i Forside

UNIVERSITY OF OSLO
Faculty of mathematics and natural sciences

Mid-term exam IN1900
Date: October 7, 2020
Attachments: None
Permitted aids: None

- The exam set has 19 multiple choice questions. The maximum score is 25 .
- All code in the question text is written in Python 3.
- Most of the questions have one correct answer. A correctly marked answer gives 1 point, wrong or missing answer gives 0 points. There are no negative points for wrong answers, so one should always mark an answer.
- Question 19 also has one correct answer, but here a correctly marked answer gives 2 points
- Question 15,17 and 18 have one or more correct answers. It is given 1 point for each correctly marked answer, -1 for incorrectly marked answers, and 0 for missing answers. The minimum score for each of these questions is 0 . One should always mark at least one answer.
- Question 7 and 8 have 4 answers each. It is given 0.5 points for each correct answer and 0 points for wrong or unmarked answers, maximum 2 points total for each of the two questions
- Since the maximum total score is 25 , one can calculate that there must a total of six correct alternatives for questions 15,17 and 18 . This assumption is correct, but the number of correct alternatives for each of the three questions will not be revealed.

1 Hva skrives ut?

What is printed in the terminal window when this code is run?

```
x=4
y=5
z = x
x=y+z
print(x, y, z)
Select one alternative:
O54
An error message
454
959
```


2 Hva skrives ut?

What is printed in the terminal window when the following code is run?

$a=[$

for i in range(11):
a.append(i*2)
print(len(a), a[-1])

Select one alternative:

- 1020

An error message

- 100

C 1120

3 Hva skrives ut?

What is printed in the terminal window when the following code is run?

```
s=0
fori in range(1,7,2):
    s += i
```

print(s)

Select one alternative:
o 16
9

An error message
22

4 Hva skrives ut?

What is printed in the terminal window when the following code is run?
$x=4$
$y=2$
$\mathrm{a}=$ True
b = ($x>4$ and $y<=2$)
print(a or b)

Select one alternative:
O True

An error message

True or False

False

5 Hva skrives ut?

What is printed in the terminal window when the following code is run?
import numpy as np
$\mathbf{w}=$ np.linspace $(0,3,31)$
print(w[2:-2:4])

Select one alternative:

© [0.2 0.61 .01 .41 .82 .2 2.6]
[0.20 .61 .01 .41 .82 .22 .6 3.]
[0.00 .40 .81 .21 .6 2.0]
© [0.1 0.50 .91 .31 .72 .12 .5$]$

6 Hva skrives ut?

What is printed in the terminal window when the following code is run?

```
def odd_sum(n):
    s=0
    for in range(1,n,2):
        s += i
    return s
def test_odd_sum():
    expected = 1 + 3+5
    computed = odd_sum(5)
    msg = f'expected {expected}, got {computed}'
    assert expected == computed, msg
```

test_odd_sum()

Select one alternative:

O Ingenting skrives ut.
Assertion error: expected 9 , got 4
NameError: name ' n ' is not defined
False, expected 9 , got 4

Maximum marks: 1

7 Boolske uttrykk

Indicate for each of the boolean expression if it gives the result True, False, or if it will result in an error message. 0.5 points for each correct answer, maximum 2 points.
Please match the values:

	False	Gives an error	True
not (False or True)	0	0	0
False or (False or True)	0	0	0
True == True	0	0	0
False and (False or True)	0	0	0

8 Lister og boolske uttrykk

Assume that the following code is run:

```
def list_adder(a,b):
    return [a_i + b_i for (a_i,b_i) in zip(a,b)]
```

$x=[0,1,2]$
$y=[3,4,5]$
$\mathrm{c}=$ list_adder(\mathbf{x}, y)
$z=x+y$

What are the values of the boolean expressions? 0.5 points for each correct answer, maximum 2 points. Please match the values:

$c==z i p(x, y)$	True	False	Gives an error	
$\operatorname{len}(c)<\operatorname{len}(z)$	0	0	0	
$c==z$		0	0	0
$c[0]==z[0]+z[\operatorname{len}(c)]$		0	0	0

9 Exceptions

The following code is saved in a file named "barometric0.py":

```
import sys
try:
    exit()
    exit()
p0 = 100
h0=8400
```

from math import exp
h = float(sys.argv[1])
except IndexError:
print("Missing input argument.")
except ValueError
print("The argument is not a number.")
print(p0*exp(-h/h0))

What is printed in the terminal window if the code is run in the following way?
Terminal> python barometric0.py 2469m

Select one alternative:
Value error: cannot convert 2469 m to float.
The argument is not a number.
Missing input argument
Index error: list index out of range

Exceptions

The following code is saved in a file named "barometric1.py":
import sys
from math import exp
def barometric($\mathrm{h}, \mathrm{p} 0=100, \mathrm{~h} 0=8400$):
return $\mathbf{p 0 *} \exp (-h / h 0)$
try:
h_vals = [float(h) for h in sys.argv[1:]]
except IndexError:
print("Incorrect number of input arguments.")
exit()
except ValueError:
print("The arguments are not numbers.")
exit()
result = []
for h in h_vals:
result.append((h,barometric(h)))
for h, p in result:
print(f'\{h:.0f\} \{p:.0f\}', end = ' ')

The argument "end = ' ' " to the print-function makes each print end with a space (' ') instead of of a linebreak.

