
UNIVERSITETET I OSLO
Det matematisk-naturvitenskapelige fakultet

Examination in: INF1100 — Introduction to
programming with scientific
applications

Day of examination: Wednesday, December 14, 2016

Examination hours: 15.00 – 19.00.

This examination set consists of 15 pages.

Appendices: None.

Permitted aids: None.

Make sure that your copy of the examination set is
complete before you start solving the problems.

• Read through the complete exercise set before you start solving the
individual exercises. If you miss information in an exercise, you can
provide your own reasonable assumptions as long as you explain them
in detail.

• Most of the exercises result in short code where there is little need
for comments, unless you do something complicated or non-standard.
In that case, comments should convey the idea behind the program
constructions such that it becomes easy to evaluate the solution.

• Many exercises ask you to “write a function”. A main program calling
the function is then not required, unless it is explicitly stated. You
may, in these types of exercises, also assume that necessary modules
are already imported outside the function. On the other hand, if you
are asked to write a complete program, explicit import of modules must
be a part of the solution.

• The maximum possible score on this exam is 75 points. There are 7
exercises, and the number of points for each exercise is given in the
heading. Subexercises a), b), etc. count the same number of points.

(Continued on page 2.)



Examination in INF1100, Wednesday, December 14, 2016 Page 2

Section 1: What is printed

1 What is printed? (2pts)

What is printed in the terminal window when this program is run? run?

alphabet = ’abcdefghijklmnopqrstuvwxyz’

for i in range(2,10,5):

print ’Letter %d is %s’ %(i,alphabet[i])

2 What is printed? (2pts)

What is printed in the terminal window when this program is run? run?

class Y:

def __init__(self,v0):

self.v0 = v0

def __str__(self):

return ’v0*t - 0.5*g*t**2; v0=%g’ % self.v0

y = Y(5)

print y

3 What is printed? (2pts)

What is printed in the terminal window when the following program is run?
run?

import sys

try:

x = float(sys.argv[1])

coeff = [float(s) for s in sys.argv[2:]]

except IndexError:

print ’You need to provide at least two command-line arguments.’

sys.exit(1)

(Continued on page 3.)



Examination in INF1100, Wednesday, December 14, 2016 Page 3

except ValueError:

print ’Cannot convert argument to float.’

sys.exit(1)

poly_val = 0

for i in range(len(coeff)):

poly_val += coeff[i]*x**i

print ’The value of the polynomial is %g’ % poly_val

The code is in a file poly_list.py, which is run by

Terminal> python poly_list.py 1.0 3.5 4

4 What is printed? (2pts)

A text file summer.txt has the following content (no blank lines):

Average 19.3

June 20.0

July 10.5

August 27.5

What is printed when the following code is run?

infile = open(’summer.txt’, ’r’)

infile.readline()

total_rain = 0

months = []

for line in infile:

months.append(line.split()[0])

total_rain += float(line.split()[-1])

print ’The total rainfall from %s to %s was %.2f’ %(months[0],months[-1],total_rain)

5 What is printed? (2pts)

What is printed when the following program is run?

import numpy as np

def fibonacci(N):

x = np.zeros(N+1, int)

x[0] = 1

(Continued on page 4.)



Examination in INF1100, Wednesday, December 14, 2016 Page 4

x[1] = 1

for n in range(2, N+1):

x[n] = x[n-1] + x[n-2]

return x

def test_fibonacci():

expected = [1,1,2,3,5]

computed = fibonacci(4)

for e,c in zip(expected,computed):

assert e == c

test_fibonacci()

Solutions questions 1-5:

Q1:

Letter 2 is c

Letter 7 is h

Q2:

v0*t - 0.5*g*t**2; v0=5

Q3:

The value of the polynomial is 5.5

Q4:

The total rainfall from June to August was 58.00

Q5:

On question 4, the original exam had a couple of bugs, which would cause an
error message rather than the output listed above. Both answers were accepted
on the exam. On Question 5, nothing is printed since the test passes.

