
UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Examination in: INF1100 — Introduction to
programming with scientific
applications

Day of examination: Wednesday, December 17, 2014

Examination hours: 09.00 – 13.00.

This examination set consists of 13 pages.

Appendices: None.

Permitted aids: None.

Make sure that your copy of the examination set is
complete before you start solving the problems.

• Read through the complete exercise set before you start solving the
individual exercises. If you miss information in an exercise, you can
provide your own reasonable assumptions as long as you explain them
in detail.

• Most of the exercises result in short code where there is little need
for comments, unless you do something complicated or non-standard.
In that case, comments should convey the idea behind the program
constructions such that it becomes easy to evaluate the solution.

• Many exercises ask you to “write a function”. A main program calling
the function is then not required, unless it is explicitly stated. You
may, in these types of exercises, also assume that necessary modules
are already imported outside the function. On the other hand, if you
are asked to write a complete program, explicit import of modules must
be a part of the solution.

• The maximum possible score on this exam is 75 points. There are 9
exercises, and the number of points for each exercise is given in the
heading. Subexercises a), b), etc. count the same number of points.

(Continued on page 2.)



Examination in INF1100, Wednesday, December 17, 2014 Page 2

Exercise 1 (5 points)

What is printed in the terminal window when the programs below are run?

(a)

s = -2

for k in range(2, 5, 2):

s += 2

print s

Solution:

2

(b) The file mydata.txt contains the numbers

1.0 2.3 4.5

2.0 2.7 -2.0

3.0 2.9 4.8

4.0 3.2 -8.5

5.0 4.3 4.5

The program looks like

infile = open(’mydata.txt’, ’r’)

infile.readline()

infile.readline()

for line in infile:

a, b, c = [float(w) for w in line.split()]

print ’a=%.2f b=%.2f c=%.2f’ % (a, b, c)

Solution:

a=3.00 b=2.90 c=4.80

a=4.00 b=3.20 c=-8.50

a=5.00 b=4.30 c=4.50

(Continued on page 3.)



Examination in INF1100, Wednesday, December 17, 2014 Page 3

(c)
def myfunc(a, b):

s = 0

for k in a:

s += a[k]*b**k

return s

print myfunc({1:-1, 3:1}, 3)

Solution:

24

(d)
def myfunc(a, b):

c = a.copy()

for k in b:

if k in c:

c[k] += b[k]

else:

c[k] = b[k]

return c

print myfunc({1:-1, 3:1}, {1:3, 2:2})

Solution:

{1: 2, 2: 2, 3: 1}

(or any other order of the key-value pairs)

(e)
from math import factorial

# factorial(N) is N! = N*(N-1)*(N-2)*...*2*1

def test_factorial():

expected = 5*4*3*2*1

computed = factorial(5)

assert expected == computed

test_factorial()

Solution: Nothing is printed since expected is 120 and computed is
also 120.

(Continued on page 4.)



Examination in INF1100, Wednesday, December 17, 2014 Page 4

Exercise 2 (5 points)

A piecewise constant function has the value 0 when its argument t is less than
5, and the value 0.4 otherwise. Implement such a mathematical function in
a Python function. Make a test function for verifying the implementation
(test for equal values with a tolerance).

Solution:

def p(t):

return 0 if t < 5 else 0.4

# or

def p(t):

if t < 5:

return 0

else:

return 0.4

# Test function

def test_p():

tol = 1E-15

assert abs(p(0) - 0) < tol

assert abs(p(4) - 0) < tol

assert abs(p(5) - 0.4) < tol

assert abs(p(10) - 0.4) < tol

Exercise 3 (20 points)

We want to solve the difference equation

yi = iyi−1, y0 = 1

for i = 1, 2, 3, 4, by the program

N = 3

from numpy import zeros

y = zeros(N+1, int)

for i in range(1, N+1):

y[i] = i*y[i-1]

print i, y[i]

a) What is printed by this program?

(Continued on page 5.)



Examination in INF1100, Wednesday, December 17, 2014 Page 5

Solution:

1 0

2 0

3 0

b) How must the program be changed in order to solve the stated mathe-
matical problem?

Solution: There are two errors: N must be set to 4 and the initial condition
y0 = 1 must be set.

N = 4

from numpy import zeros

y = zeros(N+1, int)

y[0] = 1

for i in range(1, N+1):

y[i] = i*y[i-1]

print i, y[i]

c) Put the program in a Python function that returns the array y. Call the
function to compute y14. The function should not print anything.