What is printed in the terminal window if the code is run in the following way?
Terminal> python barometric1.py 24698848

Select one alternative:

- 246975884835

The arguments are not numbers.

- 24698848

Incorrect number of input arguments.
ValueError: cannot convert 24698848 to float.

11 Finn feilen i koden

In what line will this code stop and print an error message?
import numpy as np
$x=n p$.linspace $(0,2,21)$
$y=n p . z e r o s(\operatorname{len}(x))$
$\mathrm{f}=$ lambda x : $\mathrm{x}^{* * 2-4}$
for $\mathbf{x}_{\text {_ }}$ in \mathbf{x}
y.append(f(x_))

Select one alternative:
for x_{-}in x :
y.append(f(x_))
$\mathrm{f}=$ lambda $\mathrm{x}: \mathrm{x}^{* *} 2-4$
$y=n p . z e r o s(\operatorname{len}(x))$

12 Hvilket funksjonskall?

The function bisection(f,a,b,tol) implements the bisection method to find a solution of the equation $f(x)=0$ in the interval $[a, b]$:

```
def bisection(f,a,b,tol= 1e-3):
    if f(a)*f(b)>0
        print(f'No roots or more than one root in [{a},{b}]')
        return
    m=(a+b)/2
    while abs(f(m)) > tol:
        if f(a)*f(m) < 0:
            b=m
        else:
            a=m
        m=(a+b)/2
```

 return \(m\)
 We want to use the function to find a solution of the equation
$x^{3}-4 x-3=0$
in the interval $2<x<3$.

Which function call is correct?
Select one alternative:
osol $=\operatorname{bisection}\left(f=x^{* *} 3-4^{*} x-3,2,3\right)$
sol $=$ bisection(lambda $\left.x: x^{* *} 3-4^{*} x-3,2,3\right)$
sol $=$ bisection $\left(f(x)=x^{* *} 3-4^{*} x-3,2,3\right)$
sol $=$ bisection $\left(x^{* *} 3-4^{*} x-3,2,3\right)$

13 Hvilken linje mangler?

The function distance(p1, p2) calculates the distance between two points p1 and p2. Which line is missing for the code below to run without errors?
from math import sqrt
def distance(p1, p2):
\#\# Missing line goes here \#\#
return sqrt((x2-x1)**2 + (y2-y1)**2)
def test_distance():
$\mathrm{p} 1=(0,0)$
p2 $=(4,3)$
expected $=5$
computed = distance(p1,p2)
assert expected $==$ computed
test_distance()

Which line is missing?
Select one alternative:
$\mathrm{x} 1, \mathrm{y} 1=\mathrm{p} 1 ; \mathrm{x} 2, \mathrm{y} 2=\mathrm{p} 2$
$x, y=p 1, p 2$
$\mathrm{x} 1=\mathrm{p} 1 ; \mathrm{x} 2=\mathrm{p} 2$
$x=(p 1[0], p 2[0]) ; y=(p 1[1], p 2[1])$

14 Hvilken linje mangler?

Which line is missing in the function count(dna,base) for the code below to run without errors?

```
def count(dna, base):
    i = 0 # counter
    ## missing line goes here##
        if dna[j] == base:
        i += 1
    return i
def test_count():
    dna = 'ATTTGCGGTCCAAA'
    expected = 4
    success = count(dna, 'A') == expected
    msg = 'count returns the wrong number'
    assert success, msg
test_count()
Which line is missing?
Select one alternative:
for i in range(len(dna)):
for j in range(len(dna)):
for base in dna:
O for j in dna:
```


15 Hvilken linje mangler?

The function below returns the value of the mathematical expression $v_{0} t-(1 / 2) g t^{2}$, as well as the derivative of the expression.
def $\mathbf{y f u n c}(\mathbf{t}, \mathrm{v} 0=5, \mathrm{~g}=9.81$):
$y=v 0^{*} t-0.5^{*} g^{*} t^{* *} 2$
dydt $=\mathrm{vO}$ - $\mathrm{g}^{*} \mathrm{t}$
return y, dydt

We want to plot the function with t in the interval from 0 to $10, \mathrm{v} 0=10$ and $\mathrm{g}=9.81$. Which line is missing to make the code below work?
import numpy as np
import matplotlib.pyplot as plt
$t=n p$. linspace $(0,10,101)$
\#\#Missing line goes here \#\#
plt.plot(t,y)
plt.show()