Section 2: Python programming

6 Python functions (4 pts)

A mathematical function is defined as follows:

y =


0 for x ≤ 0
x2 for 0 < x ≤ 2
4 for x > 2

Implement this mathematical function as a Python function. Call the func-
tion for x = 2 and print the value to the screen.

Solution:

(Continued on page 5.)



Examination in INF1100, Wednesday, December 14, 2016 Page 5

def y(x):

if x < 0:

return 0

elif x < 2:

return x**2

else:

return 4

print y(2)

Alternative solution:

def y(x):

return 0 if x < 0 else x**2 if x< 2 else 4

print y(2)

This function can be implemented in multiple ways. The two solutions above
are just examples. Since the mathematical function is continuous, the use of
< versus <= is not important.

7 Python classes (4 pts)

A class for a parabola y = c0 + c1x + c2x
2 is defined by the following code:

class Parabola:

def __init__(self, c0, c1, c2):

self.c0 = c0

self.c1 = c1

self.c2 = c2

def __call__(self, x):

return self.c2*x**2 + self.c1*x + self.c0

def table(self, L, R, n):

"""Return a table with n points for L <= x <= R."""

s =

import numpy as np

for x in np.linspace(L, R, n):

y = self(x)

s += %12g %12g\n % (x, y)

return s

Implement a class Line for a linear function y = c0 + c1x as a sub-class of
the Parabola class. Reuse as much code from Parabola as possible. The
class Line must support the following use:

(Continued on page 6.)



Examination in INF1100, Wednesday, December 14, 2016 Page 6

>>> from Line import Line

>>> l = Line(1.0,2.5) #create a line y=1.0+2.5*x

>>> print l(0.5)

2.25

>>> print l.table(0,1,3)

0 1

0.5 2.25

1 3.5

Solution:

from Parabola import *

class Line(Parabola):

def __init__(self,c0,c1):

Parabola.__init__(self,c0,c1,0)

This question also included a bug in the original exam. The line 2.25 above
was missing, indicating there would be no output from print l(0.5) This exact
behavior is quite difficult to achieve, but one can get close by altering the
call method to return an empty string for instance. All answers including
attempts at this will also get full score on the exam, as long as the rest of the
subclass is correct.

8 File read and write (10 pts)

A file contains lines with numbers separated by blanks. Write a Python-
function sum file(inputname, outputname) that reads such a file (with
filename given in inputname), calculates the sum of the numbers on each
line, and writes a new file (filename given in outputname) where each line
contains the numbers read (on one line) followed by the sum of the numbers.
Format the numbers in the file so that they appear as straight columns. The
number of numbers on each line may vary. There are no blank lines in the
file. The file to be read may for instance look like this:

1.2500 3.00 4.50

2.25 4 4.50

3.25 5.00 0.50 0.5

4.250 6.2 1

The file to be written may then look like this:

1.25 3.00 4.50 8.75

2.25 4.00 4.50 10.75

3.25 5.00 0.50 0.5 9.25

4.25 6.20 1.00 11.45

(Continued on page 7.)



Examination in INF1100, Wednesday, December 14, 2016 Page 7

Solution:

def sum_file(inputname,outputname):

numbers = []

with open(inputname,’r’) as infile:

for line in infile:

row = [float(word) for word in line.split()]

row.append(sum(row))

numbers.append(row)

with open(outputname,’w’) as outfile:

for row in numbers:

line = ’’

for number in row:

line += ’%7.2f’ %number

line += ’\n’

outfile.write(line)

sum_file(’innfil.txt’,’utfil.txt’)

9 Random numbers (7 pts)

Write a Python-function that estimates the probability of drawing two or
more hearts when you draw five cards from a card deck (without putting
any cards back). The deck is of regular type, with 52 cards out of which 13
are hearts. Hint: for a list a , the command random.shuffle(a) (from the
random module) will shuffle the elements of a in random order (the argument
is changed ”in-place”). Furthermore, the function a.pop() will return the
first element in the list a , and remove it from the list.

