
IN1900	Høst	2019

1/21

Forside

UNIVERSITY	OF	OSLO
Faculty	of	mathematics	and	natural	sciences
Exam	in:	IN1900	og	INF1100
Exam	date:	9.	december	2019
Time	for	exam:	4	timer.	
Attachments:	ODESolver.pdf	in	problem	3.3
Permitted	aids:	None.
A	calculator	is	available	in	Inspera.
	
Read	the	entire	exam	set	before	you	start	answering	the	questions.	The	exam	contains	multiple	choice
questions,	and	text	questions	where	you	shall	write	short	programs	or	read	programs	and	write	the	output	from
the	program.	If	you	are	missing	information	you	can	make	your	own	reasonable	assumptions,	as	long	as	they
are	in	line	with	the	"nature"	of	the	question.	In	text	questions	you	should	then	specify	the	assumptions	you
made,	for	instance	in	comments	to	the	code.	

All	code	in	the	question	texts	is	written	in	Python	3.	You	can	write	your	answers	in	either	Python	2	or	Python	3,
but	you	should	avoid	using	a	mix.
	
Most	of	the	questions	lead	to	short	code	with	little	need	for	comments,	unless	you	do	something	complicated	or
non-standard.	(which	is	not	recommended;	but	in	this	case	the	comments	shall	explain	the	ideas	behind	the
program	to	make	it	easier	to	evaluate	the	code).
	
A	question	may	ask	you	to	write	a	function.	A	main	program	which	calls	the	function	is	in	this	case	not	needed,
unless	it	is	specifically	asked	for	in	the	question	text.	

1.1 Hva	skrives	ut?

What	is	printed	in	the	terminal	when	the	following	code	is	run?
u	=	0
for	i	in	range(1,5,2):
				u	+=	i
print(u)
	
Select	one	alternative:

	

4

2

9

An	error	message

Maximum	marks:	1

IN1900	Høst	2019

2/21

1.2 Hva	skrives	ut?

What	is	printed	in	the	terminal	when	the	following	code	is	run?
	
a	=	[]
for	i	in	range(4):
				a.append([i,i+1])
print(a[-1])
	
Select	one	alternative:

	

4

An	error	message

5

[3,4]

[4,5]

Maximum	marks:	1

1.3 Hva	skrives	ut?

What	is	printed	when	the	following	code	is	run?
	
for	i	in	range(1,4):
				print(i,end='	')
				for	j	in	range(i):
								print(j,end='	')
	
Select	one	alternative:

The	argument	"end	=	'	'	"	to	the	print	function	makes	each	write	to	the	screen	end	with	a	space	('	')	instead	of	a
linebreak.

1	0	2	0	1	3	0	1	2

0	1	1	0	2	0	1

0	1	0	1	2	0	1	2	3

An	error	message

Maximum	marks:	1

IN1900	Høst	2019

3/21

1.4 Hva	skrives	ut?

What	is	printed	when	the	following	code	is	run?
	
def	absolute(x):
				if	x	<	0:
								return	-x
				return	x
	
for	x_	in	[-3,4,0]:
				print(absolute(x_),	end='	')
	
Select	one	alternative:

	

3	-4	0

An	error	message

3	4	0

3	-3	4	0

Maximum	marks:	1

IN1900	Høst	2019

4/21

1.5 Hva	skrives	ut?

What	is	printed	when	the	following	code	is	run?
	
def	freq_lists(dna_list):
				n	=	len(dna_list[0])
				A	=	[0]*n
				T	=	[0]*n
				G	=	[0]*n
				C	=	[0]*n
				for	dna	in	dna_list:
								index	=	0
								for	base	in	dna:
												if	base	==	'A':
																A[index]	+=	1
												elif	base	==	'C':
																C[index]	+=	1
												elif	base	==	'G':
																G[index]	+=	1
												elif	base	==	'T':
																T[index]	+=	1
												index	+=	1
				return	A,	C,	G,	T
dna_list	=	['TCGCT',	'GGACT',	'GCTGC']
A,	C,	G,	T	=	freq_lists(dna_list)
print(G)
	
Select	one	alternative:

	

[2,	1,	1,	1,	0]

['G',	'G',	'G',	'G',	0]

[0,	1,	2,	1,	0]

5

['T',	'C','G','T']

Maximum	marks:	2

1.6 Hvilken	påstand	er	riktig?

One	of	the	following	statements	is	correct.	Which	one?
	
