
UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Examination in: INF1100 — Introduction to
programming with scientific
applications

Day of examination: Thursday, October 6, 2014

Examination hours: 15.00 – 19.00.

This examination set consists of 8 pages.

Appendices: None.

Permitted aids: None.

Make sure that your copy of the examination set is
complete before you start solving the problems.

• Read through the complete exercise set before you start solving the
individual exercises. If you miss information in an exercise, you can
provide your own reasonable assumptions as long as you explain that
in detail.

• The maximum possible score on the exam is 25 points. The maxi-
mum number of points is listed for each exercise (a correct answer of a
subquestion ((a), (b), etc.) gives 1 point).

Exercise 1 (10 points)

What is printed in the terminal window when the programs below are run?

(a)

a = 4

b = a

a = 2

print ’b:’, b

(Continued on page 2.)

Examination in INF1100, Thursday, October 6, 2014 Page 2

Solution:

b: 4

(b) a = 2

for i in range(2):

a += 2

print a

Solution:

6

(c) A = [1, 2, 3, -1]

del A[-1]

A.append(-2)

print A

Solution:

[1, 2, 3, -2]

(d) import sys

a = 4

b = 6

c = a + b

a = sys.argv[1]

b = sys.argv[2]

print c

Execution:

Terminal> python myprog.py 1 2

Solution:

10

(e) import numpy as np

x = np.linspace(0, 4, 3)

y = x**2

for x_, y_ in zip(x, y):

print ’%.1f %.1f’ % (x_, y_)

(Continued on page 3.)

Examination in INF1100, Thursday, October 6, 2014 Page 3

Solution:

0.0 0.0

2.0 4.0

4.0 16.0

(f) def P(x):

return x + 1

def Q(y):

return 2*y

print Q(P(Q(3)))

Solution:

14

(g) import sys

A = [1, 7, 15]

try:

r = float(A[3])

except IndexError:

print ’A has length %g’ % len(A)

except ValueError:

print ’Cannot convert %g to float!’ % A[3]

Solution:

A has length 3

(h) u = [0, 1]

v = [2, 3]

print u + v

from numpy import array

u = array(u)

v = array(v)

print u + v

Solution:

[0, 1, 2, 3]

[2 4]

(Continued on page 4.)

Examination in INF1100, Thursday, October 6, 2014 Page 4

(i) def plus1(x):

return x + 1

def test_plus1():

x = 4.5

exact = 5.5

computed = plus1(x)

tol = 1E-14

success = abs(exact - computed) < tol

msg = ’exact=%g, computed=%g’ % (exact, computed)

assert success, msg

test_plus1()

Solution: Nothing gets printed since success is True.

(j) for i in range(-1, 1, 2):

for j in range(3):

if i == j:

print i, j

Solution:

Nothing gets printed.

Exercise 2 (3 points)

Write a Python function for computing the sum

K(x) =
N∑

k=0

(−1)k
x2k+1

(2k + 1)!

The factorial (2k + 1)! can be computed by math.factorial(2k+1). Print
out K(π) for N = 4.

Solution: The most straightforward solution goes as follows.

from math import factorial

def K(x, N):

x = float(x) # avoid integer division

s = 0 # summation variable

for k in range(N+1):

s += (-1)**k*x**(2*k+1)/factorial(2*k+1)

return s

(Continued on page 5.)

Examination in INF1100, Thursday, October 6, 2014 Page 5

from math import pi

print K(pi, 4)

As pointed out in Exercise A.14 (sin Taylor series diffeq.py) it can be
more efficient to compute K(x), which is the Taylor polynomial for sin(x),
via a system of two difference equations:

en = en−1 + an−1, e0 = 0, a0 = x

an =
−x2

2n(2n+ 1)
an−1

A corresponding Python implementation reads

from numpy import zeros

def K(x, N):

a = zeros(n+1)

s = zeros(n+1)

a[0] = x

s[0] = 0

for n in range(1, N+1):

s[n] = s[n-1] + a[n-1]

a[n] = a[n-1]*(-1)*x**2/((2*n+1)*(2*n))

return s[n]

from math import pi

print K(pi, 4)

A more memory efficient implementation is to store only the two most recent
values in the difference equations (we are only interested in the final value
sn anyway and we do not need to plot the sequence).

def K(x, N):

sn_prev = 0 # here s[0], stores in general s[n-1]

an_prev = x # here a[0], stores in general a[n-1]

for n in range(1, N+1):

sn = sn_prev + an_prev

an = an_prev*(-1)*x**2/((2*n+1)*(2*n))

change contents (be ready for next pass in the loop):

sn_prev = sn

an_prev = an

return sn

from math import pi

print K(pi, 4)

(Continued on page 6.)

