
UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Examination in: INF1100 — Introduction to
programming with scientific
applications

Day of examination: Wednesday, December 18, 2013

Examination hours: 09.00 – 13.00.

This examination set consists of 12 pages.

Appendices: None.

Permitted aids: None.

Make sure that your copy of the examination set is
complete before you start solving the problems.

• Read through the complete exercise set before you start solving the
individual exercises. If you miss information in an exercise, you can
provide your own reasonable assumptions as long as you explain them
in detail.

• Most of the exercises result in short code where there is little need
for comments, unless you do something complicated or non-standard.
In that case, comments should convey the idea behind the program
constructions such that it becomes easy to evaluate the solution.

• Many exercises ask you to “write a function”. A main program calling
the function is then not required, unless it is explicitly stated. You
may, in these types of exercises, also assume that necessary modules
are already imported outside the function. On the other hand, if you
are asked to write a complete program, explicit import of modules must
be a part of the solution.

• The maximum possible score on this exam is 75 points. There are 11
exercises, and the number of points for each exercise is given in the
heading.

(Continued on page 2.)

Examination in INF1100, Wednesday, December 18, 2013 Page 2

Exercise 1 (4 points)

A function b(t) is defined by the formula

b(t) =

{

0.01, t < 6,
0.002, t ≥ 6

Write a Python function for computing this mathematical function b(t). Ex-
emplify how to call the Python function to compute b(4).

Solution:

def b(t):

if t < 6:

return 0.01

else:

return 0.002

Or shorter

b = lambda t: 0.01 if t < 6 else 0.002

value = b(4)

Exercise 2 (6 points)

What is printed by the following program?

print 3/11

a = 2

b = 3

a = 4

print b

a = ’dog’

b = a

a = ’cat’

print b

a = [8, 9, 10]

b = a[1:-1]

a[1] = 10

print b[0]

(Continued on page 3.)

Examination in INF1100, Wednesday, December 18, 2013 Page 3

from numpy import linspace

a = linspace(8, 10, 3)

b = a[1:-1]

a[1] = 10

print int(b[0])

a = {’dog’: ’woof’, ’cat’: ’meow’, ’fish’: ’blub’}

b = a

a[’dog’] = ’toot’

print b[’dog’]

Solution:

0

3

dog

9

10

toot

Exercise 3 (5 points)

Write down all the text that appears in the terminal window when the fol-
lowing program is run.

animals = [’dog’, ’cat’, ’bird’, ’mouse’, ’cow’, ’frog’,

’elephant’, ’duck’, ’fish’, ’seal’]

sounds = [’woof’, ’meow’, ’tweet’, ’squeak’, ’moo’, ’croak’, ’toot’,

’quack’, ’blub’, ’ow ow ow’]

for animal, sound in zip(animals, sounds):

if animal in (’elephant’, ’seal’):

prefix = ’ and the’

elif animal in (’mouse’, ’fish’):

prefix = ’ and’

else:

prefix = ’’

goes = ’says’ if animal == ’duck’ else ’goes’

print prefix, animal, goes, sound

phrase = raw_input(’\nContinue as you like: ’)

print phrase

Solution:

dog goes woof

(Continued on page 4.)

Examination in INF1100, Wednesday, December 18, 2013 Page 4

cat goes meow

bird goes tweet

and mouse goes squeak

cow goes moo

frog goes croak

and the elephant goes toot

duck says quack

and fish goes blub

and the seal goes ow ow ow

Continue as you like: the fox says wa-pa-pa-pa-pa-pa-pow!

the fox says wa-pa-pa-pa-pa-pa-pow!