Select	one	alternative:

	

A	test	function	returns	0	if	the	test	passes

A	test	function	must	always	include	a	return	statement

A	test	function	should	always	take	at	least	one	input	argument

A	test	function	can	have	multiple	assert	statements

Maximum	marks:	1

IN1900	Høst	2019

5/21

1.7 Hva	skrives	ut?

What	is	printed	in	the	terminal	when	the	following	code	is	run?
	
def	count(dna,	base):
				i	=	0	
				for	j	in	range(len(dna)):
								if	dna[j]	==	base:
												i	+=	1
				return	i
	
def	test_count():
				dna	=	'ATTTGCGGTCCAAA'
				success	=	count(dna,	'A')	==	4
				msg	=	'count	returns	the	wrong	number'
				assert	success,	msg
	
test_count()
Select	one	alternative:

	

count	returns	the	wrong	number

Nothing	is	printed

AssertionError:	count	returns	the	wrong	number

Success

Maximum	marks:	1

IN1900	Høst	2019

6/21

1.8 Hvilket	funksjonskall?

The	function	euler(rhs,u0,T,n)	applies	Euler's	method	to	solve	an	ordinary	differential	equation	(ODE)	with
right	hand	side	defined	by	the	function	rhs	and	initial	condition	u0,	for	the	time	interval	0	ti	T,	with	n	time	steps:
import	numpy	as	np

def	euler(rhs,u0,T,n=100):
				t	=	np.linspace(0,T,n+1)
				dt	=	T/n
				u	=	np.zeros_like(t)
				u[0]	=	u0
				for	i	in	range(1,n+1):
								u[i]	=	u[i-1]+dt*rhs(u[i-1],t[i-1])
				return	u,t
	
We	want	to	use	the	function	to	solve	the	differential	equation	y'	=	-0.5	y,	y(0)	=	1,	for	t	in	the	interval	0	til	5.
Which	function	call	is	correct?
	
Select	one	alternative:

Recall	that	a	lambda	function	is	a	compact	way	to	define	a	function.		For	instance,	the	following	line	will	define
a	function	that	returns	x2+y2:	
func	=	lambda	x,y:	x**2	+	y**2
This	line	is	equivalent	to	the	following	code:		
def	func(x,y):
				return	x**2	+	y**2

u,	t	=	euler(f	=	-0.5*y,	1.0,	5)

u,	t	=	euler(lambda	y:	-0.5*y,	1.0,	5)

u,	t	=	euler(lambda	y,	t:	-0.5*y,	1.0,	5)

u,	t	=	euler(-0.5*y,	1.0,	5)

Maximum	marks:	2

IN1900	Høst	2019

7/21

1.9 Hvilket	funksjonskall?

The	following	function	implements	a	bisection	method	for	finding	solutions	of	the	equation	f(x)=0	in	the	interval
[a,b].
	
def	bisection(f,	a,	b,	eps=1e-5):
				fa	=	f(a)
				if	fa*f(b)	>	0:
								print(f'No	unique	root	in	[{a},{b}]')
								return	None
				while	b-a	>	eps:
								m	=	(a	+	b)/2.0
								fm	=	f(m)
								if	fa*fm	<=	0:
												b	=	m		#	root	is	in	left	half	of	[a,b]
								else:
												a	=	m		#	root	is	in	right	half	of	[a,b]
												fa	=	fm
				return	m
	
We	want	to	use	the	function	to	find	a	solution	of	the	equation	

in	the	interval	[-10,10].	Which	function	call	is	correct?
Select	one	alternative:

Recall	that	a	lambda	function	is	a	compact	way	to	define	a	function.		For	instance,	the	following	line	will	define
a	function	that	returns	x2+y2:	
func	=	lambda	x,y:	x**2	+	y**2
This	line	is	equivalent	to	the	following	code:		
def	func(x,y):
				return	x**2	+	y**2

x	=	bisection(lambda	x:	x**3+2*x-1,-10,10)

x	=	bisection(f(x)	=	x**3+2*x-1,-10,10,	eps=1e-5)

x	=	bisection(eval('x**3+2*x-1'),-10,10)

x	=	bisection(x**3+2*x-1,-10,10,	eps=1e-5)

Maximum	marks:	2

IN1900	Høst	2019

8/21

1.10 Hvor	feiler	koden?

In	which	line	will	this	code	stop	and	write	an	error	message?		
	
