
UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Examination in: INF1100 — Introduction to
programming with scientific
applications

Day of examination: Friday, December 17, 2010

Examination hours: 09.00 – 13.00

This examination set consists of 9 pages.

Appendices: None.

Permitted aids: None.

Make sure that your copy of the examination set is
complete before you start solving the problems.

• Read through the complete exercise set before you start solving the
individual exercises. If you miss information in an exercise, you can
provide your own reasonable assumptions as long as you explain them
in detail.

• Most of the exercises result in short code where there is little need
for comments, unless you do something complicated or non-standard.
In that case, comments should convey the idea behind the program
constructions such that it becomes easy to evaluate the solution.

• An exercise may ask you to “write a function”. A main program calling
the function is then not required, unless it is explicitly stated. In the
function you write, you can assume that necessary modules are already
imported outside the function. On the other hand, if you are asked to
write a complete program, explicit import of modules is an important
part of the solution.

• The maximum possible score on the exam is 75 points. There are 8
exercises, and the number of points for each exercise is given in the
heading.

(Continued on page 2.)

Examination in INF1100, Friday, December 17, 2010 Page 2

Exercise 1 (5 points)

What is printed by this program?

L = [(0,0), (1,0), (1,1), (0,2), (0,0)]

for p in L[2:-1]:

print p[1]

Solution:

1

2

Exercise 2 (5 points)

What is printed by this program:

from math import sqrt

def f(x):

return x**4

def g(x):

return sqrt(sqrt(x))

q = 2

v = g(f(q))

print v

Solution:

2

Exercise 3 (10 points)

Implement the mathematical function

T (x, t) = e−qx cos(t− qx)

as a Python function T(x, t). Also, write a main program that plots T (x, t)
as a function of x when q = 1, x ∈ [0, 3], and t = 1.

Solution:

(Continued on page 3.)

Examination in INF1100, Friday, December 17, 2010 Page 3

def T(x, t):

return exp(-q*x)*cos(t - q*x)

from scitools.std import exp, cos, linspace, plot

q = 1

t = 1

x = linspace(0, 3)

y = T(x, t)

plot(x, y)

Exercise 4 (10 points)

Write a complete program for making a movie (animation) of the function
T (x, t) from Exercise 3. Each frame in the movie corresponds to a certain
time t and shows a graph of T versus x. Let q = 1, x ∈ [0, 3], and t ∈ [0, 6π].
Use a spacing between t values of π/16.

Hint: Let the frames of the movie be stored in files with names tmp 0000.png,
tmp 0001.png, tmp 0002.png, and so forth, created by ’tmp %04d.png’ %

c, where c is an integer counter (0, 1, 2, . . .). The movie can then be created
by

from scitools.std import movie

movie(’tmp_*.png’, encoder=’convert’, fps=2,

output_file=’movie.gif’)

To remove old frame files from a previous run of the program, you can use
the code

import glob, os

for name in glob.glob(’tmp_*.png’):

os.remove(name)

Solution:

from scitools.std import *

clean up old frames, i.e., tmp_*.png files:

import glob, os

for name in glob.glob(’tmp_*.png’):

os.remove(name)

def T(x, t):

return exp(-q*x)*cos(t - q*x)

xmax = 3

q = 1

x = linspace(0, xmax, 1001)

(Continued on page 4.)

Examination in INF1100, Friday, December 17, 2010 Page 4

n = 6*16 + 1

t_values = linspace(0, 6*pi, n)

counter = 0

for t in t_values:

y = T(x, t)

plot(x, y, hardcopy=’tmp_%04d.png’ % counter)

counter += 1

movie(’tmp_*.png’, encoder=’convert’, fps=2,

output_file=’movie.gif’)

Exercise 5 (10 points)

A file with name density.dat contains information on how the density of
air varies with temperature. The file may look as follows:

Density of air versus temperature (1 atm pressure)

Column 1: temperature in Celsius degrees

Column 2: density in kg/m^3

-10 1.341

-5 1.316

0 1.293

5 1.269

10 1.247

15 1.225

20 1.204

25 1.184

30 1.164

Source: Wikipedia

Lines starting with # are comment lines. Blank lines are not allowed in
the file. The first column contains temperatures in Celsius degrees while
the second column contains the corresponding densities. Your task is to
read this file in a Python program and write out a similar file where the
temperature is given in Fahrenheit instead of Celsius degrees. The relation
between Fahrenheit (F) and Celsius (C) degrees reads F = 1.8C + 32.

Solution:

infile = open(’density.dat’, ’r’)

outfile = open(’density2.dat’, ’w’)

for line in infile:

if line.startswith(’#’):

line = line.replace(’Celsius’, ’Fahrenheit’)

outfile.write(line)

else:

C, density = [float(w) for w in line.split()]

F = 1.8*C + 32

(Continued on page 5.)

Examination in INF1100, Friday, December 17, 2010 Page 5

outfile.write(’%5.1f %10.4f’ % (F, density)

infile.close()

outfile.close()

Exercise 6 (15 points)

A flip-coin game costs 1 NOK to play. You flip a coin five times. If heads
come up three times or more, you get paid 3 NOK. Make a program that
determines if you, in the long run, will earn money by playing this game.

