# UNIVERSITETET I OSLO <br> Det matematisk-naturvitenskapelige fakultet 

Examination in: $\quad$\begin{tabular}{l}
INF1100 - <br>
programming <br>
applications

$\quad \underset{\text { introduction }}{\text { with }}$

scientific
\end{tabular} to

Day of examination: Wednesday, December 17, 2014
Examination hours: $09.00-13.00$.
This examination set consists of 13 pages.
Appendices: None.

Permitted aids: None.

Make sure that your copy of the examination set is complete before you start solving the problems.

- Read through the complete exercise set before you start solving the individual exercises. If you miss information in an exercise, you can provide your own reasonable assumptions as long as you explain them in detail.
- Most of the exercises result in short code where there is little need for comments, unless you do something complicated or non-standard. In that case, comments should convey the idea behind the program constructions such that it becomes easy to evaluate the solution.
- Many exercises ask you to "write a function". A main program calling the function is then not required, unless it is explicitly stated. You may, in these types of exercises, also assume that necessary modules are already imported outside the function. On the other hand, if you are asked to write a complete program, explicit import of modules must be a part of the solution.
- The maximum possible score on this exam is 75 points. There are 9 exercises, and the number of points for each exercise is given in the heading. Subexercises a), b), etc. count the same number of points.


## Exercise 1 (5 points)

What is printed in the terminal window when the programs below are run?
(a)

```
s = -2
for k in range(2, 5, 2):
    s += 2
print s
```


## Solution:

2
(b) The file mydata.txt contains the numbers

$$
\begin{array}{rrr}
1.0 & 2.3 & 4.5 \\
2.0 & 2.7 & -2.0 \\
3.0 & 2.9 & 4.8 \\
4.0 & 3.2 & -8.5 \\
5.0 & 4.3 & 4.5
\end{array}
$$

The program looks like

```
infile = open('mydata.txt', 'r')
infile.readline()
infile.readline()
for line in infile:
    a, b, c = [float(w) for w in line.split()]
    print 'a=%.2f b=%.2f c=%.2f' % (a, b, c)
```


## Solution:

```
a=3.00 b=2.90 c=4.80
a=4.00 b=3.20 c=-8.50
a=5.00 b=4.30 c=4.50
```

(c)

```
def myfunc(a, b):
    s = 0
    for k in a:
        s += a[k]*b**k
    return s
```

print myfunc(\{1:-1, 3:1\}, 3)

## Solution:

24
(d)

```
def myfunc(a, b):
    c = a.copy()
    for k in b:
        if k in c:
                c[k] += b[k]
        else:
                c[k] = b[k]
    return c
print myfunc({1:-1, 3:1}, {1:3, 2:2})
```


## Solution:

$\{1: 2,2: 2,3: 1\}$
(or any other order of the key-value pairs)
(e)

```
from math import factorial
# factorial(N) is N! = N*(N-1)*(N-2)*...*2*1
def test_factorial():
    expected = 5*4*3*2*1
    computed = factorial(5)
    assert expected == computed
test_factorial()
```

Solution: Nothing is printed since expected is 120 and computed is also 120 .

## Exercise 2 (5 points)

A piecewise constant function has the value 0 when its argument $t$ is less than 5 , and the value 0.4 otherwise. Implement such a mathematical function in a Python function. Make a test function for verifying the implementation (test for equal values with a tolerance).

## Solution:

```
def p(t):
    return 0 if t < 5 else 0.4
# or
def p(t):
    if t < 5:
            return 0
    else:
            return 0.4
# Test function
def test_p():
    tol = 1E-15
    assert abs(p(0) - 0) < tol
    assert abs(p(4) - 0) < tol
    assert abs(p(5) - 0.4) < tol
    assert abs(p(10) - 0.4) < tol
```


## Exercise 3 (20 points)

We want to solve the difference equation

$$
y_{i}=i y_{i-1}, \quad y_{0}=1
$$

for $i=1,2,3,4$, by the program
$\mathrm{N}=3$
from numpy import zeros
$\mathrm{y}=\mathrm{zeros}(\mathrm{N}+1$, int)
for i in range(1, N+1):
$y[i]=i * y[i-1]$
print i, y[i]
a) What is printed by this program?

