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Appendices: None.

Permitted aids: None.

Make sure that your copy of the examination set is
complete before you start solving the problems.

• Read through the complete exercise set before you start solving the
individual exercises. If you miss information in an exercise, you can
provide your own reasonable assumptions as long as you explain that
in detail.

• The maximum possible score on the exam is 25 points. The maxi-
mum number of points is listed for each exercise (a correct answer of a
subquestion ((a), (b), etc.) gives 1 point).

Exercise 1 (10 points)

What will be the output of the print statement in the programs below?
Assume that the Python codes are run by version 2.x (e.g., version 2.7), not
version 3.x.

(a)

a = 2

b = a

a = 3

print b

(Continued on page 2.)
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(b)

from numpy import linspace

t = linspace(0, 1, 3)

y = t**2

for t_, y_ in zip(t, y):

print ’%.1f %.1f’ % (y_, t_)

(c)

def g(x):

return 1 - x/4

x = 2

print ’g(%g)=%g’ % (x, g(x))

(d)

A = [1, 2, 3]

if A[2] < 3:

del A[1]

else:

del A[0]

if A[0] > 1:

A.append(4)

print A

(e)

B = [x**2 for x in range(5)]

print B[1:-1]

(f)

def iterate(f, x, dfdx, tolerance=1.0E-2, max_n=5):

n = 0

while abs(f(x)) > tolerance and n <= max_n:

x = x - f(x)/dfdx(x)

n += 1

if n > max_n:

raise ValueError(’Iteration did not converge’)

else:

return x, f(x)

def g(t):

return (1-x)*(2-x) #2 -3x +x^2

(Continued on page 3.)
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def dgdt(t):

return 2*x - 3

def g(t):

return 1-t

def dgdt(t):

return -1

print iterate(g, 1, dgdt)

print iterate(g, 12.5, dgdt)

(g)

import numpy as np

x = np.linspace(1, 5, 5)

y = x

for x_ in x[1:-1]:

for y_ in y[1:-1]:

if x_ != y_ and x_ > y_ + 1:

print x_, y_

(h)

A = [[0, 0], [0, -1], [1, 3], [2, 4], [0, -2]]

print A[2]

print A[3][1]

print A[2:]

(i)

numbers = (1, 4, 8, 3, 2)

k = numbers[2]

try:

element = float(numbers[k])

print ’element=%f’ % element

except IndexError:

print ’Index %d > %d’ % (k, len(numbers))

except ValueError:

print ’Could not convert %d to float’ % (numbers[k])

(j)

u = [1, 2]; v = [-1, 1]

print u + v

from numpy import array

u = array(u); v = array(v)

print u + v

(Continued on page 4.)



Examination in INF1100, Thursday, October 11, 2012 Page 4

Exercise 2 (3 points)

It is known that one inch is 2.54 cm and that one foot equals 12 inches.
Make a function fts2ms(v) that converts a velocity v from feet per second
to meter per second. Use the function to convert the velocity 3 ft/s to m/s.

Exercise 3 (4 points)

An arbitrary triangle can be described by the coordinates of its three vertices:
(x1, y1), (x2, y2), (x3, y3). The area of the triangle is given by the formula

A =
1

2
(x2y3 − x3y2 − x1y3 + x3y1 + x1y2 − x2y1) ,

when (x1, y1), (x2, y2), (x3, y3) are listed in counterclockwise direction. Write
a function area(vertices) that returns the area of a triangle whose vertices
are specified by the argument vertices, which is a nested list of the vertex
coordinates. For example, vertices is [[0,0], [1,0], [0,2]] if the three
corners of the triangle have coordinates (0, 0), (1, 0) and (0, 2). Show how
to use the area function to compute the area of the four-sided quadrilateral
figure below.
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Exercise 4 (4 points)

The purpose of this exercise is to plot the size of the terms in a Taylor
polynomial. We write the polynomial on the form

p(x) =
N∑

i=0

ti(x). (1)

(Continued on page 5.)
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As a specific example, the terms ti(x) in the Taylor polynomial for sin x are
given as

ti(x) = (−1)i
x2i+1

(2i+ 1)!
.

Make a function terms(ti, x 0, N) that returns an array of ti(x0), i =
0, . . . , N . The argument ti is some Python function of i and x for evaluating
ti(x), x 0 corresponds to x0 and N to N . Also write a function ti sin(i,

x) for evaluating the specific ti(x) in the Taylor polynomial for sin x (given
above).

Make another function visualize(t) that plots the logarithm of the absolute
value of the elements in the t array against their indices (i = 0, . . . , N). That
is, the function plots log(abs(t[i])) versus i. Use small circles to visualize
the data points (do not draw solid lines between the points).

Demonstrate how to call the terms and visualize functions for displaying
how rapidly the 10 first terms in the Taylor polynomial for sin x go to zero.
The resulting figure when x0 = π is displayed next.
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The reason for working with ln |ti(x0)| instead of just ti(x0) is that the size
of the terms in Taylor polynomials decreases by many orders of magnitude
as i grows, and this decrease is not visible in a plot if we do not take the
logarithm of the small values. The point with the exercise is to visualize how
fast a Taylor series converges.

Exercise 5 (4 points)

Newton’s method for solving a possibly nonlinear algebraic equation g(x) = 0
consists of generating a sequence of approximations to a solution:

xn = xn−1 −
g(xn−1)

g′(xn−1)
.

(Continued on page 6.)
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When |g(xn)| ≤ ǫ, we accept xn as a good approximation to the solution of
g(x) = 0.

Implement a function that takes the g(x) function and its derivative g′(x) as
parameters, along with x0, a tolerance (ǫ) and a maximum n value. Raise an
exception if n exceeds the maximum n value without meeting the convergence
criterion |g(xn)| ≤ ǫ. Let the function return the sequences xn and g(xn),
n = 0, 1, 2, . . ..

Demonstrate how to use the function to solve the equation sin x+cos2 x = ex

if x0 = −4 is the initial guess. Write the last element in the sequence
x0, x1, . . . to the terminal window (the last element is usually the best ap-
proximation to the root of the equation). Add a plot command to visualize
the sequence x0, x1, . . ..

END


