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Introduction

This is a compulsory home assignment for all students in IN1900 in the fall of 2023.
The first announcement of this assignment referred to Problems E.1, E.2, E.3, E.5
and E.7 in the document titled ”Exercises for IN1900” (also called ”oppgaveheftet”).
Unfortunately, there were some typographical errors in those problems and you should
therefore ignore those problems and instead relate only to the text below when you
solve this home assignment. The problems are the same as before, but errors have been
corrected and more details are provided.

Your solution must satisfy the following three requirements in order to be considered:

• It must be submitted through Devilry before 17.00 on 11 November

• It must satisfy the requirements given in the lecture on 31 October. Note: this
requirement only concerns Problem 5 and only the class called Cooling and the
function called estimate h.

• It must be your own solution, and you must be able to explain it to a teacher if
so requested.

Preparing for the assignment

As a preparation for this assignment, we strongly recommend that you follow the lecture
on 2 November to learn the basics of ODE solving in Python. If you cannot attend
the lecture, then watch the video from the lecture or go through the slides. We next
recommend that you read the document Solving Ordinary Differential Equations in
Python and look at the files on the accompanying web site.
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ODE’s

The general form of an ODE is

u′(t) = f(t, u(t)) (1)

where u(t) is an unknown function and where f(t, u) is a known function. We also
know the value of the unknown function u(t) at t = 0, i.e. we have an initial condition
u(0) = u0. The formula above is a very convenient way of explaining what an ODE
looks like in general; however, in concrete equations the function f(t, u) is usually only
implicitly given. For example, a real equation might look like

u′(t) = t+ u(t) (2)

and there is no mention of any function f(t, u) there. However, we easily see that if
we let f(t, u) = t + u the equations (1) and (2) are identical. Another example is the
equation

u′(t) = u(t)(1− u(t)) (3)

Here, if we let f(t, u) = u(1− u) the equations (1) and (3) are identical. Notice that in
this case, the value of f(t, u) does not depend on t. Nevertheless, we should still write
the function as f(t, u), i.e. with two input variables.

Your task

In this assignment you are going to solve some ordinary differential equations (ODE’s)
in Python. It is not particularly hard to write from scratch a Python program that
solves ODE’s. In fact, writing such a program is the main topic of the lecture on 2
November and the above mentioned document Solving Ordinary Differential Equations
in Python. However, this is not what you are going to do below. Instead, your task is to
use already existing ”equation solvers” (described in detail in the above document) to
solve some concrete equations. Thus your answers will consist of a mixture of code from
Solving Ordinary Differential Equations in Python and code that you write yourself in
order to make use of the equation solvers and plot the results. You can download all
relevant code from the above book here. Now to the problems!

Problem 1: Solve a simple ODE with function-based code

This exercise aims to solve the ODE problem u(t)−5u′(t) = 0 with the initial condition
u(0) = 0.1 and for t ∈ [0, 20].
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a) Identify the mathematical function f(t, u) in the generic ODE form u′ = f(t, u), and
implement it as a Python function.

b) Use the forward euler function from Section 1.1 of the document Solving Ordinary
Differential Equations in Python to compute a numerical solution of the ODE problem.
Use a time step of ∆t = 5.

c) Plot together the numerical solution and the exact solution u(t) = 0.1e0.2t.

d) Try successively smaller ∆t values and demonstrate visually that the numerical so-
lution approaches the exact solution.

Filename: simple ODE func.py

Problem 2: Solve a simple ODE with class-based code

Solve the same ODE problem as in Problem 1, but this time use the class ForwardEuler
described in Section 1.4 of the document Solving Ordinary Differential Equations in
Python, and implement the right-hand side function f(t, u) as a class.

Filename: simple ODE class.py

Problem 3: Solve a simple ODE with the ODEsolver hierarchy

Solve the same ODE problem as in Problem 1, but this time use the class ForwardEuler
in the ODESolver hierarchy from Section 2.2 of the document Solving Ordinary Dif-
ferential Equations in Python. Implement the right-hand side function f(t, u) as a class,
just as you did in Problem 2.

Filename: simple ODE class ODESolver.py

Problem 4: Compare ODE solving methods

There are several methods for solving ODEs in the ODESolver hierarchy described in
Section 2.2 of the document Solving Ordinary Differential Equations in Python. One
of them is called the Explicit Midpoint method and is implemented by the class Ex-
plicitMidpoint. Suppose we have the ODE u′(t) = f(t, u(t)) = cos t − t sin t with
initial condition u(0) = 0. Solve this equation with the Explicit Midpoint method and
the Forward Euler method and plot the solutions together with the analytical solution
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u(t) = t cos t. Use 20 time steps on the interval t ∈ [0, 4π]. Are the results obtained
with the two methods similar?

Filename: Midpoint.py

Problem 5: Solve an ODE describing cooling of coffee

We all know that a hot object placed in a colder environment will cool down over time
(unless of course the hot object generates heat, such as an oven!). However, not everyone
knows how fast the hot object cools down. This is described by Newton’s law of cooling.
Suppose T (t) is the temperature of the object at time t and that the environment has
constant temperature Ts. Then the law says that the temperature changes according to
the ODE

T ′(t) = −h(T (t)− Ts) (4)

The parameter h (with unit s−1, i.e. ”per second”) is an experimentally determined
constant (heat transfer coefficient) describing the efficiency (speed) of the heat exchange
with the environment. In this exercise, we will model the cooling of freshly brewed coffee.
First, we must find a measure of h. Suppose we have measured T (0) and T (t1) for some
time point t1 > 0. We can then use a Forward Euler approximation of T ′(t) with one
time step of length t,

T (t1)− T (0)

t1
= −h(T (0)− Ts) (5)

to make the estimate

h =
T (t1)− T (0)

t1(Ts − T (0))
. (6)

a) Write a class Cooling containing the parameters h and Ts as data attributes (in-
stance variables). Define a constructor in the class that sets these parameters. Imple-
ment the right hand side of the ODE as a call (self, t, T) method (if you prefer, you
can call the last parameter to this method u rather than T so the method head becomes
call (self, t, u) which is more in line with the notation used in the lectures).

b) Create a stand-alone function (i.e. a function that is not part of the above class)
called estimate h(T0, T1, t1, Ts) that returns an estimate of the parameter h,
based on the temperature T0 at time 0, the temperature T1 at time point t1, and the
temperature of the environment Ts. Use the formula in (6) to calculate the estimate.

c) Implement a test function test Cooling() for testing that the class Cooling works.
The test function should verify that the call method returns the correct results for
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given values of the arguments T and t.

d) Suppose the temperature of freshly brewed coffee is 95◦ C at time 0 (when it is poured
into your cup) and 92◦ C after 15 seconds, in a room with temperature Ts. Solve the
ODE numerically by a method of your choice from the ODESolver hierarchy described
in Section 2.2 of Solving Ordinary Differential Equations in Python, for Ts = 20 and
Ts = 25. Plot the two solutions in the same plot. The time interval where you solve the
equations should be chosen to be long enough for the solutions to be ”almost flat” and
close to the room temperature Ts.

Filename: coffee.py
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