Solution:

from random import shuffle

def two_hearts():

N = 10000

M = 0

for i in range(N):

deck = [’H’,’C’,’S’,’D’]*13

shuffle(deck)

hearts = 0

for j in range(5):

if deck.pop() == ’H’:

hearts += 1

if hearts >= 2:

(Continued on page 8.)



Examination in INF1100, Wednesday, December 14, 2016 Page 8

M += 1

return float(M)/N

Many alternative solutions exist. Here is one alternative using random inte-
gers instead of shuffling a list:

from random import randint

def two_hearts():

N = 100000

M = 0

for i in range(N):

hearts = 0

cards_in_deck = 52

for j in range(5):

card = randint(1,cards_in_deck)

cards_in_deck -= 1

if card <= 13-hearts:

hearts += 1

if hearts >= 2:

M += 1

return float(M)/N

10 Random numbers (5 pts)

Write a Python function which takes a number N as input, simulates flipping
a coin N times, and returns the number of heads. The code should be
completely vectorized, i.e. there should be no explicit loops in Python. Hint:
numpy.random.random_integers(low,high,size), where size is a tuple
(n,N), returns an array of size n,N containing random integers between low

and high. Furthermore, numpy.sum(a,axis) returns the sum of elements in
array a along the dimension axis.

Solution:

import numpy as np

def flip_coin(N):

flips = np.random.random_integers(0,1,(1,N))

heads = np.sum(flips)

return heads

print flip_coin(10)

In the exam this question also had a bug, as the function name random integers
had been left out of the hint. This made the hint suggest an incorrect use of

(Continued on page 9.)



Examination in INF1100, Wednesday, December 14, 2016 Page 9

numpy, but it could also easily be interpreted as suggesting the numpy.random.random
function. This function only takes an array size as input, and returns an ar-
ray of random floats between 0 and 1. Using this function, the solution may
look like this:

import numpy as np

def flip_coin(N):

flips = np.random.random((1,N))

heads = np.sum(flips < 0.5)

return heads

print flip_coin(10)

Because of the error in the hint, a number of different interpretations will be
accepted and given full score for this question.

Difference equations and ODEs

11 Taylor series (10 pts)

The Taylor series that approximates the exponential function can be written
as

ex =
N∑

n=0

xn

n!
.

A Python function for evaluating this series can be written as:

from math import factorial

def taylor_exp(x,N):

s = 0

x = float(x)

for n in range(N+1):

s += x**n/factorial(n)

return s

The implementation above is inefficient because of the repeated evaluations
of the factorial. We can make the code more efficient by implementing it
as a difference equation. The Taylor series can be written as a system of
difference equations on the form:

en = en−1 + an−1,

an =
x

n
an−1,

(Continued on page 10.)



Examination in INF1100, Wednesday, December 14, 2016 Page 10

with e0 = 0 and a0 = 1. Write a python function exp_diffeq(x,N), which
solves this system of difference equations to evaluate the Taylor series. The
input parameters and return value shall be exactly as for the function above.

Solution:

import numpy as np

from math import factorial

def taylor_exp_diffeq(x,N):

x = float(x)

e = 0

a = 1

for n in range(1,N+2):

e = e + a

a = x/n*a

return e

#alternative solution with arrays

def taylor_exp_diffeq2(x,N):

x = float(x)

e = np.zeros(N+2)

a = np.zeros(N+2)

a[0] = 1

for n in range(1,N+2):

e[n] = e[n-1] + a[n-1]

a[n] = x/n*a[n-1]

return e[-1]

12 ODESolver (5 points)

A differential equation, or system of differential equations, written on the
generic form

y′(t) = f(y, t), y(0) = Y0, (1)

can be solved by tools in a class hierarchy ODESolver. The complete Python
code of the superclass and a subclass in this hierarchy is listed below. An
alternative numerical method for solving equations on the form (1) is the
explicit midpoint method. The method can be written on the form:

k1 = ∆t f(yk, tk),

k2 = ∆t f(yk +
1

2
k1, tk +

1

2
∆t),

yk+1 = yk + k2,

(Continued on page 11.)



