
UNIVERSITETET I OSLO
Det matematisk-naturvitenskapelige fakultet

Examination in: INF1100 — Introduction to
programming with scientific
applications

Day of examination: Thursday, December 17, 2015

Examination hours: 09.00 – 13.00.

This examination set consists of 9 pages.

Appendices: None.

Permitted aids: None.

Make sure that your copy of the examination set is
complete before you start solving the problems.

• Read through the complete exercise set before you start solving the
individual exercises. If you miss information in an exercise, you can
provide your own reasonable assumptions as long as you explain them
in detail.

• Most of the exercises result in short code where there is little need
for comments, unless you do something complicated or non-standard.
In that case, comments should convey the idea behind the program
constructions such that it becomes easy to evaluate the solution.

• Many exercises ask you to “write a function”. A main program calling
the function is then not required, unless it is explicitly stated. You
may, in these types of exercises, also assume that necessary modules
are already imported outside the function. On the other hand, if you
are asked to write a complete program, explicit import of modules must
be a part of the solution.

• The maximum possible score on this exam is 75 points. There are 7
exercises, and the number of points for each exercise is given in the
heading. Subexercises a), b), etc. count the same number of points.

(Continued on page 2.)

Examination in INF1100, Thursday, December 17, 2015 Page 2

Exercise 1 (5 points)

What is printed in the terminal window when the programs below are run?

(a)

print ’4’ in ’37.5 degrees’

(b)

q = -2

for k in range(2, 5, 2):

q += 1

print q

(c)

q = [[’a’, ’b’, ’c’], [’d’, ’e’, ’f’], [’g’, ’h’]]

print q[1]

print q[-1][-1]

(d)

import sys

C = ’20.0 degrees’

try:

C = float(C)

except ValueError:

print ’Cannot convert %s to float’ %type(C)

sys.exit(1)

F = 9.0*C/5 + 32

print ’%gC is %.1fF’ % (C, F)

(e)

def test_sum():

expected = 1+2+3+4+5

computed = sum(range(6))

assert expected == computed

test_sum()

(Continued on page 3.)

Examination in INF1100, Thursday, December 17, 2015 Page 3

Exercise 2 (5 points)

A piecewise linear function is defined as follows:

y =

{
−x for x ≤ 0
x for x > 0

Implement this mathematical function as a Python function. Make a test
function for verifying the implementation (test for equal values with a toler-
ance).

Exercise 3 (10 points)

What is printed in the terminal window when the programs below are run?

(a) The file summer.txt has the following content

Average 27.1

June 36.4

July 17.5

August 27.5

The program looks like

infile = open(’summer.txt’, ’r’)

infile.readline()

for line in infile:

month, rain = line.split()

rain = float(rain)

print ’In %s, total rainfall was %.2f’ %(month,rain)

(b)

def add(a, b):

return a + b

print add(1, 2)

print add([1,2,3], [0,1,2])

(c)

method1 = "ForwardEuler"

method2 = method1

method1 = "RK2"

print method2

(Continued on page 4.)

Examination in INF1100, Thursday, December 17, 2015 Page 4

(d)

class Y:

def __init__(self,v0):

self.v0 = v0

def __str__(self):

return ’v0*t - 0.5*g*t**2; v0=%g’ % self.v0

y = Y(5)

print y

(e)

from random import randint

N = 1000

heads = 0

for i in range(N):

result = randint(0,1)

if result == 0:

heads += 1

p = heads/N

print p

Exercise 4 (10 points)

(a) Write a Python function that takes a number n as input, and uses
Monte Carlo simulation to estimate the probability of throwing at least
one six when throwing n dice. The function shall return the estimated
probability. Use a fixed value for the number of experiments in the
Monte Carlo simulation.

(b) Write a vectorized version of the function in (a), i.e. there should be
no explicit loops in Python. Hint:
numpy.random.random_integers(low,high,size), where size is a
tuple (n,N), returns an array of size n,N containing random integers
between low and high. Furthermore, numpy.sum(a,axis) returns the
sum of elements in array a over the dimension axis.

(Continued on page 5.)