## Solution:

10
20
30
b) How must the program be changed in order to solve the stated mathematical problem?

Solution: There are two errors: N must be set to 4 and the initial condition $y_{0}=1$ must be set.

```
N = 4
from numpy import zeros
y = zeros(N+1, int)
y[0] = 1
for i in range(1, N+1):
    y[i] = i*y[i-1]
    print i, y[i]
```

c) Put the program in a Python function that returns the array y. Call the function to compute $y_{14}$. The function should not print anything.

## Solution:

```
from numpy import zeros
```

def factorial(N):
$\mathrm{y}=\mathrm{zeros}(\mathrm{N}+1$, int)
$y[0]=1$
for $i$ in range ( $1, \mathrm{~N}+1$ ):
$y[i]=i * y[i-1]$
return y
y_14 = factorial(14) [-1]
d) Write a test function for the Python function in c).

## Solution:

```
def test_factorial():
    # Test some N > 0, here N=5
    expected = 5*4*3*2*1
    computed = factorial(5)[-1] # check final element
    assert expected == computed
    # Test also the special case N=0
```

(Continued on page 6.)

```
expected = 1
computed = factorial(0)
assert expected == computed
```


## Exercise 4 (10 points)

The information about a polynomial

$$
p(x)=\sum_{i=0}^{N} c_{i} x^{i}
$$

can be stored in a dictionary with $i$ as key and $c_{i}$ as value. For example, the polynomial $p(x)=-1+4 x^{3}+20 x^{8}$ is represented by the dictionary \{0: -1, 3: 4, 8: 20\}.
a) Write a Python function polyeval ( $\mathrm{x}, \mathrm{p}$ ) that takes a dictionary representation $p$ of a polynomial and returns the value of the polynomial for the given $x$ value. For example, polyeval(2, \{1:-1, 3:1\}) should return the value $-1 \cdot 2^{1}+1 \cdot 2^{3}=6$.

## Solution:

```
def polyeval(x, p):
    s = 0 # summation variable
    for i in p:
        s += p[i]*x**i
    return s
# Simpler implementation
def polyeval(x, p):
    return sum(p[i]*x**i for i in p)
```

b) Write a Python function polyadd (p, q) that returns the dictionary representation of the sum of two polynomials whose dictionary representations are p and q. For example, polyadd ( $\{1:-1,3: 1\},\{1: 3,2: 2\}$ ) should return $\{1: 2,2: 2,3: 1\}$ since $-x+x^{3}+3 x+2 x^{2}=2 x+2 x^{2}+x^{3}$.

## Solution:

```
def polyadd(p, q):
    r = p.copy() # result
    for i in q:
        if i in r:
            r[i] += q[i]
        else:
            r[i] = q[i]
    return r
```

(Continued on page 7.)

## Exercise 5 (5 points)

This is a continuation of Exercise 4. Now we want to represent a polynomial $p(x)=\sum_{i=0^{N}} c_{i} x^{i}$ by a class Poly. The class has one attribute: a dictionary representation of the polynomial (i.e., the collection of the coefficients and associated powers), as explained in Exercise 4. Equip the class with two special methods: __call__ for evaluating the polynomial at a point x and __add__ for adding two polynomials. The following interactive Python session should work (imagine that the class resides in a file Poly.py):

```
>>> from Poly import Poly
>>> p1 = Poly({1:-1, 3:1})
>>> p1(3)
24
>>> p2 = Poly({1:3, 2:2})
>>> p3 = p1 + p2
>>> p3.coeff
{1: 2, 2: 2, 3: 1}
```

It is possible to do this exercise even if you have not managed to write the functions in Exercise 4 (just assume that the functions from Exercise 4 exist).