a	=	[[4,5],[0,1],2,[2,0.5],4,3,[5,6,7]]
b	=[]
for	e	in	a:
				s	=	0
				for	number	in	e:
								s	+=	number
				b.append(s)
print(b)
	
print(b)
	
Select	one	alternative:

	

for	e	in	a:

a	=	[[4,5],[0,1],2,[2,0.5],4,3,[5,6,7]]

b.append(s)

s	+=	number

for	number	in	e:

Maximum	marks:	2

IN1900	Høst	2019

9/21

1.11 Hva	skrives	ut?

The	file	formula_cml.py	contains	the	following	code:	
	
import	sys
from	math	import	*
try:
				formula	=	sys.argv[1]
				x	=	[float(x_)	for	x_	in	sys.argv[2:]]
except	IndexError:
				print('Missing	command	line	argument')
				exit()
	
code	=	f"""
def	f(x):
				return	{formula}
"""

try:
				exec(code)
except:
				print('Something	wrong	in	formula')
				exit()
	
for	x_	in	x:
				print(f(x_),end='	')
	
What	is	printed	when	the	program	is	run	in	the	following	way?	
Terminal>	python	formula_cml.py	2*x**2-3		1		3
	
Fill	in	your	answer	here

	
Words:	0

Maximum	marks:	2

IN1900	Høst	2019

10/21

1.12 Hva	skrives	ut?

The	file	stars.txt	contains	the	following:
Name																															distance								brightness				luminosity
Alpha_Centauri_A										4.3																0.26																1.56
Alpha_Centauri_B										4.3														0.077													0.45
Alpha_Centauri_C										4.2														0.00001									0.00006
Sirius_A																													8.6																1.00														23.6
	
There	are	no	blank	lines	in	the	file.
	
What	is	printed	when	the	following	code	is	run?
stars_data	=	{}

with	open('stars.txt')	as	infile:
				infile.readline()
				
				for	line	in	infile:
								w	=	line.split()
								data	=	{'dist':				w[1],	'bright':	w[2],'lum':	w[3]}
								stars_data[w[0]]	=	data
	
print(len(stars_data),stars_data['Sirius_A']['bright'])
	
Fill	in	your	answer	here

	

	

Words:	0

Maximum	marks:	2

IN1900	Høst	2019

11/21

2.1 Funksjon	av	to	variable

Write	a	python	function	f(x,y)	that	returns	the	value	of	the	mathematical	expression		

Fill	in	your	answer	here

	

Maximum	marks:	3

1

IN1900	Høst	2019

12/21

2.2 Numerisk	derivasjon

The	derivative	of	a	mathematical	function	f(x)	can	be	approximated	with	the	midpoint	formula	

for	a	small	number	h.
Write	a	Python	function	midpoint(f,x,h),	which	uses	this	formula	to	estimate	the	derivative	of	a	function	f	in	the
point	x.	The	function	shall	return	the	function	value	f(x)	and	the	estimated	derivative.	The	argument	f	can	be	an
arbitrary	mathematical	function	implemented	as	a	Python	function,	which	takes	one	input	argument	and	returns
one	value.	
	
Include	a	line	where	you	call	the	function	to	estimate	the	derivative	of	cos(x)	in	the	point	x=0,	for	h=0.001.	
Fill	in	your	answer	here

	

Maximum	marks:	5

1

IN1900	Høst	2019

13/21

2.3 Implementasjon	av	en	sum

Write	a	Python	function	cos_approx(x,n)	which	computes	the	sum	

and	returns	the	value.
	
x	can	be	a	decimal	number	(float)	or	a	Numpy-array	of	decimal	numbers,	while	n	is	a	positive	integer.	Recall
that	k!	is	the	factorial	of	k.	Include	necessary	imports.	
	
Fill	in	your	answer	here

	

Maximum	marks:	5

1

IN1900	Høst	2019

14/21

2.4 Lesing	av	fil

The	file	constants.txt	has	the	following	contents:
name	of	constant												value																					dimension
--
light	speed																								299792458.0								m/s
gravitational	constant					6.67259e-11								m**3/kg/s**2
Planck	constant																6.6260755e-34						J*s
elementary	charge										1.60217733e-19					C
Avogadro	number											6.0221367e23							1/mol
Boltzmann	constant								1.380658e-23							J/K
electron	mass																			9.1093897e-31						kg
proton	mass																					1.6726231e-27						kg
	
The	file	contains	no	blank	lines.	
	
