UNIVERSITETET | OSLO

Det matematisk-naturvitenskapelige fakultet

Examination in: INF1100 — Introduction to
programming with scientific
applications

Day of examination: Friday, December 16, 2011
Examination hours: 09.00 — 13.00.

This examination set consists of 11 pages.
Appendices: None.

Permitted aids: None.

Make sure that your copy of the examination set is
complete before you start solving the problems.

e Read through the complete exercise set before you start solving the
individual exercises. If you miss information in an exercise, you can
provide your own reasonable assumptions as long as you explain them
in detail.

e Most of the exercises result in short code where there is little need
for comments, unless you do something complicated or non-standard.
In that case, comments should convey the idea behind the program
constructions such that it becomes easy to evaluate the solution.

e Many exercises ask you to “write a function”. A main program calling
the function is then not required, unless it is explicitly stated. You
may, in these types of exercises, also assume that necessary modules
are already imported outside the function. On the other hand, if you
are asked to write a complete program, explicit import of modules must
be a part of the solution.

e The maximum possible score on this exam is 80 points. There are 10
exercises, and the number of points for each exercise is given in the
heading.

(Continued on page 2.)

Examination in INF1100, Friday, December 16, 2011 Page 2

Exercise 1 (3 points)

What is printed by the following program?

for i in range(2, 4):
print i
for j in range(i-1, i+1):
for k in range(j-1, j):

if 1 = j:
print j, k
Solution:
2
10
3
21

Exercise 2 (2 points)

Let elements be some Python list. Write code that picks out a random
element in the list and removes the element from the list.

Solution:

import random
mylist is some list

Shuffle list first and draw first element
mylist = random.shuffle(mylist)

item = mylist[0]

del mylist[0]

Or use pop (equiv. to the last two statements)
mylist = random.shuffle(mylist)
item = mylist.pop(0)

Or draw a random index

i = random.randint(0, len(mylist)-1)
item = mylist[i]

del mylist[i]

(Continued on page 3.)

Examination in INF1100, Friday, December 16, 2011 Page 3

Or use random.choice and list.remove
item = random.choice(mylist)
mylist.remove(item)

Exercise 3 (5 points)

Given a dictionary of the form

colors = {’red’: 10, ’yellow’: 100,
‘green’: 41, ’blue’: 88}

write a Python function dict2list that takes a dictionary colors as above
as argument and returns a list of strings where the string ¢ occurs exactly
colors[c] times. Let c run over all keys in the colors dictionary. Here is
a sample session using the function:

>>> colors = {’red’: 3, ’yellow’: 1, ’purple’: 2}
>>> dict2list(colors)
[’red’, ’red’, ’red’, ’purple’, ’purple’, ’yellow’]

Solution:

def dict2list(colors):
colors_list = []
for color in colors:
for i in range(colors[color]):
colors_list.append(color)
return colors_list

Exercise 4 (10 points)

Consider the following game. You flip a coin twice and win if you get one
tail and one head. Write a program that applies Monte Carlo simulation
for estimating the probability of winning. (Monte Carlo simulation means
simulating the experiment on the computer a large number of times.)

Solution:

import random, sys
N = int(sys.argv[1])
M=0

for e in range(N):
cl = random.randint (1, 2)

c2 = random.randint (1, 2)

(Continued on page 4.)

Examination in INF1100, Friday, December 16, 2011 Page 4

if cl != c2:
M += 1
print float(M)/N

Exercise 5 (10 points)

Generalize the program in Exercise 4 to the case where you flip the coin n
times and win if you get at least twice as many heads as tails. Put the code
in a function that takes n and N as arguments and returns the probability,
where N is the number of experiments in the Monte Carlo simulation. Read
the N value from the command line. Make a plot of the probability versus n
for n = 3,6,9,12,15. Mark each point in the plot by a symbol (for instance
a circle). Write the value of N in the title of the plot.

Solution:

import random

def simulate(n, N=10000):

M=0

for e in range(N):
¢ = [random.randint(1, 2) for i in range(n)]
tails = c.count (1)
heads = c.count(2)
if heads >= 2%*tails:

M+=1
return float(M)/N

import sys

from scitools.std import plot

try:
N = int(sys.argv[1])

except IndexError:
print ’Give N on the command line’
sys.exit(1)

n_values = [3, 6, 9, 12, 15]
prob = [simulate(n, N) for n in n_values]
plot(n_values, prob, ’ro’, title=’N=Yd’ % N)

Typical values of prob are 0.50, 0.34, 0.26, 0.19, 0.15.

Exercise 6 (10 points)

We have a hat of 8 red balls, 2 yellow balls, 6 green balls, and 9 black balls.
What is the probability of getting (at least) a yellow and a red ball when

(Continued on page 5.)

Examination in INF1100, Friday, December 16, 2011 Page 5

drawing four balls (without replacement) from the hat? Write a program
that applies Monte Carlo simulation to estimate the probability. (Hint: Use
code and ideas from Exercises 2, 3, and 4.)