## Solution:

```
# Reuse functions polyeval and polyadd
```

```
class Poly:
    def __init__(self, p):
        self.coeff = p
    def __call__(self, x):
        return polyeval(x, self.coeff)
    def __add__(self, other):
        result_dict = polyadd(self.coeff, other.coeff)
        return Poly(result_dict)
```


## Exercise 6 (5 points)

Extend class Poly from the previous exercise by a method diff that returns the derivative of the polynomial. The derivative of $p(x)=\sum_{i=0}^{N} c_{i} x^{i}$ becomes

$$
p^{\prime}(x)=\sum_{i=1}^{N} i c_{i} x^{i-1}
$$

If we continue the interactive session in Exercise 5, we can do

```
>>> p4 = p3.diff()
>>> p4.__class__.__name__ # show that diff returns a Poly object
'Poly'
>>> p4.coeff
{0: 2, 1: 4, 2: 3}
```

Solution: We see from the interactive session that diff must return a Poly object.

```
class Poly:
    def diff(self):
        r = {} # resulting polynomial
        for i in self.coeff:
            if i != 0:
                r[i-1] = i*self.coeff[i]
        return Poly(r)
```


## Exercise 7 (10 points)

A differential equation, or system of differential equations, written on the generic form

$$
y^{\prime}(x)=f(y, x), \quad y(0)=Y_{0}
$$

can be solved by tools in a class hierarchy ODESolver. The complete Python code of the superclass and a subclass in this hierarchy is listed below. One numerical solution technique for $y^{\prime}=f(y, x)$ is the 2nd-order Runge-Kutta method:

$$
\begin{aligned}
k_{1} & =\Delta x f\left(y_{k}, x_{k}\right), \\
k_{2} & =\Delta x f\left(y_{k}+\frac{1}{2} k_{1}, x_{k}+\frac{1}{2} \Delta x\right), \\
y_{k+1} & =y_{k}+k_{2},
\end{aligned}
$$

where $y_{k}$ is the numerical approximation to the exact solution $y(x)$ at the point $x=x_{k}=k \Delta x$.
a) Write a subclass of ODESolver to implement the 2nd-order RungeKutta method. The subclass code should be in a file RK2.py, separate from ODESolver.py (i.e., you need to import ODESolver).

Solution: We assume that class ODESolver is in a module file ODESolver . py.

```
from ODESolver import ODESolver
```

```
class RK2(ODESolver):
    def advance(self):
        y, f, k, x = self.y, self.f, self.k, self.x
        dx = x[k+1] - x[k]
        k1 = dx*f(y[k], x[k])
        k2 = dx*f(y[k] + 0.5*k1, x[k] + 0.5*dx)
        return y[k] + k2
```

b) Write a test function for class RK2. (Hint: the 2nd-order Runge-Kutta method, as well as most methods for ordinary differential equations, can reproduce a linear solution $y(x)=a x+b$ exactly (for arbitrary constants $a$ and $b$ ). One can construct a differential equation with such a linear solution, e.g., $y^{\prime}(x)=2+(y-(2 x+3))^{2}, y(0)=3$, has solution $y=2 x+3$. Class RK2 should reproduce this solution to machine precision.)

## Solution:

```
def test_RK2():
    """Linear solution should be exactly reproduced."""
    def y(x):
            return 2*x + 3
    def f(y, x):
        return 2 + (y - (2*x+3))**2
    solver = RK2(f)
    solver.set_initial_condition(y(0))
    computed_y, x = solver.solve([0, 1, 2, 3])
    expected_y = y(x)
    import numpy as np
    diff = np.abs(expected_y - computed_y).max()
    tol = 1E-15
    assert diff < tol
```