Examination in INF1100, Wednesday, December 14, 2016 Page 11

where yk is the numerical approximation to the exact solution y(t) at the
point t = tk = k∆t.

Write a subclass of ODESolver to implement the explicit midpoint method.
The subclass code should be in a file Midpoint.py, so you have to import
the class ODESolver from ODESolver.py. Reuse as much code as possible
from the base class ODESolver.

Code for class ODESolver and a subclass RungeKutta4:

import numpy as np

class ODESolver(object):

"""

Superclass for numerical methods solving scalar

and vector ODEs

du/dt = f(u, t)

Attributes:

t: array of time values

u: array of solution values (at time points t)

k: step number of the most recent solution

f: callable object implementing f(u, t)

"""

def __init__(self, f):

# ensure self.f returns an array:

self.f = lambda u, t: np.asarray(f(u, t), float)

def advance(self):

"""Advance solution one time step."""

raise NotImplementedError

def set_initial_condition(self, U0):

if isinstance(U0, (float,int)): # scalar ODE

self.neq = 1

U0 = float(U0)

else: # ODE system

U0 = np.asarray(U0)

self.neq = U0.size

self.U0 = U0

def solve(self, time_points):

"""

Compute solution u for t values in

the list/array time_points.

"""

self.t = np.asarray(time_points)

(Continued on page 12.)



Examination in INF1100, Wednesday, December 14, 2016 Page 12

n = self.t.size

if self.neq == 1: # scalar ODE

self.u = np.zeros(n)

else: # ODE system

self.u = np.zeros((n,self.neq))

self.u[0] = self.U0

# Time loop

for k in range(n-1):

self.k = k

self.u[k+1] = self.advance()

return self.u[:k+2], self.t[:k+2]

class ForwardEuler(ODESolver):

def advance(self):

u, f, k, t = self.u, self.f, self.k, self.t

dt = t[k+1] - t[k]

u_new = u[k] + dt*f(u[k], t[k])

return u_new

class RungeKutta4(ODESolver):

def advance(self):

u, f, k, t = self.u, self.f, self.k, self.t

dt = t[k+1] - t[k]

dt2 = dt/2.0

K1 = dt*f(u[k], t[k])

K2 = dt*f(u[k] + 0.5*K1, t[k] + dt2)

K3 = dt*f(u[k] + 0.5*K2, t[k] + dt2)

K4 = dt*f(u[k] + K3, t[k] + dt)

u_new = u[k] + (1/6.0)*(K1 + 2*K2 + 2*K3 + K4)

return u_new

Solution:

from ODESolver import ODESolver

class Midpoint(ODESolver):

def advance(self):

u,f,k,t = self.u,self.f,self.k,self.t

dt = t[k+1] - t[k]

k1 = dt*f(u[k],t[k])

k2 = dt*f(u[k]+0.5*k1,t[k]+0.5*dt)

(Continued on page 13.)



Examination in INF1100, Wednesday, December 14, 2016 Page 13

return u[k] + k2

13 ODESolver (8 pts)

Write a test function for the sub-class Midpoint from the previous question.
Hint: the explicit midpoint method, as well as most methods for ordinary
differential equations, can reproduce a linear solution y(t) = at + b exactly
(for arbitrary constants a and b). One can construct a differential equation
with such a linear solution, e.g., y′(t) = 5, y(0) = 1, has solution y = 5t + 1.
Class Midpoint should reproduce this solution to machine precision.