Solution:

import random

def draw_ball(hat):
"""Draw a ball using list index."""
index = random.randint(0, len(hat)-1)
color = hat[index]
del hat[index]
return color, hat

def new_hat(colors):
hat = []
for color in colors:
for i in range(colors[color]):
hat.append(color)
return hat

n=4
N = 100000
colors = {’red’: 8, ’yellow’: 2, ’green’: 6,

’black’: 9}

run experiments:
M =0 # no of successes
for e in range(N):
hat = new_hat(colors)
balls = [] # the n balls we draw
for i in range(n):
color, hat = draw_ball(hat)
balls.append(color)
#if balls.count(’yellow’) >= 1 and \
balls.count(’red’) >= 1:
if ’yellow’ in balls and ’red’ in balls:
M+=1
print ’Probability:’, float(M)/N

(Continued on page 6.)

Examination in INF1100, Friday, December 16, 2011 Page 6

Exercise 7 (10 points)

We consider approximation of an integral fOT g(t)dt by some numerical inte-
gration rule of the form

/0 g(t)dt ~ Zwif(ti)a

where wy,...,w, and tg,...,t, are weights and points of the rule. The
following class implements the computations:

from numpy import dot

class IntegralApproximation:
def __init__(self, T, n):
self. T, self.n =T, n
self.t, self.w = self.set_weights_points()

def __call__(self, g, vectorized=True):
return self.vectorized_code(g) if vectorized else \
self.scalar_code(g)

def scalar_code(self, g):
s =0
for i in range(len(self.w)):
s += self.wl[il*g(self.t[i])
return s

def vectorized_code(self, g):
return dot(self.w, g(self.t))

def set_weights_points(self):
raise NotImplementedError(
'no set_weights_points method in class %s’ \
% self.__class__.__name__)

This class cannot be used for any real integration computation since it does
not set the points and weights of the rule to be used. Subclasses are meant
to define points and weights through the set_weights_points method.

We want to use a Monte Carlo integration rule where the points are random
coordinates in the integration interval and where all the weights are equal to
the length of the integration interval divided by the number of integration
points. Write such a subclass and demonstrate how to use it to integrate

10
/ e~t/5 sin? (2t)dt
0

in a vectorized fashion.
Solution:

(Continued on page 7.)

Examination in INF1100, Friday, December 16, 2011 Page 7

from numpy import zeros, random, sin, exp, pi

class MonteCarloInt(IntegralApproximation) :
def set_weights_points(self):

must use vectorized drawing of numbers
since the exercise wants a vectorized version
weight = float(self.T)/(self.n+1)
w = zeros(self.n+1l) + weight
t = random.uniform(0, self.T, self.n+1)
return t, w

def g(t):
return exp(-t/5.)*sin(2*pix*t)

integrator = MonteCarloInt (10, n=2000000)
I = integrator(g, vectorized=True)
print I

Exercise 8 (10 points)

The result of some computation is a set of points (z,y) on a curve. This set
of points is stored in a file with the the x coordinates in the first column and
the y coordinates in the second column. More precisely, the file format looks
like this:

File with (x, y) data
#

x=0.102871 y=8.12134
x=0.113526 y=7.98211
x=0.132912 y=2.67152

The file may contain some comment lines in the beginning, starting with #
at the very beginning of the line. Make a function that takes the filename as
argument and returns the x and y data as two arrays.

Solution:

def read(filename):
x = []
y = []
infile = open(filename, ’r’)
for line in infile:
if line.startswith(’#’):
continue
words = line.split()

xi = words[0].split(’=") [1]

(Continued on page 8.)

Examination in INF1100, Friday, December 16, 2011 Page 8

yi = words[1].split(’=’)[1]
Alternative:

xi = words[0] [2:]

yi = words[1][2:]

x.append (float (xi))

y.append (float (yi))
from numpy import array
return array(x), array(y)

X, y = read(’tmp.dat’)
print x
print y

Exercise 9 (10 points)

Suppose the curve data in Exercise 8 represent some quantity y that oscillates
with . We are interested in locating all the local maxima of the curve
and the x distances between the maxima (these distances reflect the period
of oscillations, while the maxima reflect the amplitude of the oscillations).
Write a function taking the x and y coordinates as array arguments and
returning the maxima points and the x distances between them. Note that
a local maximum takes place at x[k] if y[k-1] < y[k] > y[k+1].

Show in a Python program how you can generate points on some function
curve and call the function to compute local maxima and the distances be-
tween them. Write out the largest and smallest y value of the maxima points.

Solution:

def findmax(x, y):
maxima = []
for k in range(1l, len(y)-1, 1):
if ylk-1] < y[k] > yl[k+1]:
maxima.append ((x[k], y[k]))
Distances between maxima:
dist = []
for k in range(len(maxima)-1):
dist.append(maxima[k+1] [0] - maximalk] [0])
return maxima, dist

from numpy import cos, linspace, pi
Use a simple curve where we know the maxima
(here all integer x) and distances (here 1)
def f(x):

return cos(2*pix*x)

(Continued on page 9.)