Solution:

import random

def play():

heads = 0

for i in range(5):

r = random.randint(1,2)

if r == 1:

heads += 1

if heads >= 3:

return True # win

N = 100000

netincome = 0

for i in range(N):

netincome -= 1 # pay cost in game no. i

if play():

netincome += 3 # get award for winning

netincome_per_game = netincome/float(N)

if netincome > 0:

print ’Yes, you win in the long run,’,

else:

print ’No, you lose in the long run,’,

print ’%.1f NOK per game’ % netincome_per_game

Exercise 7 (10 points)

Systems of ordinary differential equations of the form

u′ = f(u, t)

can be solved by classes in the ODESolver class hierarchy shown below (this
is a slightly simplified version of ODESolver.py from the course material).

(Continued on page 6.)

Examination in INF1100, Friday, December 17, 2010 Page 6

class ODESolver:

"""

Superclass for numerical methods solving ODEs

du/dt = f(u, t)

Attributes:

t: array of time values

u: array of solution values (at time points t)

k: step number of the most recently computed solution

f: callable object implementing f(u, t)

dt: time step (assumed constant)

"""

def __init__(self, f, dt):

self.f = lambda u, t: numpy.asarray(f(u, t), float)

self.dt = dt

def set_initial_condition(self, u0, t0=0):

self.u = [] # u[k] is solution at time t[k]

self.t = [] # time levels in the solution process

self.u.append(numpy.asarray(u0, float))

self.t.append(float(t0))

self.k = 0 # time level counter

def solve(self, T):

"""

Advance solution from t = t0 to t = T, in steps of dt.

"""

self.k = 0

tnew = 0

while tnew < T:

unew = self.advance()

self.u.append(unew)

tnew = self.t[-1] + self.dt

self.t.append(tnew)

self.k += 1

return numpy.array(self.u), numpy.array(self.t)

class ForwardEuler(ODESolver):

def advance(self):

u, dt, f, k, t = \

self.u, self.dt, self.f, self.k, self.t[-1]

unew = u[k] + dt*f(u[k], t)

(Continued on page 7.)

Examination in INF1100, Friday, December 17, 2010 Page 7

return unew

class RungeKutta4(ODESolver):

def advance(self):

u, dt, f, k, t = \

self.u, self.dt, self.f, self.k, self.t[-1]

dt2 = dt/2.0

K1 = dt*f(u[k], t)

K2 = dt*f(u[k] + 0.5*K1, t + dt2)

K3 = dt*f(u[k] + 0.5*K2, t + dt2)

K4 = dt*f(u[k] + K3, t + dt)

unew = u[k] + (1/6.0)*(K1 + 2*K2 + 2*K3 + K4)

return unew

The task now is to extend the ODESolver hierarchy with a new subclass
implementing the following numerical method for u′ = f(u, t):

u∗ = uk +
1

2
∆t (f(uk, tk+1) + f(uk, tk)) ,

uk+1 = uk +
1

2
∆t (f(u∗, tk+1) + f(uk, tk)) (1)

Here, uk denotes u(t) at the k-th time level, where t = tk = k∆t. u∗ is a
help variable. Implement this numerical method in a subclass RK2 of class
ODESolver. The following minimalistic demonstration code for solving u′ =
−u, u(0) = 1, should work:

from ODESolver import RK2

def f(u, t):

return -u

dt = 0.1

method = RK2(f, dt)

method.set_initial_condition(1)

u, t = method.solve(T=3)

Solution:

from ODESolver import ODESolver

class RK2(ODESolver):

def advance(self):

"""Advance the solution one time step."""

u, dt, f, k, t = \

self.u, self.dt, self.f, self.k, self.t[-1]

u_star = u[k] + 0.5*dt*(f(u[k], t+dt) + f(u[k], t))

unew = u[k] + 0.5*dt*(f(u_star, t+dt) + f(u[k], t))

return unew

test:

(Continued on page 8.)

Examination in INF1100, Friday, December 17, 2010 Page 8

def f(u, t):

return -u

dt = 0.1

method = RK2(f, dt)

method.set_initial_condition(1)

u, t = method.solve(T=3)

from scitools.std import plot

plot(t, u, ’r-’,

t, exp(-t), ’b-’)

Exercise 8 (10 points)

We have the following system of ordinary differential equations for two func-
tions x(t) and y(t):

x′(t) = y(t)/Y − x(t)/X, (2)

y′(t) = x(t)/X − y(t)/Y, (3)

with initial conditions x(0) = y(0) = 1. Here, X and Y are two known
parameters. Use a class in the ODESolver hierarchy from Exercise 7 to com-
pute approximations to x(t) and y(t) for t ∈ [0, 3000] when X = 480 and
Y = 2400. Use a time step ∆t = 10. Store the discrete values of x and y in
arrays x and y. Describe how you can verify that the program works.

Solution:

class RHS:

def __init__(self, X, Y):

self.X, self.Y = float(X), float(Y)

def __call__(self, u, t):

u is a 2-array [x, y] at time t

x, y = u

X, Y = self.X, self.Y

return [y/Y - x/X, x/X - y/Y]

u0 = [1, 1]

f = RHS(X=480, Y=2400)

method = RK2(f, dt)

method.set_initial_condition(u0)

dt = 10

u, t = method.solve(T=3000)

x = u[:,0]

y = u[:,1]

(Continued on page 9.)

Examination in INF1100, Friday, December 17, 2010 Page 9

can plot too (although the exercise does not ask for that):

from scitools.std import plot

plot(t, x, ’r-’,

t, y, ’b-’,

legend=(’x’, ’y’))

To verify the implementation, one can calculate by hand x1, x2, y1, y2, write
out these values in the code and compare with the hand-calculated values.
One can also for this special ODE system see that the solutions x and y
become constant as t → ∞, and the constants can be inserted back in the
ODE system to check that they fit.

END