Solution:

from numpy import zeros

def factorial(N):

y = zeros(N+1, int)

y[0] = 1

for i in range(1, N+1):

y[i] = i*y[i-1]

return y

y_14 = factorial(14)[-1]

d) Write a test function for the Python function in c).

Solution:

def test_factorial():

# Test some N > 0, here N=5

expected = 5*4*3*2*1

computed = factorial(5)[-1] # check final element

assert expected == computed

# Test also the special case N=0

(Continued on page 6.)



Examination in INF1100, Wednesday, December 17, 2014 Page 6

expected = 1

computed = factorial(0)

assert expected == computed

Exercise 4 (10 points)

The information about a polynomial

p(x) =
N∑

i=0

cix
i

can be stored in a dictionary with i as key and ci as value. For example,
the polynomial p(x) = −1 + 4x3 + 20x8 is represented by the dictionary
{0: -1, 3: 4, 8: 20}.

a) Write a Python function polyeval(x, p) that takes a dictionary repre-
sentation p of a polynomial and returns the value of the polynomial for the
given x value. For example, polyeval(2, {1:-1, 3:1}) should return the
value −1 · 21 + 1 · 23 = 6.

Solution:

def polyeval(x, p):

s = 0 # summation variable

for i in p:

s += p[i]*x**i

return s

# Simpler implementation

def polyeval(x, p):

return sum(p[i]*x**i for i in p)

b) Write a Python function polyadd(p, q) that returns the dictionary rep-
resentation of the sum of two polynomials whose dictionary representations
are p and q. For example, polyadd({1:-1, 3:1}, {1:3, 2:2}) should re-
turn {1:2, 2:2, 3:1} since −x+ x3 + 3x+ 2x2 = 2x+ 2x2 + x3.

Solution:

def polyadd(p, q):

r = p.copy() # result

for i in q:

if i in r:

r[i] += q[i]

else:

r[i] = q[i]

return r

(Continued on page 7.)



Examination in INF1100, Wednesday, December 17, 2014 Page 7

Exercise 5 (5 points)

This is a continuation of Exercise 4. Now we want to represent a polynomial
p(x) =

∑
i=0N

cix
i by a class Poly. The class has one attribute: a dictio-

nary representation of the polynomial (i.e., the collection of the coefficients
and associated powers), as explained in Exercise 4. Equip the class with
two special methods: __call__ for evaluating the polynomial at a point x
and __add__ for adding two polynomials. The following interactive Python
session should work (imagine that the class resides in a file Poly.py):

>>> from Poly import Poly

>>> p1 = Poly({1:-1, 3:1})

>>> p1(3)

24

>>> p2 = Poly({1:3, 2:2})

>>> p3 = p1 + p2

>>> p3.coeff

{1: 2, 2: 2, 3: 1}

It is possible to do this exercise even if you have not managed to write the
functions in Exercise 4 (just assume that the functions from Exercise 4 exist).

Solution:

# Reuse functions polyeval and polyadd

class Poly:

def __init__(self, p):

self.coeff = p

def __call__(self, x):

return polyeval(x, self.coeff)

def __add__(self, other):

result_dict = polyadd(self.coeff, other.coeff)

return Poly(result_dict)

Exercise 6 (5 points)

Extend class Poly from the previous exercise by a method diff that returns
the derivative of the polynomial. The derivative of p(x) =

∑
N

i=0
cix

i becomes

p′(x) =
N∑

i=1

icix
i−1

If we continue the interactive session in Exercise 5, we can do

(Continued on page 8.)



Examination in INF1100, Wednesday, December 17, 2014 Page 8

>>> p4 = p3.diff()

>>> p4.__class__.__name__ # show that diff returns a Poly object

’Poly’

>>> p4.coeff

{0: 2, 1: 4, 2: 3}

Solution: We see from the interactive session that diffmust return a Poly
object.

class Poly:

...

def diff(self):

r = {} # resulting polynomial

for i in self.coeff:

if i != 0:

r[i-1] = i*self.coeff[i]

return Poly(r)

Exercise 7 (10 points)

A differential equation, or system of differential equations, written on the
generic form

y′(x) = f(y, x), y(0) = Y0,

can be solved by tools in a class hierarchy ODESolver. The complete Python
code of the superclass and a subclass in this hierarchy is listed below. One
numerical solution technique for y′ = f(y, x) is the 2nd-order Runge-Kutta
method:

k1 = ∆x f(yk, xk),

k2 = ∆x f(yk +
1

2
k1, xk +

1

2
∆x),

yk+1 = yk + k2,

where yk is the numerical approximation to the exact solution y(x) at the
point x = xk = k∆x.

a) Write a subclass of ODESolver to implement the 2nd-order Runge-
Kutta method. The subclass code should be in a file RK2.py, separate from
ODESolver.py (i.e., you need to import ODESolver).