Examination in INF1100, Thursday, October 6, 2014 Page 6

Exercise 3 (3 points)

Extend the program in Exercise 2 such that the x and N values are read
from the command line. Add a try-except block to handle the cases that
1) the user has failed to provide enough command-line arguments or 2) the
command-line arguments cannot be interpreted as numbers. Write an error
message and stop the program in those cases.

Solution:

import sys

try:

x = float(sys.argv[1])

N = int(sys.argv[2])

except IndexError:

print ’Not enough command-line arguments! Need x and K.’

sys.exit(1)

except ValueError:

print ’Cannot convert %s and %s to numbers’ % \

(sys.argv[1], sys.argv[2])

sys.exit(1)

print ’K(%g, %d)=%g’ % (x, N, K(x, N))

Exercise 4 (3 points)

Write the necessary code for plotting the K(x) function on [0, 2π] in Exericse
2. Mark the x axis with x, the y axis with K, introduce a legend reflecting
value of N , and save the plot to a PNG file.

Solution:

import numpy as np

x = np.linspace(0, 2*np.pi, 101)

N = 5

y = K(x, N)

import matplotlib.pyplot as plt

import scitools.std as plt

plt.plot(x, y)

plt.xlabel(’x’)

plt.ylabel(’y’)

plt.legend([’N=%d’ % N])

plt.savefig(’tmp.png’)

plt.show()

(Continued on page 7.)

Examination in INF1100, Thursday, October 6, 2014 Page 7

Exercise 5 (3 points)

Write a test function for verifying the implementation of the K(x, N) func-
tion in Exercise 2. Hint: Choose an x and N , compute the result by hand,
and let the test function compare this exact result with a call to K(x, N).
The test function should follow the standard conventions for such functions
(i.e., have a name on the form test *() and perform the test via an assert

statement).

Solution: With x = 1/2 and N = 1 we get

K(x) = x−

1

6
x3 =

1

2
−

1

6

1

8
=

23

48
.

def test_K():

x = 0.5

N = 1

exact = 23.0/48

computed = K(x, N)

tol = 1E-14

success = abs(exact - computed) < tol

assert success, ’exact=%g, computed=%g’ % (exact, computed)

Exercise 6 (3 points)

A text file with name simulations.dat contains a header line, a blank line,
and then three columns with numbers:

time measurement prediction

0.0 -1.376 -1.233

0.1 -1.091 -1.001

0.2 1.087 0.986

0.3 2.136 3.001

The length of the columns with numbers is not known.

You are asked to read the file in a program, store the data in three Numerical
Python (numpy) arrays and plot the “measurement” and “prediction” values
versus the “time” values in the same figure.

Solution:

Read file data into lists

infile = open(’simulations.dat’, ’r’)

infile.readline(); infile.readline() # skip first two lines

Start with empty lists since we do not know how

(Continued on page 8.)

Examination in INF1100, Thursday, October 6, 2014 Page 8

many lines the file has

time = []

measurement = []

prediction = []

for line in infile:

words = line.split()

floats = [float(word) for word in words]

time.append(floats[0])

measurement.append(floats[1])

prediction.append(floats[2])

infile.close()

Convert to numpy arrays

import numpy as np

time = np.array(time)

measurement = np.array(measurement)

prediction = np.array(prediction)

Plot measurement with red circles and

prediction with blue solid line

import matplotlib.pyplot as plt

plt.plot(time, measurement, ’ro’,

time, prediction, ’b-’)

plt.legend([’measurement’, ’prediction’])

plt.xlabel(’time’)

plt.show()

Note: since each number in the file starts at a certain column number in the
line string, it is possible to extract the data by string slicing:

for line in infile:

time.append(float(line[0:8]))

measurement.append(float(line[8:22]))

prediction.append(float(line[22:]))

END