Which line must be insterted? One or more of the alternatives can be correct.
Select one or more alternatives:
$\square \mathrm{y}=\mathrm{yfunc}(\mathrm{t}, \mathrm{v} 0=10)$

- $\mathrm{y}, \mathrm{dydt}=\mathrm{yfunc}(\mathrm{t})$
$\square \mathrm{y}, \mathrm{dy}=\mathrm{yfunc}(\mathrm{t}, 10)$
■ $\mathrm{y}=\mathrm{yfunc}(\mathrm{t}, \mathrm{v} 0=10, \mathrm{~g}=9.81)$

16 Hva skrives ut?

What is printed in the terminal when the following code is run?

```
for i in range(2,5):
    print(i,end=' ')
    for j in range(i-1):
        print(j,end=' ')
```

The argument "end = ' ' " to the print function makes each print end with a space (' ') instead of a linebreak.
Select one alternative:

- 203014012

O 234234

201301240123
0 102013012

17 Beregning av sum

We want to compute the sum
$\sum_{k=0}^{N} \frac{x^{k}}{k!}$
for $\mathrm{N}=4$ and $\mathrm{x}=0.5$.

Here are some alternative codes to compute the sum. Which alternatives are correct? You can assume that the following three lines have been run before each alternative:

from math import factorial

$\mathrm{N}=4$

$\mathrm{x}=0.5$

```
Alternative A:
\(s=\operatorname{sum}\left(\left[x^{* *} /\right.\right.\) /factorial \((k)\) for \(k\) in range \(\left.\left.(N+1)\right]\right)\)
```

```
Alternative B:
s=0
for k in range(N):
    term = x**k/factorial(k)
    s=s + term
```

Alternative C:
$s=0 ; i=0$
while $i<=\mathbf{N}$:
s += $\mathbf{x}^{* *} /$ /factorial(i)
i $+=1$
Alternative D:
$\mathrm{s}=0$
for k in range $(\mathbf{N}+1)$:
$\mathbf{s + =} \mathbf{x}^{* *}$ k/factorial(k)

Which alternatives are correct?

Select one or more alternatives:

\square Alternative D is correct.
\square Alternative A is correct.

- Alternative C is correct.

Alternative B is correct.

18 Hvilken funksjon?

We want to implement a function that takes a list as input and returns the largest element in the list. The elements in the list are numbers, which can be positive or negative, and we want to be able to use the function in the following way:

```
>>> print(my_max([1,4,5,-1]))
```

5
>>> print(my_max([-1,-2,-5]))

Which implementations of the function my_max(a) are correct?

```
Alternativ A:
def my_max(a):
    max_found = a[0]
    for i in range(1,len(a)):
    if a[i] > max_found:
        max_found =a[i]
    return max_found
```

Alternativ B:
def my_max(a):
max_found $=0$
for e in a:
if $e>$ max_found:
max_found =e
return max_found
Alternativ C:
def my_max(a):
max_found $=a[0]$
$\mathrm{i}=0$
while i < len(a):
if $a[i]>=$ max_found:
max_found $=a[i]$
i $+=1$
return max found
Alternativ D:
def my_max(a):
for i in range(1, len(a)):
if $a[i]>a[i-1]$:
max_found $=a[i]$
else:
max_found =a[i-1]
return max_found

Select one or more alternatives:

- Alternativ C er riktig
- Alternativ D er riktig
\square Alternativ A er riktig
\square Alternativ B er riktig

19 Hva skrives ut?

What is printed in the terminal when the following code is run? Two points for the correct answer.

```
def freq_lists(dna_list):
    \(\mathrm{n}=\) len(dna_list[0])
    \(A=[0]^{*} n\)
    \(T=[0]^{*} n\)
    \(\mathrm{G}=[0]^{*} \mathrm{n}\)
    \(C=[0]^{*} n\)
    for dna in dna_list:
        index = 0
        for base in dna:
            if base == ' A ':
                A[index] += 1
            elif base == 'C':
                    C[index] += 1
            elif base \(==\) ' \(G\) ':
                    G[index] +=1
            elif base \(==\) ' T ':
                    T[index] += 1
            index \(+=1\)
    return A, C, G, T
```

dna_list = ['TCGCT', 'GGACT', 'GCTGC']

A, C, G, T = freq_lists(dna_list) print(G)

Hint: a string variable behaves almost approximately like a list when used in a for loop. For instance, the loop for \mathbf{c} in "IN1900":
print(c,end= ' ')
will print the following:
IN 1900

What is printed by the code above?
Select one alternative:
[0,1,2,1,0]
['G', 'G', 'G', 'G', 0]
['T', 'C','G','T']
[2, 1, 1, 1, 0