Solution: We assume that class ODESolver is in a module file ODESolver.py.

from ODESolver import ODESolver

(Continued on page 9.)



Examination in INF1100, Wednesday, December 17, 2014 Page 9

class RK2(ODESolver):

def advance(self):

y, f, k, x = self.y, self.f, self.k, self.x

dx = x[k+1] - x[k]

k1 = dx*f(y[k], x[k])

k2 = dx*f(y[k] + 0.5*k1, x[k] + 0.5*dx)

return y[k] + k2

b) Write a test function for class RK2. (Hint: the 2nd-order Runge-Kutta
method, as well as most methods for ordinary differential equations, can
reproduce a linear solution y(x) = ax + b exactly (for arbitrary constants a
and b). One can construct a differential equation with such a linear solution,
e.g., y′(x) = 2+ (y− (2x+3))2, y(0) = 3, has solution y = 2x+3. Class RK2
should reproduce this solution to machine precision.)

Solution:

def test_RK2():

"""Linear solution should be exactly reproduced."""

def y(x):

return 2*x + 3

def f(y, x):

return 2 + (y - (2*x+3))**2

solver = RK2(f)

solver.set_initial_condition(y(0))

computed_y, x = solver.solve([0, 1, 2, 3])

expected_y = y(x)

import numpy as np

diff = np.abs(expected_y - computed_y).max()

tol = 1E-15

assert diff < tol

Code for class ODESolver and a subclass ForwardEuler:

import numpy as np

class ODESolver:

"""

Superclass for numerical methods solving scalar and vector ODEs

y’(x) = f(y, x)

Attributes:

x: array of coordinates of the independent variable

y: array of solution values (at points x)

(Continued on page 10.)



Examination in INF1100, Wednesday, December 17, 2014 Page 10

k: step number of the most recently computed solution

f: callable object implementing f(y, x)

"""

def __init__(self, f):

self.f = lambda y, x: np.asarray(f(y, x), float)

def set_initial_condition(self, Y0):

if isinstance(Y0, (float,int)): # scalar ODE

self.neq = 1

Y0 = float(Y0)

else: # system of ODEs

Y0 = np.asarray(Y0) # (assume Y0 is sequence)

self.neq = Y0.size

self.Y0 = Y0

def solve(self, x_points):

"""

Compute solution y for x values in the list/array x_points.

"""

self.x = np.asarray(x_points)

n = self.x.size

if self.neq == 1: # scalar ODEs

self.y = np.zeros(n)

else: # systems of ODEs

self.y = np.zeros((n,self.neq))

# Assume that self.x[0] corresponds to self.Y0

self.y[0] = self.Y0

for k in range(n-1):

self.k = k

self.y[k+1] = self.advance()

return self.y, self.x

class ForwardEuler(ODESolver):

def advance(self):

y, f, k, x = self.y, self.f, self.k, self.x

dx = x[k+1] - x[k]

return y[k] + dx*f(y[k], x[k])

Exercise 8 (10 points)

This exercise presents a model for the spreading of a flu. The population is
divided into four groups: susceptibles (S) who can get the flu, infected (I)
who have developed the flu and who can infect susceptibles, recovered (R)
who have recovered from the flu and become immune, and the vaccinated
(V). Let S(t), I(t), R(t), and V (t) be the number of people in category S,

(Continued on page 11.)



Examination in INF1100, Wednesday, December 17, 2014 Page 11

I, R, and V, respectively. The following differential equations describe how
S(t), I(t), R(t), and V (t) develop in a time interval [0, T ]:

S ′(t) = −b(t)S(t)I(t)− p(t)S(t) + dR(t), (1)

I ′(t) = b(t)S(t)I(t)− qI(t), (2)

R′(t) = qI(t)− dR(t), (3)

V ′(t) = p(t)S(t). (4)

At t = 0 we have the initial conditions S(0) = S0, I(0) = I0, R(0) = V (0) =
0. The functions b(t) and p(t) as well as the constants d > 0 and q > 0 must
be known.

