
UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Examination in: INF1100 — Introduction to
programming with scientific
applications

Day of examination: Tuesday, December 15, 2009

Examination hours: 14.30 – 17.30.

This examination set consists of 11 pages.

Appendices: None.

Permitted aids: None.

Make sure that your copy of the examination set is
complete before you start solving the problems.

• Read through the complete exercise set before you start solving the
individual exercises. If you miss information in an exercise, you can
provide your own reasonable assumptions as long as you explain them
in detail.

• Most of the exercises result in short code where there is little need
for comments, unless you do something complicated or non-standard.
In that case, comments should convey the idea behind the program
constructions such that it becomes easy to evaluate the solution.

• Many exercises ask you to “write a function”. A main program calling
the function is then not required, unless it is explicitly stated. You
may, in these types of exercises, also assume that necessary modules
are already imported outside the function. On the other hand, if you
are asked to write a complete program, explicit import of modules must
be a part of the solution.

• The maximum possible score on the exam is 100 points. There are 10
exercises, and the number of points for each exercise is given in the
heading.

(Continued on page 2.)

Examination in INF1100, Tuesday, December 15, 2009 Page 2

Exercise 1 (5 points)

Write a Python function h(y) for evaluating the mathematical function

2√
π
e−y2 .

Also write a main program where you call the Python function.

Solution:

from math import sqrt, pi, exp

def h(y):

return 2/sqrt(pi)*exp(-y**2)

print h(1.0)

Exercise 2 (10 points)

Write a Python function for solving the following system of two difference
equations:

vi = vi−1 + dwi−1,

wi = wi−1 + d(A sin(c(i− 1)d)− p|wi−1|wi−1 − q sin(vi−1)),

for i = 1, . . . , N . The initial conditions read v0 = s and w0 = 0. The param-
eters d, A, c, p, and q in the equations are prescribed constants. The Python
function should return the sequences v0, v1, . . . , vN and w0, w1, . . . , wN .

Solution:

def difference_equation(N, s, d, A, c, p, q):

v = zeros(N+1)

w = zeros(N+1)

v[0] = s

w[0] = 0

for i in range(1, N+1):

v[i] = v[i-1] + d*w[i-1]

w[i] = w[i-1] + d*(A*sin(c*(i-1)*d) - \

p*abs(w[i-1])*w[i-1] - \

q*sin(v[i-1]))

return v, w

(Continued on page 3.)

Examination in INF1100, Tuesday, December 15, 2009 Page 3

Exercise 3 (10 points)

The function in Exercise 2 stores all the values v0, v1, . . . , vN and w0, w1, . . . , wN .
If the aim is to compute just vN and wN , only four values of the sequences
are strictly necessary to store during the calculations. Make a new version
of the function where you minimize the storage. Return the final values vN
and wN .

Solution:

def difference_equation_eff(N, s, d, A, c, p, q):

v_prev = s

w_prev = 0

for i in range(1, N+1):

v = v_prev + d*w_prev

w = w_prev + d*(A*sin(c*(i-1)*d) - \

p*abs(w_prev)*w_prev - \

q*sin(v_prev))

update for next step:

v_prev = v

w_prev = w

return v, w

Exercise 4 (10 points)

An integral
∫ b

a

g(t)dt

can be approximated by the formula

b− a

n+ 1

n
∑

i=0

g(ti), (1)

which arises from the Monte Carlo integration method. In this method, ti are
random variables uniformly distributed in the interval [a, b]. Write a Python
function MC(g, a, b, n=10000) for computing an integral by the formula
(1) (where the arguments g, a, b, and n correspond to the quantities g(t), a,
b, and n in the mathematical formula). Call the function to compute

2√
π

∫

1

0

e−x2

dx .

Solution:

import random

def MC(g, a, b, n=10000):

(Continued on page 4.)