Examination in INF1100, Friday, December 16, 2011 Page 9

10

= 101

= linspace(0, L, n)
f(x)

< X B -
|

maxima, dist = findmax(x, y)

Turn maxima to array for easy analysis
from numpy import asarray

maxima = asarray(maxima)

ymaxima_max = maximal[:,1] .max()
maximal:,1] .min()

ymaxima_min

Alternative method, working with maxima as list of list
ymaxima = [y_ for x_, y_ in maximal]

ymaxima_max = max(ymaxima)

ymaxima_min = min(ymaxima)

print ymaxima_min, ymaxima_max

Exercise 10 (10 points)

The differential equation for a pendulum subject to gravity forces and air
resistance, and with an initial angle 6 € (0,), is given by

mIv" + c|v'|v" + mgsin(v) =0, v(0) =46, v'(0) = 0.

Here, m > 0, L > 0, ¢ > 0, g > 0, and 0 are given constants. We want to
solve this problem by the ODESolver software known from the course and
listed below.

First we must rewrite the equation as a system of two first-order equations:

G0 = u,
d 1
EU(I) = —m(lu®|u® + mg sin(u?)).

The initial conditions for this system are u°(0) = 6 and u'(0) = 0.

(a) Make a class to represent the right-hand side, known as the £ object
to constructors of classes in the ODESolver hierarchy. The physical
parameters m, L, ¢, g, and 6 should be attributes in the class.

(b) Use the RungeKutta4 method to solve the system. For simplicity, set
all physical parameters to 1, except for g, which equals 9.81. A suitable
time interval for simulation is [0, 7] with 7" = 10P, P being the time
period of one oscillation, approximately given by P = 27/,/g. Choose
At = P/40.

(Continued on page 10.)

Examination in INF1100, Friday, December 16, 2011 Page 10

(c) Plot v versus t. Mark the axis with ¢ and v.

Here are the 0DESolver and RungeKutta4 classes:

import numpy as np

class 0ODESolver:

nnn

Superclass for numerical methods solving scalar and vector ODEs
du/dt = f(u, t)

Attributes:
t: array of time values
u: array of solution values (at time points t)
k: step number of the most recently computed solution
f: callable object implementing f(u, t)
def __init__(self, £f):
self.f = lambda u, t: np.asarray(f(u, t), float)

def set_initial_condition(self, UO):
if isinstance(U0, (float,int)): # scalar ODE

self.neq =1
U0 = float(UO)
else: # system of ODEs
U0 = np.asarray(U0) # (assume UO is sequence)
self.neq = UO.size
self.U0 = UO

def solve(self, time_points):
nmn
Compute solution u for t values in the list/array
time_points.
nnn
self.t = np.asarray(time_points)
n = self.t.size

if self.neq == 1: # scalar 0DEs
self.u = np.zeros(n)
else: # systems of ODEs

self.u = np.zeros((n,self.neq))

Assume that self.t[0] corresponds to self.U0O
self.ul[0] = self.U0

Time loop
for k in range(n-1):

(Continued on page 11.)

Examination in INF1100, Friday, December 16, 2011 Page 11

self .k = k
self.ulk+1] = self.advance()
return self.u, self.t

class RungeKutta4 (ODESolver) :
def advance(self):
u, f, k, t = self.u, self.f, self.k, self.t
dt = t[k+1] - t[k]
dt2 = 4dt/2.0
K1 = dtxf(ulk], t[k])

K2 = dtxf(ulk] + 0.5%K1, t[k] + dt2)
K3 = dtxf(ulk] + 0.5%K2, t[k] + dt2)
K4 = dtxf(ulk] + K3, t[k] + dt)

unew = ulk] + (1/6.0)*(K1 + 2xK2 + 2xK3 + K4)
return unew

Solution:

class RHS:
def __init__(self, m, L, g, c, theta):
self.m, self.L, self.g, self.c, self.theta = \
m, L, g, c, theta

def __call__(self, u, t):
m, L, g, ¢, theta = self.m, self.L, self.g, self.c, self.theta
return [u[1],
-1./(m*L) * (c*abs(ul[1])*ul1] + m*gxsin(u[0]))]

from ODESolver import RungeKutta4d
from math import pi, sqrt, sin
import numpy as np

g =9.81

f = RHS(m=1, L=1, g=g, c=1, theta=1)
P = 2%pi/sqrt(g)

dt = P/40

T = 10%P

n = int(T/dt)

time_points = np.linspace(0, T, n+1)
method = RungeKuttad(f)
method.set_initial_condition([f.theta, 0])
u, t = method.solve(time_points)

v = ul:,0]
from scitools.std import plot
plot(t, v, xlabel="t’, ylabel=’v’)

END

