
UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Examination in: INF1100 — Introduction to
programming with scientific
applications

Day of examination: Tuesday, December 18, 2012

Examination hours: 09.00 – 13.00.

This examination set consists of 9 pages.

Appendices: None.

Permitted aids: None.

Make sure that your copy of the examination set is
complete before you start solving the problems.

• Read through the complete exercise set before you start solving the
individual exercises. If you miss information in an exercise, you can
provide your own reasonable assumptions as long as you explain them
in detail.

• Most of the exercises result in short code where there is little need
for comments, unless you do something complicated or non-standard.
In that case, comments should convey the idea behind the program
constructions such that it becomes easy to evaluate the solution.

• Many exercises ask you to “write a function”. A main program calling
the function is then not required, unless it is explicitly stated. You
may, in these types of exercises, also assume that necessary modules
are already imported outside the function. On the other hand, if you
are asked to write a complete program, explicit import of modules must
be a part of the solution.

• The maximum possible score on this exam is 75 points. There are 12
exercises, and the number of points for each exercise is given in the
heading.

(Continued on page 2.)

Examination in INF1100, Tuesday, December 18, 2012 Page 2

Exercise 1 (5 points)

Write a Python function f(x) that returns the value of the mathematical
function

f(x) =
1√
2π

e−
1

2
(x−m)2

Let m be a global value in the program. Also write a main program that
writes out the value of f(0.5) in the case m = 0.

Exercise 2 (5 points)

Write a Python class Gaussian that can evaluate the function f(x) given in
Exercise 1. The following code computes f(2.5) when m = 2 and demon-
strates how the class works:

f = Gaussian(m=2)

value = f(2.5)

Exercise 3 (5 points)

Write a program that reads m and a series of x values from the command
line and then writes out f(x) for each x value, where f is given in Exercise
1. Abort the program if the command line does not contain m and at least
one x value.

Here is an example on using the program (whose name is Gaussian.py):

Terminal> python Gaussian.py 1 1.1 1.2 1.3 2

2.661E-01

2.897E-01

3.123E-01

3.989E-01

Terminal> python Gaussian.py 1

Usage: Gaussian.py m x1 x2 ...

Make sure you format the printing of numbers such that each f(x) value
appears as shown.

(Continued on page 3.)

Examination in INF1100, Tuesday, December 18, 2012 Page 3

Exercise 4 (5 points)

What is printed by the programs below?

(a)

method1 = "Newton"

method2 = method1

method1 = "Bisection"

print method2

(b)

import numpy

The coefficients for the Taylor polynomial for exp(x)

Taylor_coefficients = numpy.array(

[1.0, 0.5, 0.16666666666666666, 0.041666666666666664,

0.008333333333333333, 0.001388888888888889])

coeff = Taylor_coefficients

coeff[1] = 0

print Taylor_coefficients[:2]

(c)

Lagrange_points = [4, 2, 1, 6, 9]

del Lagrange_points[2:-1]

print Lagrange_points

(d)

def add(a, b):

return a + b

print add(1, 2)

print add([1,2,3], [0,1,2])

print add("Forward", "Euler")

(e)

m = 3

k = 0

for i in range(m):

for j in range(i-1, m):

if i != j:

k += 1

print k

(Continued on page 4.)

Examination in INF1100, Tuesday, December 18, 2012 Page 4

Exercise 5 (5 points)

What is printed by the program below?

class PowerFunction:

def __init__(self, a=1, p=2):

print ’in PowerFunction constructor’

self.data = {’a’: a, ’p’: p}

def __call__(self, x):

print ’in __call__’

return self.data[’a’]*(x-1)**self.data[’p’]

def reduce(x):

print ’in reduce, x:’, x

return sqrt(x)

def composite_function(x, f1, f2):

print ’in composite_function’

y = f2(f1(x))

return y

from numpy import *

x = linspace(1, 3, 3)

p = PowerFunction()

u = composite_function(x, p, reduce)

for x_, u_ in zip(x, u):

print ’%.1f %.1f’ % (x_, u_)

Exercise 6 (5 points)

A file with name data.txt contains three columns of numbers. The first
two correspond to x and y coordinates on a curve, while the third contains
uncertainty estimates of the y values given in percent. There is no number
in the third column if no uncertainty estimate of corresponding y value has
been computed.