(No points are lost because of missing spaces at the beginning of lines)

Exercise 4 (5 points)

What is printed by the following program?

def neq(a, b, tol=1E-14):

"""Perform a != b with tolerance."""

return not (abs(a - b) < tol)

def myfunc(x):

if x < 10:

return 1

elif 10 <= x < 100:

return 2

else:

raise ValueError(’x=%g >= 100 is illegal.’ % x)

if neq(myfunc(2), 1):

print ’Bug!’

if neq(myfunc(15), 1):

print ’Ok!’

try:

y = myfunc(1000)

if neq(y, 2):

print x, y

except ValueError:

pass

Solution:

Ok!

(Continued on page 5.)

Examination in INF1100, Wednesday, December 18, 2013 Page 5

Exercise 5 (5 points)

What is printed by the following program?

from math import exp

class A:

def __init__(self, x=0):

self.x = x

def __call__(self, t):

x = self.x

return exp(-x)*t

class B(A):

def __init__(self, x=0, y=1):

A.__init__(self, x)

self.y = y

def __call__(self, t):

x, y = self.x, self.y

return x + y + t

a = A()

b = B(1)

print a(2.0)

print b(2.0)

Solution:

2.0

4.0

Exercise 6 (5 points)

A polynomial

p(x) =
N
∑

j=0

djx
j,

can be represented as a dictionary d such that d[j] equals dj (i.e., j is an
integer key in the dictionary and the corresponding value is dj). For example,
2− 5x6 is represented by

(Continued on page 6.)

Examination in INF1100, Wednesday, December 18, 2013 Page 6

d = {0: 2, 6: -5}

Somebody has written a Python function poly diff(d) that computes and
returns the derivative p′(x) =

∑N

j=1
jdjx

j−1 of a polynomial:

def poly_diff(d):

for j in d:

r[j-1] = j*d[j]

return r

When trying out this function, the first problem is an exception NameError:

global name ’r’ is not defined. After correcting this, you discover that
the derivative of the test polynomial p(x) = 2−5x6 has an unnecessary term.
Write a correct function.

Solution:

def poly_diff(d):

r = {}

for j in d:

if j >= 1:

r[j-1] = j*d[j]

return r

Exercise 7 (10 points)

A file contains lines with numbers separated by blanks. Write a Python
function sum file(inputname, outputname) that reads such a file (with
name in inputname), computes the sum of the numbers on each line, and
writes a new file (with name in outputname) where each line consists of the
read numbers (on the line) followed by their sum. Format the numbers in
the output such that they appear in nicely aligned columns. The number of
numbers per line may vary from line to line. There are no blank lines in the
input file.

For example, an input file may look like

1.2500 3.00 4.50

2.25 4 4.50

3.25 5.00 0.50 0.5

4.250 6.2 1

The output file may then look like

1.25 3.00 4.50 8.75

2.25 4.00 4.50 10.75

3.25 5.00 0.50 0.5 9.25

4.25 6.20 1.00 11.45

(Continued on page 7.)

Examination in INF1100, Wednesday, December 18, 2013 Page 7

Solution:

def sum_file(inputname, outputname):

infile = open(inputname, ’r’)

outfile = open(outputname, ’w’)

for line in infile:

numbers = [float(word) for word in line.split()]

s = sum(numbers)

for number in numbers:

outfile.write(’%7.2f’ % number)

outfile.write(’%7.2f\n’ % s)

infile.close()

outfile.close()

Exercise 8 (10 points)

You flip a coin n times. We want to compute the probability of getting at
least m heads. Write a program that applies the Monte Carlo simulation
method for computing the approximate probability. Read n and m from the
command line. Print out an error if n and m are missing on the command
line. Also print out an error message if n and m cannot be converted to
integers.

Solution:

import random, sys

try:

n = int(sys.argv[1])

m = int(sys.argv[2])

except IndexError:

print ’n and m must be given as command-line arguments!’

sys.exit(1)

except ValueError:

print ’n and m cannot be converted to integers!’

sys.exit(1)

N = 10000 # no of experiments

M = 0 # no of successes

for e in range(N):

Let tail=1, head=2

coins = [random.randint(1, 2) for i in range(n)]

if coins.count(2) >= m:

M += 1

print """

Approximate probability of at least %d heads among %d coints:

%.2f

""" % (m, n, float(M)/N)

(Continued on page 8.)