Examination in INF1100, Thursday, December 17, 2015 Page 5

Exercise 5 (25 points)

A polynomial can be represented as a class, using a list to hold the coefficients
of the polynomial. One implementation of such a class may look like this:

class Polynomial:

def __init__(self, coefficients):

self.coeff = coefficients

def __call__(self, x):

s=0

for i in range(len(self.coeff)):

s += self.coeff[i]*x**i

return s

def __add__(self, other):

Start with the longest list and add in the other

if len(self.coeff) > len(other.coeff):

result_coeff = self.coeff[:] # copy!

for i in range(len(other.coeff)):

result_coeff[i] += other.coeff[i]

else:

result_coeff = other.coeff[:] # copy!

for i in range(len(self.coeff)):

result_coeff[i] += self.coeff[i]

return Polynomial(result_coeff)

(a) What is printed by the following interactive session?

>>> from Polynomial import Polynomial

>>> p1 = Polynomial([1,1,1])

>>> p2 = Polynomial([0,0,0,5])

>>> p3 = p1+p2

>>> print p3(1.0)

(b) The Taylor Polynomial of degree N for the exponential function ex is
given by

p(x) =
N∑
k=0

xk

k!
.

Write a python function taylor_exp(N), where N is the number of
terms in the Taylor polynomial. The function shall return a Polynomial
instance (object) representing the Taylor polynomial p(x). Recall that
k! is the factorial of k, and can be computed by the function math.factorial(k).

(c) Write a test function test_taylor_exp() for the function in (b). Use
a fixed (low) value of N in the test function, and compare the value of
the polynomial returned by taylor_exp to a taylor polynomial derived
by hand, for a single value of x.

(Continued on page 6.)

Examination in INF1100, Thursday, December 17, 2015 Page 6

(d) Extend the Polynomial class with a method diff that returns the
derivative of the polynomial. The derivative of p(x) =

∑N
i=0 cix

i be-
comes

p′(x) =
N∑
i=1

icix
i−1

If we continue the interactive session from (a), we can do

>>> p4 = p3.diff()

>>> p4.__class__.__name__

’Polynomial’

>>> print p4.coeff

[1,2,15]

(e) Write a test function for the diff function in (d). As in (c) above, the
test can be based on choosing a single value of x, and comparing the
value of the polynomial returned by the diff function to the expected
value. If you did not manage to write the diff function in (d), you
can simply assume that it exists.

Exercise 6 (10 points)

A differential equation, or system of differential equations, written on the
generic form

y′(t) = f(y, t), y(0) = Y0,

can be solved by tools in a class hierarchy ODESolver. The complete Python
code of the superclass and a subclass in this hierarchy is listed below. One
numerical solution technique for y′ = f(y, t) is Kutta’s third order method:

k1 = ∆t f(yk, tk),

k2 = ∆t f(yk +
1

2
k1, tk +

1

2
∆t),

k3 = ∆t f(yk − k1 + 2k2, tk + ∆t),

yk+1 = yk +
1

6
(k1 + 4k2 + k3),

where yk is the numerical approximation to the exact solution y(t) at the
point t = tk = k∆t.

(Continued on page 7.)

Examination in INF1100, Thursday, December 17, 2015 Page 7

(a) Write a subclass of ODESolver to implement the 3rd-order Kutta method.
The subclass code should be in a file Kutta3.py, separate from ODESolver.py

(i.e., you need to import ODESolver).

(b) Write a test function for class Kutta3. Hint: the 3rd-order Kutta
method, as well as most methods for ordinary differential equations,
can reproduce a linear solution y(t) = at + b exactly (for arbitrary
constants a and b). One can construct a differential equation with such
a linear solution, e.g., y′(t) = 2, y(0) = 1, has solution y = 2t+1. Class
Kutta3 should reproduce this solution to machine precision.