The start of the file looks as this:

-1.000000 -0.76E-2 0.1432

-0.959184 -0.74E-2

-0.918367 -0.72E-2

-0.877551 -0.70E-2 -0.9078

Make a program that can plot the y coordinates in the second column against
the x coordinates in the first column using a red line. Assume no empty lines
in the file.

(Continued on page 5.)

Examination in INF1100, Tuesday, December 18, 2012 Page 5

Exercise 7 (5 points)

Extend the program from Exercise 6 with statements that read the file again
and visualize how the uncertainty estimates in the third column varies with
the corresponding x values. Use small blue circles to visualize the data points.

Exercise 8 (5 points)

The purpose of this exercise is to write a file like data.txt in Exercise 6. We
have two Numerical Python arrays, x and y, and a list uncertainty, all of
equal length. The values of the two arrays and the list are to make up the
three columns in the file. Some of the elements in the list uncertainty have
None as value, which indicates there is no uncertainty estimate and hence no
value should be written to the file. Write a function dump data(filename,

x, y, uncertainty) that creates a file with name filename as described.
Use the same format for real numbers as exemplified in the snippet from
data.txt in Exercise 6.

Exercise 9 (10 points)

Somebody proposes the following game: You flip a coin 20 times, and if 15
or more heads show up, you receive 400 NOK, otherwise you have to pay 10
NOK. Will you earn money in the long run if you play the game? Write a
program that applies Monte Carlo simulation to answer the question.

Exercise 10 (10 points)

Various numerical integration methods for time integrals
∫ T

0

G(t)dt

can be implemented in a class hierarchy. All the numerical integration meth-
ods are written as

∫ T

0

G(t)dt ≈
n
∑

p=0

wpG(tp),

where t0, . . . , tn are given coordinates and w0, . . . , wn are given weights. Each
method has its own choice of t0, . . . , tn and w0, . . . , wn. In a superclass
TimeIntegral we store the function to be integrated, G(t), the limit T ,
and the parameter n. The method compute computes and returns the
sum

∑n

p=0 wpG(tp). Another method, initialize, computes t0, . . . , tn and
w0, . . . , wn as two arrays, but this method must be implemented in various
subclasses corresponding to various integration rules.

(Continued on page 6.)

Examination in INF1100, Tuesday, December 18, 2012 Page 6

class TimeIntegral:

"""

Compute an approximation to the integral of G(t)

from 0 to T using a numerical integration rule

with n+1 function evaluations.

"""

def __init__(self, G, T, n):

self.G = G

self.T = T

self.n = n

self.initialize() # compute weights and points

def initialize(self):

"""

Compute weights self.w and points self.t

as two arrays of length self.n+1.

"""

raise NotImplementedError

def compute(self):

"""Return the approximation of the integral."""

s = 0

for p in range(self.n+1):

s += self.w[p]*self.G(self.t[p])

return s

All the code above appears in a file TimeIntegral.py. The module TimeIntegral
can therefore be imported in other programs.

The Trapezoidal rule,

∫ T

0

G(t)dt ≈ h

(

1

2
G(0) +

1

2
G(T) +

n−1
∑

i=1

G(ih)

)

,

where h = T/n, can be implemented as the following subclass of class
TimeIntegral in a separate file methods.py:

from TimeIntegral import TimeIntegral

from numpy import linspace, zeros

class Trapezoidal(TimeIntegral):

def initialize(self):

"""

Compute weights self.w and points self.t

as two arrays of length self.n+1.

"""

self.t = linspace(0, self.T, self.n+1)

(Continued on page 7.)

Examination in INF1100, Tuesday, December 18, 2012 Page 7

h = self.T/float(self.n)

self.w = zeros(len(self.t)) + h

self.w[0] = self.w[0]/2

self.w[-1] = self.w[-1]/2

The purpose of this exercise is to implement Monte Carlo integration as
another subclass of TimeIntegral. The Monte Carlo integration method is
defined through

∫ T

0

G(t)dt ≈ T

n+ 1

n
∑

p=0

G(tp),

where tp are uniformly distributed random numbers in [0, T]. The weights
are here constant: wp = T/(n+1). Add code for the Monte Carlo integration
class in the methods.py file. Also add a function for testing that Monte Carlo
integration gives exact result for a constant function, say G(t) = 2.5 for all
t ∈ [0, T].