Write a Python function flu(S0, I0, b, q, d, p, T) that takes the initial
values S0 and I0, the function b(t), the parameter q, the parameter d, the
function p(t), and the end time T for the simulation as arguments. Use class
RK2 in the ODESolver hierarchy to solve the differential equations (if you did
not manage to write class RK2, just assume that it exists). Let the time unit
be days. Use five time steps per day such that the total number of time
points for a simulation in [0, T ] is 5T + 1. Five arrays should be returned
from the function flu:

• t containing the time points tk = k∆t, where the numerical solution is
computed, k = 0, 1, . . . , n,

• S containing S(t0), S(t1), . . . , S(tn),

• I containing I(t0), I(t1), . . . , I(tn),

• R containing R(t0), R(t1), . . . , R(tn).

• V containing V (t0), V (t1), . . . , V (tn).

We look at the spreading of the flu in small, closed population and reason
as follows to set appropriate values of the parameters needed in the model.
At t = 0 there are 1000 susceptibles and 2 infected. The value of 1/q reflects
the average length of the disease, here taken as 7 days, so q = 1/7 (time t is
measured in days). The function b(t) measures how easily an infected person
can infect a susceptible. This function is taken to be constant, equal to 0.001.
1/d is the average time before a recovered loses her/his immunity, and we
take d = 1/100. The p(t) function measures the effectiveness of vaccination.
Suppose that vaccination takes place after K days such that p = 0 for t < K
and p = 0.4 for t ≥ K.

Make a call to the function flu with the mentioned parameters, T = 40, and
K = 5. Also add code for plotting S(t), I(t), R(t), and I(t) in the same
figure with a legend for each curve.

(Continued on page 12.)



Examination in INF1100, Wednesday, December 17, 2014 Page 12

Solution:

def flu(S0, I0, b, q, d, p, T):

def f(u, t):

S, I, R, V = u

return [-b(t)*S*I - p(t)*S + d*R,

b(t)*S*I - q*I,

q*I - d*R,

p(t)*S]

solver = RK2(f)

solver.set_initial_condition([S0, I0, 0, 0])

time_points = np.linspace(0, T, 5*T+1)

u, t = solver.solve(time_points)

S, I, R, V = u[:,0], u[:,1], u[:,2], u[:,3]

return t, S, I, R, V

K = 5

flu(S0=1000, I0=2, b=lambda t: 0.001, q=1./7, d=1./100,

p=lambda t: 0 if t<K else 0.4, T=40)

# Can also make b and p as ordinary Python functions

# (p is already implemented in Exercise 2)

import matplotlib.pyplot as plt

plt.plot(t, S, t, I, t, R, t, V)

plt.legend([’S’, ’I’, ’R’, ’V’])

plt.show()

Exercise 9 (5 points)

Write a Python function dump(filename, t, S, I, R, V) that can write
five arrays of equal length, t, S, I, R, and V, to a file with name filename.
Here is an example of how the numbers should be nicely formatted in a
tabular fashion in the file:

0.0000 1000.0000 2.0000 0.0000 0.0000

0.2000 999.5659 2.3722 0.0620 0.0000

0.4000 999.0513 2.8133 0.1354 0.0000

0.6000 998.4416 3.3361 0.2223 0.0000

0.8000 997.7192 3.9555 0.3252 0.0000

1.0000 996.8636 4.6893 0.4471 0.0000

1.2000 995.8504 5.5581 0.5915 0.0000

1.4000 994.6510 6.5865 0.7625 0.0000

1.6000 993.2319 7.8031 0.9650 0.0000

1.8000 991.5536 9.2416 1.2048 0.0000

2.0000 989.5700 10.9415 1.4886 0.0000

(Continued on page 13.)



Examination in INF1100, Wednesday, December 17, 2014 Page 13

2.2000 987.2272 12.9484 1.8244 0.0000

2.4000 984.4626 15.3159 2.2215 0.0000

2.6000 981.2035 18.1054 2.6911 0.0000

2.8000 977.3660 21.3881 3.2459 0.0000

3.0000 972.8538 25.2453 3.9009 0.0000

Solution:

def dump(filename, t, S, I, R, V):

outfile = open(filename, ’w’)

for t_, S_, I_, R_, V_ in zip(t, S, I, R, V):

outfile.write(’%9.4f %9.4f %9.4f %9.4f %9.4f\n’ %

(t_, S_, I_, R_, V_))

outfile.close()

# Very compact solution using numpy.savetxt:

data = numpy.array([t,S,I,R,V]).transpose() # columns t S I R V

numpy.savetxt(filename, data, fmt=’%9.4f’)

END