Write	a	Python	program	that	reads	this	file	and	stores	its	contents	in	a	dictionary.	The	keys	of	the	dictionary
shall	be	the	name	of	the	constant	(from	the	column	"name	of	constant"),	and	the	value	shall	be	a	list	or	tuple	of
length	two	that	contains	the	numeric	value	of	the	constant	(column	"value")	and	its	physical	units	(column
"dimension").
	
Hint:	The	Python	method	join	is	used	for	joining	a	list	of	strings	into	a	single	string.	As	an	example,	the	code		
string_list	=	['Hello','world']
hello	=	'	'.join(string_list)		
will	result	in	a	string	hello	having	the	value		"Hello	world".	
	
	
Fill	in	your	answer	here

	

Maximum	marks:	6

1

IN1900	Høst	2019

15/21

2.5 Dictionary	og	sum

A	polynomial	p(x)	can	be	represented	as	a	dictionary,	so	that	the	keys	of	the	polynomial	are	the	exponents	and
the	values	are	the	coefficients	in	front	of	each	term.	For	instance,	the	polynomial		

	can	be	represented	as	the	dictionary
p	=	{0:1,2:-2,4:3,5:1}
	
Write	a	Python	function	poly_eval(p,x),	which	evalueates	such	a	polynomial	p	for	a	given	x,	and	returns	its
value.	
Fill	in	your	answer	here

	

Maximum	marks:	5

1

IN1900	Høst	2019

16/21

2.6 Derivasjon	av	polynom

A	general	polynomial	can	be	written	on	the	form

where	cj	are	constant	coefficients.	

	
The	derivative	of	such	a	polynomial	is	given	by	

	
Write	a	Python	function	poly_diff(p)	that	calculates	the	derivative	of	a	general	polynomial	p.	The	argument	p	is
a	dictionary	representation	of	a	polynomial,	as	defined	in	the	previous	question.	The	function	shall	return	a
dictionary	representing	the	derivative	of	p.		
	
Fill	in	your	answer	here

	

Maximum	marks:	5

1

IN1900	Høst	2019

17/21

3.1 Klasse	for	en	funksjon

Write	a	Python	class	F	which	implements	the	function	

The	parameters	a,	b,	and	c	shall	be	attributes,	and	the	class	shall	be	possible	to	use	in	the	following	way

f	=	F(a=1.0,	b=2.0,	c=0.0)
x	=	2.0
print(f(x))					#	prints	the	function	value	(8.0)		
	
Fill	in	your	answer	here

	

Maximum	marks:	5

1

IN1900	Høst	2019

18/21

3.2 ODE-løser,	funksjon

Write	a	Python	function	heun3(f,	U0,	T,	n),	which	uses	Heun's	3.	order	method	to	solve	an	ordinary	differential
equation	(ODE)	given	by:	
	

	
Heun's	3.	order	method	is	given	by	

	
The	arguments	to	the	function	shall	be	a	callable	function	f,	which	defines	the	right	hand	side	of	the	ODE,	the
initial	condition	U0,	the	end-time	T,	and	the	number	of	time	steps	n.	The	function	shall	return	two	numpy-arrays
u	and	t,	where	u	contains	the	solution	and	t	contains	the	time	points	where	we	have	approximated	the	solution.
In	this	question	you	can	assume	that	we	solve	a	scalar	ODE,	where	the	solution	has	only	one	component.	The
solution	array	u	should	therefore	be	a	one-dimensional	array.	Include	necessary	imports.		
	
Fill	in	your	answer	here

	

Maximum	marks:	5

1

IN1900	Høst	2019

19/21

3.3 ODESolver,	arv

Implement	the	method	from	the	previous	question		(Heun's	3.	order	method)	as	a	sub
class	Heun3(ODESolver).	The	base	class	ODESolver	is	defined	in	the	attached	file.	Use	inheritance	to	reuse
as	much	code	as	possible	from	the	base	class.	The	class	Heun3	must	support	the	following	use:
from	numpy	import	*
from	ODESolver	import	*
rhs	=	lambda	u,t:	-0.5*u
solver	=	Heun3(rhs)
solver.set_initial_condition(1.0)
time	=	numpy.linspace(0,10,101)	
u,	t	=	solver.solve(time)	
	
	
Fill	in	your	answer	here

	

Maximum	marks:	5

1

IN1900	Høst	2019

20/21

3.4 Logistisk	vekst

The	model	for	logistic	growth	is	defined	by	the	following	ordinary	differential	equation	(ODE):
	

	
The	model	describes	growth	of	a	population	in	an	environment	with	limited	resources,	where	u	is	the	size	of
the	population,	t	is	time,	and	a	and	R	are	constant	model	parameters.	Write	a	Python	function	rhs(u,t)	that
defines	the	right	hand	side	of	the	equation.	The	parameters	can	be	local	variables	in	the	function,	with	values	a
=	1	and	R	=	50.
	