Exercise 11 (10 points)

We have a pendulum of length L with a mass m at the end of a massless
wire. At t = 0, the pendulum is at rest, making an angle θ ∈ (0, π) with
the vertical (θ and all angles are measured in radians). We then release the
pendulum and it moves back and forth driven by gravity. Air resistance will
damp the motion and eventually bring the pendulum to rest.

At time t, the pendulum makes an angle v(t) with the vertical. This angle
can be computed by Newton’s second law of motion, which takes the form
of a differential equation:

mLv′′ + c|v′|v′ +mg sin(v) = 0, v(0) = θ, v′(0) = 0.

The constant c reflects the size of the air resistance. We want to solve this
differential equation problem by the ODESolver software known from the
course and listed below.

First we must rewrite the second-order differential equation for v(t) as a
system of two first-order equations:

d

dt
u(0) = u(1),

d

dt
u(1) = − 1

mL
(c|u(1)|u(1) +mg sin(u(0))) .

The initial conditions for this system are u0(0) = θ and u1(0) = 0.

Make a class to represent the right-hand side of the differential equation
system (known as the f object to constructors of classes in the ODESolver

hierarchy). The physical parameters m, L, c, g, and θ should be attributes
in the class.

(Continued on page 8.)

Examination in INF1100, Tuesday, December 18, 2012 Page 8

Use the RungeKutta4 method to solve the system. For simplicity, set all
physical parameters to 1, except for g, which equals 9.81. A suitable time
interval for simulation is [0, T] with T = 10P , P being the time period of one
oscillation, approximately given by P = 2π/

√
g. Choose 40 numerical time

intervals during one oscillation: ∆t = P/40.

Finally, plot v versus t as a blue curve. Mark the axis with t and v.

Here are the ODESolver and RungeKutta4 classes:

import numpy as np

class ODESolver:

"""

Superclass for numerical methods solving scalar and vector ODEs

du/dt = f(u, t)

Attributes:

t: array of time values

u: array of solution values (at time points t)

k: step number of the most recently computed solution

f: callable object implementing f(u, t)

"""

def __init__(self, f):

self.f = lambda u, t: np.asarray(f(u, t), float)

def set_initial_condition(self, U0):

if isinstance(U0, (float,int)): # scalar ODE

self.neq = 1

U0 = float(U0)

else: # system of ODEs

U0 = np.asarray(U0) # (assume U0 is sequence)

self.neq = U0.size

self.U0 = U0

def solve(self, time_points):

"""

Compute solution u for t values in the list/array

time_points.

"""

self.t = np.asarray(time_points)

n = self.t.size

if self.neq == 1: # scalar ODEs

self.u = np.zeros(n)

else: # systems of ODEs

self.u = np.zeros((n,self.neq))

(Continued on page 9.)

Examination in INF1100, Tuesday, December 18, 2012 Page 9

Assume that self.t[0] corresponds to self.U0

self.u[0] = self.U0

Time loop

for k in range(n-1):

self.k = k

self.u[k+1] = self.advance()

return self.u, self.t

class RungeKutta4(ODESolver):

def advance(self):

u, f, k, t = self.u, self.f, self.k, self.t

dt = t[k+1] - t[k]

dt2 = dt/2.0

K1 = dt*f(u[k], t[k])

K2 = dt*f(u[k] + 0.5*K1, t[k] + dt2)

K3 = dt*f(u[k] + 0.5*K2, t[k] + dt2)

K4 = dt*f(u[k] + K3, t[k] + dt)

unew = u[k] + (1/6.0)*(K1 + 2*K2 + 2*K3 + K4)

return unew

Exercise 12 (5 points)

Implement the Forward Euler method in the class ODESolver hierarchy from
the previous exercise. The Forward Euler method for an ODE or ODE system
of the form u′ = f(u, t) can be written as

uk+1 = uk + (tk+1 − tk)f(uk, tk),

where tk is the time at step number k, and uk is an approximation to u at
tk.

END