Code for class ODESolver and a subclass RungeKutta4:

import numpy as np

class ODESolver:

"""

Superclass for numerical methods solving scalar and vector ODEs

y’(t) = f(y, t)

Attributes:

t: array of coordinates of the independent variable

y: array of solution values (at points t)

k: step number of the most recently computed solution

f: callable object implementing f(y, t)

"""

def __init__(self, f):

self.f = lambda y, t: np.asarray(f(y, t), float)

def set_initial_condition(self, Y0):

if isinstance(Y0, (float,int)): # scalar ODE

self.neq = 1

Y0 = float(Y0)

else: # system of ODEs

Y0 = np.asarray(Y0) # (assume Y0 is sequence)

self.neq = Y0.size

self.Y0 = Y0

def solve(self, t_points):

"""

Compute solution y for t values in the list/array t_points.

"""

self.t = np.asarray(t_points)

n = self.t.size

if self.neq == 1: # scalar ODEs

self.y = np.zeros(n)

(Continued on page 8.)

Examination in INF1100, Thursday, December 17, 2015 Page 8

else: # systems of ODEs

self.y = np.zeros((n,self.neq))

Assume that self.t[0] corresponds to self.Y0

self.y[0] = self.Y0

for k in range(n-1):

self.k = k

self.y[k+1] = self.advance()

return self.y, self.t

class RungeKutta4(ODESolver):

def advance(self):

y, f, k, t = self.y, self.f, self.k, self.t

dt = t[k+1] - t[k]

dt2 = dt/2.0

K1 = dt*f(y[k], t[k])

K2 = dt*f(y[k] + 0.5*K1, t[k] + dt2)

K3 = dt*f(y[k] + 0.5*K2, t[k] + dt2)

K4 = dt*f(y[k] + K3, t[k] + dt)

ynew = y[k] + (1/6.0)*(K1 + 2*K2 + 2*K3 + K4)

return ynew

Exercise 7 (10 points)

This exercise presents a model for the spreading of a disease. The
population is divided into three groups: susceptibles (S) who can get
the disease, infected (I) who have developed the disease and who can
infect susceptibles, and recovered (R) who have recovered and become
immune. Let S(t), I(t), and R(t) be the number of people in category
S, I, and R, respectively. We also consider people moving in and out
of the population of interest (for instance moving to a geographical
region), with a rate of entry Σ and exit µ. The following differential
equations describe how S(t), I(t) og R(t) develop in a time interval
[0, T]:

S ′(t) = Σ(t) − b(t)S(t)I(t) + dR(t) − µS(t), (1)

I ′(t) = b(t)S(t)I(t) − qI(t) − µI(t), (2)

R′(t) = qI(t) − dR(t) − µR(t). (3)

At t = 0 we have the initial conditions S(0) = S0, I(0) = I0, R(0) = 0.
The functions b(t) and Σ(t) as well as the constants d, q, µ must be
known. The constants and functions are all > 0.

(Continued on page 9.)

Examination in INF1100, Thursday, December 17, 2015 Page 9

Write a Python function SIR(S0, I0, sigma, mu, b, q, d, T) that
takes the initial values S_0 and I_0, the functions sigma(t), b(t),
the parameters mu, q, d, and the end time T for the simulation as
arguments. Use class RungeKutta4 in the ODESolver hierarchy to solve
the differential equations Let the time unit be days. Use ten time steps
per day such that the total number of time points for a simulation in
[0, T] is 10T +1. Four arrays should be returned from the function SIR:

• t containing the time points tk = k∆t, where the numerical solu-
tion is computed, k = 0, 1, . . . , n,

• S containing S(t0), S(t1), . . . , S(tn),

• I containing I(t0), I(t1), . . . , I(tn),

• R containing R(t0), R(t1), . . . , R(tn).

We look at the spreading of the disease in a small population, and
reason as follows to set appropriate values of the parameters needed in
the model. At t = 0 there are 1000 susceptibles and 2 infected. The
value of 1/q reflects the average length of the disease, here taken as
7 days, so q = 1/7 (time t is measured in days). The function b(t)
measures how easily an infected person can infect a susceptible. This
function is taken to be constant, equal to 1/1000. We set the entry rate
to Σ = 10 and the exit rate to µ = 1/100. The value 1/d is the average
time before a recovered loses immunity, and we take d = 1/100.

Make a call to the function SIR with the mentioned parameters and
T = 40. Also add code for plotting S(t), I(t), R(t) in the same figure
with a legend for each curve.

END