Examination in INF1100, Wednesday, December 18, 2013 Page 8

Exercise 9 (5 points)

A differential equation, or system of differential equations, written on the
generic form

u′(t) = f(u(t), t), u(0) = U0,

can be solved by tools in a class hierarchy ODESolver. The complete Python
code of the superclass and a subclass in this hierarchy is listed below. One
numerical solution technique for u′ = f(u, t) is Heun’s method:

u∗ = uk +∆tf(uk, tk),

uk+1 = uk +
1

2
∆tf(uk, tk) +

1

2
∆tf(u∗, tk+1),

where uk is the numerical approximation to the exact solution u(t) at time
t = tk = k∆t. Write a subclass of ODESolver to implement Heun’s method.
The subclass code should be in a file Heun.py, separate from ODESolver.py

(i.e., you need to import ODESolver).

import numpy as np

class ODESolver:

"""

Superclass for numerical methods solving scalar and vector ODEs

du/dt = f(u, t)

Attributes:

t: array of time values

u: array of solution values (at time points t)

k: step number of the most recently computed solution

f: callable object implementing f(u, t)

"""

def __init__(self, f):

self.f = lambda u, t: np.asarray(f(u, t), float)

def set_initial_condition(self, U0):

if isinstance(U0, (float,int)): # scalar ODE

self.neq = 1

U0 = float(U0)

else: # system of ODEs

U0 = np.asarray(U0) # (assume U0 is sequence)

self.neq = U0.size

(Continued on page 9.)

Examination in INF1100, Wednesday, December 18, 2013 Page 9

self.U0 = U0

def solve(self, time_points):

"""

Compute solution u for t values in the list/array

time_points.

"""

self.t = np.asarray(time_points)

n = self.t.size

if self.neq == 1: # scalar ODEs

self.u = np.zeros(n)

else: # systems of ODEs

self.u = np.zeros((n,self.neq))

Assume that self.t[0] corresponds to self.U0

self.u[0] = self.U0

Time loop

for k in range(n-1):

self.k = k

self.u[k+1] = self.advance()

return self.u, self.t

class ForwardEuler(ODESolver):

def advance(self):

u, f, k, t = self.u, self.f, self.k, self.t

dt = t[k+1] - t[k]

return u[k] + dt*f(u[k], t[k])

Solution:

from ODESolver import ODESolver

class Heun(ODESolver):

def advance(self):

u, f, k, t = self.u, self.f, self.k, self.t

dt = t[k+1] - t[k]

u_star = u[k] + dt*f(u[k], t[k])

u_new = u[k] + 0.5*dt*f(u[k], t[k]) + \

0.5*dt*f(u_star, t[k+1])

return u_new

Exercise 10 (10 points)

This exercise is a continuation of the problem setting in Exercise 9. The task
now is to implement the so-called Iterated Midpoint Method as a subclass in

(Continued on page 10.)

Examination in INF1100, Wednesday, December 18, 2013 Page 10

the ODESolver hierarchy. The method is defined mathematically as

vq = uk +
1

2
∆t (f(vq−1, tk+1) + f(uk, tk)) ,

q = 1, . . . , N, v0 = uk

uk+1 = vN .

We assume that the number of iterations, N , is known and supplied as argu-
ment to the constructor of the class. We also simplify to the case of a scalar
ODE with only one unknown function u. Write the code of the subclass,
called IteratedMidpointMethod, located in a separate file midpoint.py.
Show how you can use class IteratedMidpointMethod to solve the ODE
problem y(x)y′(x) = 1, y(0) = 1, x ∈ [0, 5].