Write	code	for	solving	the	equation	with	the	Heun3-klass	from	the	previous	question.	The	initial	condition	shall
be	u0	=	0.1,	the	time	interval	from	t=0	to	t=20,	and	you	shall	use	201	time	steps	including	the	end	points	(dt	=
0.1).
Fill	in	your	answer	here

	

Maximum	marks:	5

1

IN1900	Høst	2019

21/21

3.5 SEIS-modell

This	question	presents	a	so-called	SEIS-model	for	modeling	infectious	diseases.	The	model	is	a	modification
of	the	classical	SIR-model,	where	the	population	is	divided	in	three	groups:	those	who	can	be	infected	(S),
those	who	are	infected	but	have	not	yet	developed	the	disease,	and	cannot	infect	others	(E),	and	those	that	are
sick	and	can	infect	others	(I).		There	is	no	immunity	in	the	model,	so	those	that	recover	from	the	disease	return
to	the	S-category.	Let	S(t),	E(t),	and	I(t)	be	the	number	of	people	in	each	category	(measured	in	millions).	The
following	system	of	differential	equations	describes	how	S(t),	E(t),	and	I(t)	evolve	over	a	time	interval	[0,T]:

At	time	t=0	we	have	the	intitial	conditions	S(0)	=	S0,	E(0)	=	E0,	I(0)	=	0.	The	function	p(t)	and	the	constants	q
and	r	are	assumed	to	be	known.	All	constants	and	functions	are	>0.		
	
Write	a	Python-function	SEIS(S0,E0,p,q,r,T),	which	takes	initial	values	S0,	E0,	the	function	p(t),	parameters	q,
r,	and	the	end-time	T	as	input	arguments.	The	function	shall	solve	the	equations	of	the	SEIS-model	and	return
the	solution.	Use	the	Heun3	class	from	the	previous	question	to	solve	the	differential	equations.	Let	the	time	be
given	in	days.	Use	ten	time	steps	per	day,	so	that	the	total	number	of	time	steps	for	a	simulation	over	the
interval	[0,T]	is	10T+1.	The	function		SEIS	shall	return	4	arrays:
t,	which	contains	the	time	points	tk	where	the	numerical	solution	is	calculated,	
S,	which	contains	S(0),S(t1),	...	S(tn),
E,	which	contains	E(0),E(t1),	...	E(tn),
I,	which	contains	I(0),I(t1),	...	I(tn).
	
We	want	to	solve	the	model	with	the	following	parameters;	S0	=	4.0,	E0	=	0.2,	q	=	r	=	0.1,	and	p(t)	=	0.0233
(constant).	
Write	the	code	to	call	the	function	with	the	given	parameters	and	T=100.	Also	include	code	to	plot	S(t),	E(t)
and	I(t)	in	the	same	window,	with	a	legend	for	each	curve.		
Fill	in	your	answer	here

	

Maximum	marks:	8

1

Question 21
Attached

import numpy as np

class ODESolver:
"""
Superclass for numerical methods solving scalar and vector ODEs

du/dt = f(u, t)

Attributes:
t: array of time values
u: array of solution values (at time points t)
k: step number of the most recently computed solution
f: callable object implementing f(u, t)
"""
def __init__(self, f):

if not callable(f):
raise TypeError('f is %s, not a function' % type(f))

self.f = lambda u, t: np.asarray(f(u, t), float)

def set_initial_condition(self, U0):
if isinstance(U0, (float,int)): # scalar ODE

self.neq = 1
U0 = float(U0)

else: # system of ODEs
U0 = np.asarray(U0) # (assume U0 is sequence)
self.neq = U0.size

self.U0 = U0

def advance(self):
"""Advance solution one time step."""
raise NotImplementedError

def solve(self, time_points):
"""
Compute solution u for t values in the list/array
"""
self.t = np.asarray(time_points)
n = self.t.size
if self.neq == 1: # scalar ODEs

self.u = np.zeros(n)
else: # systems of ODEs

self.u = np.zeros((n,self.neq))

