{\prime}(t)$ as specified in Exercise 2. Make a code snippet for creating a plot with the two curves $g(t)$ and $g^{\prime}(t)$, for $0 \leq t \leq 5 / a$. Add a label t on the x axis in the plot and include a legend for each curve. Save the plot to a file.

Exercise 5 (3 points)

The quadratic equation

$$
a x^{2}+b x+c=0
$$

has two solutions

$$
x_{1}=\frac{-b+\sqrt{q}}{2 a}, \quad x_{2}=\frac{-b-\sqrt{q}}{2 a},
$$

where $q=b^{2}-4 a c$. The two solutions coincide if $q=0$. Write a Python function that takes a, b, and c as arguments and returns the two solutions x_{1} and x_{2}. Require $q \geq 0$ so that x_{1} and x_{2} are real numbers. Raise a ValueError exception if $q<0$. Return x_{1} and None if $x_{1}=x_{2}$.
Write a main program with necessary code for demonstrating how the function can be used to solve the particular quadratic equation $x^{2}+3 x=-1$.

Exercise 6 (3 points)

The purpose of this exercise is to test the function developed in the previous exercise. Even if you have not succeeded in writing the function, you can just assume that it is available as specified in Exercise 5.
Write a test function that calls the function from the previous exercise and checks that the results are correct in three test cases: $q>0, q=0$, and $q<0$. Write a message to the screen when a test fails, and write OK if all tests succeed. Remember to test equality of real numbers with a tolerance.
Hint: You may get inspired by code snippets elsewhere in this exam.
END