Examination in INF1100, Tuesday, December 15, 2009 Page 4

s = 0

for i in range(0, n+1, 1):

t = random.uniform(a, b)

s += g(t)

return (b-a)/float(n+1)*s

The function to be integrated is already defined in

exercise 1, can reuse that function h(y)

print ’Integral with MC method:’, MC(h, 0, 1)

Exercise 5 (10 points)

Vectorize the MC function from the previous exercise. That is, make sure
that there are no explicit Python loops in the code. Assume that the g(t)

function can accept an array t as argument and (in that case) return an
array. (Hint: use numpy.random.uniform(a, b, n) and numpy.sum.)

Solution:

def MC_vec(g, a, b, n=10000):

from numpy import random, sum

x = random.uniform(a, b, n+1)

g_values = g(x)

s = sum(g_values)

return (b-a)/float(n+1)*s

test with h(y) function from exercise 1:

print ’Integral with vectorized MC method:’, MC_vec(h, 0, 1)

Exercise 6 (10 points)

Modify the function MC from Exercise 4 such that it also writes a file with
information on how the approximation evolves as we increase the number of
function evaluations. To be specific, define

Ik =
b− a

k + 1

k
∑

i=0

g(xi) (2)

as the approximation using k + 1 function evaluations, and write to file the
quantities I(0), I(1), . . ., I(n). (This can easily be done inside a loop in the
MC function.) The resulting file, called approx.dat, looks as follows (only
the first nine lines are shown here):

(Continued on page 5.)

Examination in INF1100, Tuesday, December 15, 2009 Page 5

k: 0, approximation=0.509454

k: 1, approximation=0.806124

k: 2, approximation=0.905143

k: 3, approximation=0.915171

k: 4, approximation=0.837735

k: 5, approximation=0.867419

k: 6, approximation=0.834705

k: 7, approximation=0.849747

k: 8, approximation=0.822398

Here, approximation corresponds to the value of Ik.

Solution:

def MC_log(g, a, b, n=10000):

output = open(’approx.dat’, ’w’)

s = 0

for i in range(0, n+1, 1):

x = random.uniform(a, b)

s += g(x)

k = i

I = (b-a)/float(k+1)*s

output.write(’k:%8d, approximation=%g\n’ % (k, I))

output.close()

return I

value = MC_log(h, 0, 1, n=1000) # h(x) given in previous exer.

Exercise 7 (10 points)

Consider the following class and an associated main program:

class Diffme:

def __init__(self, g, dx=1E-7):

self.g, self.dx = g, dx

def __call__(self, x):

g, dx = self.g, self.dx

return (g(x+dx) - g(x-dx))/(2.*dx)

def h(t):

return 3*t + 2

dhdt = Diffme(h)

print dhdt(1)

Explain the program flow. (You do not need to calculate a numerical value
for dhdt(1).)

(Continued on page 6.)

Examination in INF1100, Tuesday, December 15, 2009 Page 6

Solution:

First an instance of class Diffme is made, and the h function

is stored as attribute self.g.

The dhdt(1) call calls the __call__ method in class Diffme.

The attributes self.g and self.dx equal, from the initialization

of the instance, the h function and 1E-7 (the default value),

respectively. The returned expression is therefore

(h(1+self.dx) - h(1-self.dx))/(2*self.dx) with self.dx=1E-7

Exercise 8 (10 points)

A cylindrical tank of radius R is filled with water to a height h0. By opening
a valve of radius r at the bottom of the tank, water flows out, and the height
of water at time t, denoted by h(t), decreases with time. The function h(t)
is governed by the differential equation

dh

dt
= −

(

R

r

)

−2 (

1 +
(r

R

)4
)

−1/2
√

2gh . (3)

Write a program for computing and plotting h(t), using the class RungeKutta4
from the ODESolver hierarchy of methods for ordinary differential equations
(see code below). Let r = 1 cm, R = 30 cm, g = 9.81 m/s2, h0 = 0.5 m
in the program example. Use a time step of ∆t = 10 s and simulate for six
minutes.