Assume that self.t[0] corresponds to self.U0
self.u[0] = self.U0

Time loop
for k in range(n-1):

self.k = k
self.u[k+1] = self.advance()

return self.u, self.t

class ForwardEuler(ODESolver):
def advance(self):

u, f, k, t = self.u, self.f, self.k, self.t
dt = t[k+1] - t[k]
u_new = u[k] + dt*f(u[k], t[k])
return u_new

1

IN1900 - solutions final exam fall 2019
Question 1.11
Correct answer:
-1 15

Question 1.12
Correct answer:
4 1.00

Question 2.1
Suggested solution:

def f(x,y):
return 4*x**3*y-2*x*y

Question 2.2
Suggested solution:

from math import cos

def midpoint(f,x,h):
return f(x), (f(x+h)-f(x-h))/(2*h)

d = midpoint(cos,x=0,h=0.001)

Question 2.3
Suggested solution:

def cos_approx(x,n):
s = 0
for i in range(n+1):

s += (-1)**i * x**(2*i)/(2*factorial(i))
return s

The above code is a correct implementation of the formula given in the question.
However, the formula contained a typo so it was not the correct Taylor series
for the cosine function, which is indicated by the name of the function. An
implementation of the correct formula reads

def cos_approx(x,n):
s = 0
for i in range(n+1):

s += (-1)**i * x**(2*i)/factorial(2*i)
return s

Both answers were given full score on the exam.

1

Question 2.4
Suggested solution:

constants = {}
with open('constants.txt') as infile:

infile.readline()
infile.readline()
for line in infile:

w = line.split()
name = ' '.join(w[:2])
constants[name] = (float(w[2]),w[3])

Question 2.5
Suggested solution:

def poly_eval(p,x):
s = 0
for i in p:

s += p[i]*x**i
return s

Question 2.6
Suggested solution:

def poly_diff(p):
dp = {}
for i in p:

if i != 0:
dp[i-1] = i*p[i]

return dp

Question 3.1
Suggested solution:

class F:
def __init__(self,a,b,c):

self.a = a
self.b = b
self.c = c

def __call__(self,x):
return self.a*x**2+self.b*x+self.c

Question 3.2
Suggested solution:

def heun3(f,U0,T,n):
t = np.linspace(0,T,n+1)
u = np.zeros_like(t)
u[0] = U0
dt = T/n
for i in range(n):

2

k1 = dt*f(u[i],t[i])
k2 = dt*f(u[i]+1/3*k1,t[i]+1/3*dt)
k3 = dt*f([i]+2/3*k2,t[i]+2/3*dt)
u[i+1] = u[i]+1/4*k1+3/4*k2

return u, t

Question 3.3
Suggested solution:

class Heun3(ODESolver):
def advance(self):

u,f,t,k = self.u, self.f, self.t, self.k
dt = t[k+1]-t[k]
k1 = dt*f(u[k],t[k])
k2 = dt*f(u[k]+1/3*k1,t[k]+1/3*dt)
k3 = dt*f([k]+2/3*k2,t[k]+2/3*dt)
return u[k]+1/4*k1+3/4*k2

Question 3.4
Suggested solution:

def rhs(u,t):
a = 1.0; R = 50.0
return a*u*(1-u/R)

from ODESolver import *

solver = Heun3(rhs)
solver.set_initial_condition(0.1)
time = np.linspace(0,20,201)
u,t = solver.solve(time)

Question 3.5
Suggested solution:

def SEIS(S0,E0,p,q,r,T):
def rhs(u,t):

S,E,I = u
dS = -p(t)*S*I+r*I
dE = p(t)*S*I-q*E
dI = q*E-r*I

return [dS,dE,dI]

U0 = [S0,E0,0]

solver = ForwardEuler(rhs)
solver.set_initial_condition([U0])
time = np.linspace(0,100,501)
solver.solve(time)
return solver.t, solver.u[:,0], solver.u[:,1], solver.u[:,2]

def p(t):
return 0.0233

3

t, S, E, I = SEIS(4.0,0.2,p, 0.1, 0.1,100)

plt.plot(t,S,t,E,t,I)
plt.legend(['S','E','I'])
plt.show()

4