Code for class ODESolver and a subclass ForwardEuler:

```
import numpy as np
```

class ODESolver:
" " "
Superclass for numerical methods solving scalar and vector ODEs
$y^{\prime}(x)=f(y, x)$
Attributes:
$x$ : array of coordinates of the independent variable
$y$ : array of solution values (at points $x$ )
(Continued on page 10.)

```
    k: step number of the most recently computed solution
    f: callable object implementing f(y, x)
    """
    def __init__(self, f):
    self.f = lambda y, x: np.asarray(f(y, x), float)
    def set_initial_condition(self, YO):
    if isinstance(YO, (float,int)): # scalar ODE
            self.neq = 1
            YO = float(YO)
        else: # system of ODEs
            Y0 = np.asarray(Y0) # (assume YO is sequence)
        self.neq = YO.size
    self.YO = YO
    def solve(self, x_points):
    """
    Compute solution y for x values in the list/array x_points.
    """
    self.x = np.asarray(x_points)
    n = self.x.size
    if self.neq == 1: # scalar ODEs
        self.y = np.zeros(n)
    else: # systems of ODEs
        self.y = np.zeros((n,self.neq))
    # Assume that self.x[0] corresponds to self.YO
    self.y[0] = self.Y0
    for k in range(n-1):
        self.k = k
        self.y[k+1] = self.advance()
    return self.y, self.x
class ForwardEuler(ODESolver):
    def advance(self):
        y, f, k, x = self.y, self.f, self.k, self.x
        dx = x[k+1] - x[k]
        return y[k] + dx*f(y[k], x[k])
```


## Exercise 8 (10 points)

This exercise presents a model for the spreading of a flu. The population is divided into four groups: susceptibles (S) who can get the flu, infected (I) who have developed the flu and who can infect susceptibles, recovered (R) who have recovered from the flu and become immune, and the vaccinated (V). Let $S(t), I(t), R(t)$, and $V(t)$ be the number of people in category S ,
$\mathrm{I}, \mathrm{R}$, and V , respectively. The following differential equations describe how $S(t), I(t), R(t)$, and $V(t)$ develop in a time interval $[0, T]$ :

$$
\begin{align*}
S^{\prime}(t) & =-b(t) S(t) I(t)-p(t) S(t)+d R(t)  \tag{1}\\
I^{\prime}(t) & =b(t) S(t) I(t)-q I(t)  \tag{2}\\
R^{\prime}(t) & =q I(t)-d R(t)  \tag{3}\\
V^{\prime}(t) & =p(t) S(t) \tag{4}
\end{align*}
$$

At $t=0$ we have the initial conditions $S(0)=S_{0}, I(0)=I_{0}, R(0)=V(0)=$ 0 . The functions $b(t)$ and $p(t)$ as well as the constants $d>0$ and $q>0$ must be known.
Write a Python function $\mathrm{flu}(\mathrm{SO}, \mathrm{IO}, \mathrm{b}, \mathrm{q}, \mathrm{d}, \mathrm{p}, \mathrm{T})$ that takes the initial values $S_{0}$ and $I_{0}$, the function $b(t)$, the parameter $q$, the parameter $d$, the function $p(t)$, and the end time $T$ for the simulation as arguments. Use class RK2 in the ODESolver hierarchy to solve the differential equations (if you did not manage to write class RK2, just assume that it exists). Let the time unit be days. Use five time steps per day such that the total number of time points for a simulation in $[0, T]$ is $5 T+1$. Five arrays should be returned from the function flu:

- t containing the time points $t_{k}=k \Delta t$, where the numerical solution is computed, $k=0,1, \ldots, n$,
- S containing $S\left(t_{0}\right), S\left(t_{1}\right), \ldots, S\left(t_{n}\right)$,
- I containing $I\left(t_{0}\right), I\left(t_{1}\right), \ldots, I\left(t_{n}\right)$,
- R containing $R\left(t_{0}\right), R\left(t_{1}\right), \ldots, R\left(t_{n}\right)$.
- V containing $V\left(t_{0}\right), V\left(t_{1}\right), \ldots, V\left(t_{n}\right)$.