A (slightly simplified) version of class ODESolver and two subclasses are
listed here for reference:

class ODESolver:

"""

Superclass for numerical methods solving ODEs

du/dt = f(u, t)

Attributes:

t: array of time values

u: array of solution values (at time points t)

k: step number of the most recently computed solution

f: callable object implementing f(u, t)

(Continued on page 7.)

Examination in INF1100, Tuesday, December 15, 2009 Page 7

dt: time step (assumed constant)

"""

def __init__(self, f, dt):

self.f = lambda u, t: numpy.asarray(f(u, t), float)

self.dt = dt

def set_initial_condition(self, u0, t0=0):

self.u = [] # u[k] is solution at time t[k]

self.t = [] # time levels in the solution process

self.u.append(numpy.asarray(u0, float))

self.t.append(float(t0))

self.k = 0 # time level counter

def solve(self, T):

"""

Advance solution from t = t0 to t = T, in steps of dt.

"""

self.k = 0

t = 0

while t < T:

unew = self.advance()

self.u.append(unew)

t = self.t[-1] + self.dt

self.t.append(t)

self.k += 1

return numpy.array(self.u), numpy.array(self.t)

class ForwardEuler(ODESolver):

def advance(self):

u, dt, f, k, t = \

self.u, self.dt, self.f, self.k, self.t[-1]

unew = u[k] + dt*f(u[k], t)

return unew

class RungeKutta4(ODESolver):

def advance(self):

u, dt, f, k, t = \

self.u, self.dt, self.f, self.k, self.t[-1]

dt2 = dt/2.0

K1 = dt*f(u[k], t)

K2 = dt*f(u[k] + 0.5*K1, t + dt2)

K3 = dt*f(u[k] + 0.5*K2, t + dt2)

K4 = dt*f(u[k] + K3, t + dt)

(Continued on page 8.)

Examination in INF1100, Tuesday, December 15, 2009 Page 8

unew = u[k] + (1/6.0)*(K1 + 2*K2 + 2*K3 + K4)

return unew

Solution:

def f(h, t):

return -(R/r)**(-2)*\

(1 + (r/R)**4)**(-0.5)*sqrt(2*g*h)

from ODESolver import RungeKutta4

from scitools.std import sqrt, plot

r = 0.01

R = 0.3

h0 = 0.5

g = 9.81

dt = 10

6 minutes = 360 seconds

T = 360

method = RungeKutta4(f, dt)

method.set_initial_condition(h0)

h, t = method.solve(T)

plot(t, h, title=’height of water in a tank’)

Better implementation:

class for the right-hand side

class Tank:

def __init__(self, r, R, h0):

self.r, self.R, self.h0 = \

float(r), float(R), h0

def __call__(self, h, t):

r, R = self.r, self.R

g = 9.81

return -(r/R)**2*\

(1 + (r/R)**4)**(-0.5)*sqrt(2*g*h)

tank = Tank(r=0.01, R=0.3, h0=1)

dt = 10

T = 360

method = ForwardEuler(tank, dt)

method.set_initial_condition(tank.h0)

h, t = method.solve(T)

(Continued on page 9.)

Examination in INF1100, Tuesday, December 15, 2009 Page 9

Exercise 9 (15 points)

The task in this exercise is to compute the solution v(t) of the following
second-order differential equation:

v′′ + p|v′|v′ + q sin(v) = A sin(ct), v(0) = s, v′(0) = 0,

where p ≥ 0, q > 0, A ≥ 0, c > 0, and s ∈ [0, π] are given constants. First
we rewrite the equation as a system of two first-order equations

d

dt
u0 = u1,

d

dt
u1 = A sin(ct)− p|u1|u1 − q sin(u0) .

The initial conditions for this system are u0(0) = s and u1(0) = 0.