Solution:

import numpy as np

import ODESolver

class IteratedMidpointMethod(ODESolver.ODESolver):

def __init__(self, f, N=2):

Must store N and allocate v as an array

ODESolver.ODESolver.__init__(self, f)

self.N = N

self.v = np.zeros(N+1)

def advance(self):

u, f, k, t, v, N = self.u, self.f, self.k, self.t, self.v, self.N

dt = t[k+1] - t[k]

v[0] = u[k]

for q in range(1, N+1):

v[q] = u[k] + 0.5*dt*(f(v[q-1], t[k+1]) +

f(u[k], t[k]))

u_new = v[N]

return u_new

Example:

solver = IteratedMidpointMethod(lambda y, x: 1./y, N=3)

solver.set_initial_condition(1)

y, x = solver.solve(np.linspace(0, 5, 101))

Exercise 11 (10 points)

This exercise presents a model for the spreading of a flu. The population is
divided into three groups: susceptibles (S) who can get the flu, infected (I)
who have developed the flu and who can infect susceptibles, and recovered

(Continued on page 11.)

Examination in INF1100, Wednesday, December 18, 2013 Page 11

(R) who have recovered from the flu and become immune. Let S(t), I(t),
and R(t) be the number of people in category S, I, and R, respectively. The
following differential equations describe how S(t), I(t), and R(t) develop in
a time interval 0 ≤ t ≤ T :

S ′(t) = −b(t)S(t)I(t), (1)

I ′(t) = b(t)S(t)I(t)− qI(t), (2)

R′(t) = qI(t). (3)

At t = 0 we have the initial conditions S(0) = S0, I(0) = I0, and R(0) = 0.
The function b(t) and the constant q > 0 must be known.

Write a Python function flu(S0, I0, b, q, T) that takes the initial values
S0 and I0, the function b(t), the parameter q, and the end time T for the sim-
ulation as arguments. The function can apply a subclass of class ODESolver
(see Exercises 9 and 10) to solve the differential equations, or you can write
your own code. Four arrays should be returned from the function flu:

• t containing the time points tk = k∆t, where the numerical solution is
computed, k = 0, 1, . . . , n,

• S containing S(t0), S(t1), . . . , S(tn),

• I containing I(t0), I(t1), . . . , I(tn),

• R containing R(t0), R(t1), . . . , R(tn).

We look at the spreading of the flu at a boarding school and reason as follows
to set appropriate values of the parameters needed in the model. At t = 0
there are 100 susceptibles and 1 infected. The value of 1/q reflects the average
length of the disease, here taken as 7 days, so q = 1/7 (time t is measured in
days). The function b(t) measures how easy an infected person can infect a
susceptible. In the beginning we assume b(t) to be a constant equal to 0.01.
After 6 days, t ≥ 6, people are aware of the flu and become more careful to
protect themselves such that b(t) drops from the value 0.01 to 0.002 (Exercise
1 asks you to implement such a function). Use five time steps per day such
that the total number of time points in the simulation is 5T + 1.

Make a call to the function flu with the mentioned parameters and T = 40.
Also add code for plotting S(t), I(t), and R(t) in the same figure with legends
for each curve.

Solution:

def flu(S0, I0, b, q, T):

def f(u, t):

S, I, R = u

return [-b(t)*S*I,

b(t)*S*I - q*I,

q*I]

(Continued on page 12.)

Examination in INF1100, Wednesday, December 18, 2013 Page 12

solver = Heun(f)

solver.set_initial_condition([S0, I0, 0])

time_points = np.linspace(0, T, 5*T+1)

u, t = solver.solve(time_points)

S = u[:,0]

I = u[:,1]

R = u[:,2]

return t, S, I, R

def b(t):

if t < 6:

return 0.01

else:

return 0.002

or

b = lambda t: 0.01 if t < 6 else 0.002

t, S, I, R = flu(S0=100, I0=1, b=b, q=1./7, T=40)

from scitools.std import plot

plot(t, S, t, I, t, R, legend=[’S’, ’I’, ’R’])

END