We look at the spreading of the flu in small, closed population and reason as follows to set appropriate values of the parameters needed in the model. At $t=0$ there are 1000 susceptibles and 2 infected. The value of $1 / q$ reflects the average length of the disease, here taken as 7 days, so $q=1 / 7$ (time $t$ is measured in days). The function $b(t)$ measures how easily an infected person can infect a susceptible. This function is taken to be constant, equal to 0.001. $1 / d$ is the average time before a recovered loses her/his immunity, and we take $d=1 / 100$. The $p(t)$ function measures the effectiveness of vaccination. Suppose that vaccination takes place after $K$ days such that $p=0$ for $t<K$ and $p=0.4$ for $t \geq K$.
Make a call to the function flu with the mentioned parameters, $T=40$, and $K=5$. Also add code for plotting $S(t), I(t), R(t)$, and $I(t)$ in the same figure with a legend for each curve.

## Solution:

```
def flu(SO, IO, b, q, d, p, T):
    def f(u, t):
        S, I, R, V = u
        return [-b(t)*S*I - p(t)*S + d*R,
            b(t)*S*I - q*I,
            q*I - d*R,
            p(t)*S]
    solver = RK2(f)
    solver.set_initial_condition([SO, IO, 0, 0])
    time_points = np.linspace(0, T, 5*T+1)
    u, t = solver.solve(time_points)
    S, I, R, V = u[:,0], u[:,1], u[:,2], u[:,3]
    return t, S, I, R, V
K = 5
flu(SO=1000, IO=2, b=lambda t: 0.001, q=1./7, d=1./100,
    p=lambda t: 0 if t<K else 0.4, T=40)
# Can also make b and p as ordinary Python functions
# (p is already implemented in Exercise 2)
import matplotlib.pyplot as plt
plt.plot(t, S, t, I, t, R, t, V)
plt.legend(['S', 'I', 'R', 'V'])
plt.show()
```


## Exercise 9 (5 points)

Write a Python function dump(filename, t, S, I, R, V) that can write five arrays of equal length, $t, S, I, R$, and $V$, to a file with name filename. Here is an example of how the numbers should be nicely formatted in a tabular fashion in the file:

| 0.0000 | 1000.0000 | 2.0000 | 0.0000 | 0.0000 |
| ---: | ---: | ---: | ---: | ---: |
| 0.2000 | 999.5659 | 2.3722 | 0.0620 | 0.0000 |
| 0.4000 | 999.0513 | 2.8133 | 0.1354 | 0.0000 |
| 0.6000 | 998.4416 | 3.3361 | 0.2223 | 0.0000 |
| 0.8000 | 997.7192 | 3.9555 | 0.3252 | 0.0000 |
| 1.0000 | 996.8636 | 4.6893 | 0.4471 | 0.0000 |
| 1.2000 | 995.8504 | 5.5581 | 0.5915 | 0.0000 |
| 1.4000 | 994.6510 | 6.5865 | 0.7625 | 0.0000 |
| 1.6000 | 993.2319 | 7.8031 | 0.9650 | 0.0000 |
| 1.8000 | 991.5536 | 9.2416 | 1.2048 | 0.0000 |
| 2.0000 | 989.5700 | 10.9415 | 1.4886 | 0.0000 |


| 2.2000 | 987.2272 | 12.9484 | 1.8244 | 0.0000 |
| :--- | :--- | :--- | :--- | :--- |
| 2.4000 | 984.4626 | 15.3159 | 2.2215 | 0.0000 |
| 2.6000 | 981.2035 | 18.1054 | 2.6911 | 0.0000 |
| 2.8000 | 977.3660 | 21.3881 | 3.2459 | 0.0000 |
| 3.0000 | 972.8538 | 25.2453 | 3.9009 | 0.0000 |

## Solution:

def dump(filename, t, S, I, R, V):
outfile $=$ open(filename, 'w')
for $t_{-}, S_{-}, I_{-}, R_{-}, V_{-}$in $\operatorname{zip}(t, S, I, R, V):$

( $\left.t_{-}, S_{-}, I_{-}, R_{-}, V_{-}\right)$)
outfile.close()
\# Very compact solution using numpy.savetxt:
data = numpy.array ([t,S,I,R,V]).transpose() \# columns t S I R V
numpy.savetxt (filename, data, fmt=' $\% 9.4 f$ ')
END