To solve the above first-order system, you shall apply a subclass, ForwardEuler
or RungeKutta4, in the ODESolver hierarchy, listed in the previous exercise.
These subclasses demand a right-hand side function f(u, t) defining the
system of differential equations. Write a class for the relevant f(u, t) in
this exercise. The class must have a call method and store p, q, A, c,
and s as attributes. The equations are to be solved for t ∈ [0, T]. Show
how to plot v(t). You may set the following values of the parameters in-
volved: s = π/2, p = 0.1, q = 1, A = 1, c = 2, time step ∆t = 2π/30, and
T = 30π. Figure 1 shows the corresponding solution v(t) for these choices of
parameters.

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0 10 20 30 40 50 60 70 80 90 100

Figure 1: Plot of the solution of a 2nd-order differential equation.

Solution:

(Continued on page 10.)

Examination in INF1100, Tuesday, December 15, 2009 Page 10

class RHS:

def __init__(self, p, q, A, c, s):

self.p, self.q, self.A, self.c, self.s = \

p, q, A, c, s

def __call__(self, u, t):

A, c, p, q = self.A, self.c, self.p, self.q

return [u[1], A*sin(c*t) \

-p*abs(u[1])*u[1] - q*sin(u[0])]

from ODESolver import RungeKutta4

from scitools.std import plot, sin, pi

f = RHS(p=0.1, q=1, A=1, c=2, s=pi/2)

dt = 2*pi/30

T = 30*pi

method = RungeKutta4(f, dt)

method.set_initial_condition([f.s, 0])

u, t = method.solve(T)

v = u[:,0]

plot(t, v, hardcopy=’tmp.eps’)

Exercise 10 (10 points)

One numerical method for solving an ordinary differential equation

u′(t) = f(u(t), t), u(0) = U0,

is the midpoint method:

uk+1 = uk−1 + 2∆tf(uk, tk), (4)

where k is a time level, ∆t the time step, and uk is the approximation to u
at time level k, i.e., when t = tk. Equation (4) applies for k = 1, 2, 3, . . .,
while for k = 0 we use a simple Forward Euler approximation:

u1 = u0 +∆tf(u0, t0) . (5)

The midpoint method defined by (4) and (5) is also valid for a system of
ordinary differential equations when u and f are vectors.

Implement the midpoint method in a subclass of ODESolver (see Exercise 8
for relevant code).

Solution:

from ODESolver import ODESolver

class Midpoint(ODESolver):

(Continued on page 11.)

Examination in INF1100, Tuesday, December 15, 2009 Page 11

def advance(self):

u, dt, f, k, t = \

self.u, self.dt, self.f, self.k, self.t[-1]

if k >= 1:

unew = u[k-1] + 2*dt*f(u[k], t)

else: # k == 0

unew = u[k] + dt*f(u[k], t)

return unew

test the method on an easy problem: u’=-u

method = Midpoint(lambda u, t: -u, 0.01)

method.set_initial_condition(1)

u, t = method.solve(T=3)

from scitools.std import figure, plot

figure()

plot(t, u, title="Midpoint method for u’=-u") # looks fine

#--

longer integration in time triggers instabilities:

method.set_initial_condition(1)

u, t = method.solve(T=10)

figure()

plot(t, u, title="Midpoint method for u’=-u")

try Midpoint on the oscillating system from the previous exercise:

method = Midpoint(f, dt)

method.set_initial_condition([f.s, 0])

u, t = method.solve(T)

v2 = u[:,0]

figure()

the method exhibits numerical oscillations and becomes

unstable:

plot(t[:-80], v2[:-80], ’r-’,

t, v, ’b-’,

legend=(’Midpoint’, ’RK4’),

title=’Midpoint vs RK4’)

method = Midpoint(f, dt/100) # shorter time step helps...

method.set_initial_condition([f.s, 0])

u, t = method.solve(T)

v2 = u[:,0]

figure()

the method exhibits numerical oscillations and becomes

unstable:

plot(t, v2, ’r-’, title=’Midpoint method’)

END