Solution (assuming the test function is in the same file as the sub-class:

def test_Midpoint():

f = lambda u, t: 5

u_ref = lambda t: 5.0*t+1.0

solver = Midpoint(f)

solver.set_initial_condition(1.0)

u,t = solver.solve([0,1,2,3,4])

tol = 1e-10

for u_n,t_n in zip(u,t):

assert abs(u_n-u_ref(t_n)) < tol

14 Modeling with ODEs (12 pts)

This question presents a model for an outbreak of Ebola in Sierra Leone in
2014. The population is divided into four groups; those that can be infected
(S), those that are infected but have not yet developed the diseases, and can
not yet infect others (E), those that are sick and can infect others (I), and
those that have died from the disease (D). Let S(t), E(t), I(t) and D(t) be
the number of people in each category. The following system of differen-
tial equations describes the dynamics of S(t), E(t), I(t) and D(t) in a time
interval [0, T ]:

S ′(t) = −p(t)S(t)I(t), (2)

E ′(t) = p(t)S(t)I(t) − qE(t), (3)

I ′(t) = qE(t) − rI(t), (4)

D′(t) = rI(t). (5)

(Continued on page 14.)



Examination in INF1100, Wednesday, December 14, 2016 Page 14

At t = 0 we have the initial conditions S(0) = S0, E(0) = E0, I(0) =
0, D(0) = 0. The function p(t) and the constants d, p, q must be known. The
constants and functions are all > 0. Write a Python function SEID(S0,E0,p,q,r,T),
which takes initial values S0, E0, the function p(t), constants q, r, and the
end time T as input arguments. Use the class RungeKutta4 in the ODESolver
hierarchy to solve the differential equations. Let the time be given in days.
Use ten time steps per day, so that the total number of time points for a
simulation over [0,T] is 10T+1. The function SEID shall return 5 arrays:

• t, which holds the time points tk = k∆t, where the numerical solution
is calculated,

• S containing S(t0), S(t1), . . . , S(tn),

• E containing E(t0), E(t1), . . . , E(tn),

• I containing I(t0), I(t1), . . . , I(tn),

• D containing D(t0), D(t1), . . . , D(tn).

We reason as follows to set the necessary parameters in the model. At the
outbreak of the disease (t=0) the population in Sierra Leone was 5.48 million,
and we want to study an extreme case where 10% of the population is infected
and about to develop the disease. This gives S0=4.93 and E0=0.55. On
average it took 10 days from the time of infection to the start of the disease,
and 10.38 days from the start of the disease until the person died. This gives
q = 1/10 and r = 1/10.38. The function p(t) describes the likelihood of an
infected person getting interacting with and infecting a healthy, susceptible
person. If nothing is done to slow spreading of the disease we can assume
that this is constant, and for the disease outbreak we study it was estimated
to p=0.0233. Write the code for calling the function SEID with the given
parameters and T=100. Also add code to plot S(t), E(t), I(t)and D(t) in the
same window, with a legend for each curve.

Solution:

from ODESolver import *

import matplotlib.pyplot as plt

import numpy as np

def SEID(S0,E0,p,q,r,T):

def f(u,t):

S,E,I,F = u

return [-p(t)*S*I,p(t)*S*I-q*E, q*E-r*I,r*I]

solver = RungeKutta4(f)

solver.set_initial_condition([S0,E0,0,0])

time = np.linspace(0,T,10*int(T)+1)

(Continued on page 15.)



Examination in INF1100, Wednesday, December 14, 2016 Page 15

u,t = solver.solve(time)

S,E,I,D = u[:,0],u[:,1],u[:,2],u[:,3]

return time, S, E, I, D

p = lambda t: 0.0233

q = 1.0/10

r = 1.0/10.38

T = 100

t,S,E,I,D = SEID(4.93,0.55,p,q,r,T)

plt.plot(t,S,t,E,t,I,t,D)

plt.legend([’S’,’E’,’I’,’D’])

plt.show()

END


