
Modeling the spread of a
pandemic

Final project in IN1900, fall 2023
November 9, 2023



About this project
Here are some useful hints on how to solve this project. Read this carefully
before you start working:

1. Solve the problems in the order they are presented. One problem builds
on the previous one, so they have to be solved in the correct order.

2. Use the version of the ODESolver class found here:
https://sundnes.github.io/solving_odes_in_python/. There are
multiple versions of the ODESolver class found on previous years’ IN1900
pages and in the source code for Langtangen’s book. Since these versions are
almost identical but behave slightly differently, you should avoid confusion
by using the version specified here.

3. Since the problems build on each other, the project becomes easier if you
know that each component works exactly as it should. It is useful to spend
some time making sure that everything works before moving on to the
next phase of the project.

4. If you want feedback on your project, the deadline for handing it in is
November 17 at 16.59. The program files should be uploaded to devilry
as usual, and you should include an example of how you ran each file
("kjøreeksempel") in the usual way. It is not necessary to include plots. If
any of your programs do not work properly, and you are not able to solve
the problem, you should still include a "kjøreeksempel" that includes the
error message you got and/or some comments about what went wrong.

5. As always, collaboration is encouraged. Since this is not a mandatory
project, it is perfectly ok to work together on the same files. However,
if two people submit identical files, please include a comment with this
information, to avoid double work in reviewing the project and providing
feedback.

6. Since the project is not mandatory, but very relevant for the exam, you
choose yourself how many problems you want to solve and submit. Problem
1 is intended as a simple "warm-up" exercise, and everyone is strongly
encouraged to solve at least problems 1, 2 and 3 to be prepared for the
exam.

1



Modeling a pandemic with
ODEs and Python

Problem 1. The SEEIIR model
In this exercise we will implement an ODE-based version of the SEEIIR model
used by the Norwegian Institute of Public Health to describe the spread of
the Covid19 pandemic. The model is described in Chapter 5 of the lecture
notes Solving Ordinary Differential Equations in Python1. The model has six
categories, S, E1, E2, I, Ia, and R, and is referred to as a SEEIIR model in the
lecture notes.

a) Copy the entire class SEEIIR from page 92-93 of the lecture notes, or
directly from the source code provided with the notes2. Implement a test
function test_SEEIIR() to verify that the call function of the class works
correctly. Inside the test function, you can create an instance of the class using
the following parameter values:
beta=0.4; r_ia =0.1; r_e2=1.25
lmbda_1=0.33; lmbda_2=0.5; p_a=0.4; mu=0.2.
The call the instance with arguments t=0 and u=[1,1,1,1,1,1], and verify
that the output is a list with these values:
[-0.156666666666, -0.1733333333333, -0.302, 0.3, -0.068, 0.4].
Remember to compare the values with a tolerance (for instance tol=1e-10)
since the outputs are floats.

b) Make a function solve_SEEIIR(T,dt,S_0,E2_0) for solving the system
of differential equations. Choose a solver from the ODESolver class hierarchy.
The equations should be solved from time 0 to T, where T and the time step
dt are given as arguments to the function. The other arguments (S_0,E2_0)
are initial conditions for the S and E2 categories. All other initial conditions
are set to zero, so the complete initial condition for the ODE system should be
[S_0, 0, E2_0, 0, 0, 0]. The function should return arrays t,u containing
the solution and the time.

c) Make a function plot_SEEIIR(t,u) for visualizing the components S(t), I(t),
Ia(t), and R(t) in the same plot. These are often the most interesting variables
in epidemiology. Include a legend with labels for each curve. Finally, call the

1https://sundnes.github.io/solving_odes_in_python/
2https://github.com/sundnes/solving_odes_in_python/blob/master/docs/src/chapter5/SEEIIR.py

2



0 20 40 60 80 100 120 140

0

1

2

3

4

5
1e6

S
I
Ia
R

Figure 1: Solution of the SEEIIR model. The plot shows the dynamics of the
categories S, I, Ia,R.

functions from a)-b) and the new plot function to solve the SEEIIR model
for initial values S_0=5e6, E2_0=100, all other initial values zero, T=150 and
dt=1.0 (the time is given in days). The resulting plot should be similar to the
one in Figure 1.

Filename: SEEIIR0.py

3



Problem 2. Introduce classes in the SEIR model
In this exercise we will extend the class from Problem 1 to support more
advanced functionality such as time dependent model parameters. We will also
introduce a new solver class. To simplify the notation and save a bit of typing
we will from hereon refer to it as a SEIR model even though we still consider
two distinct E- and two distinct I-categories. We will create a module called
SEIR.py, which includes two classes:

• The class ProblemSEIR which defines the ODE model.

• A solver class SolverSEIR to solve the SEIR system of ODEs.

a) Write the class ProblemSEIR, which has four methods; __init__,
set_initial_condition, get_population, and __call__.

The constructor should take as arguments all the model parameters beta,
r_ia, r_e2, .... The parameter beta in the SEIR model can be constant or
function of time. The implementation of ProblemSEIR should be such that beta
can be given either as a constant or as a Python function. The constructor can
look something like this:
def __init__(self, beta, r_ia = 0.1, r_e2=1.25, \

lmbda_1=0.33, lmbda_2=0.5, p_a=0.4, mu=0.2):

if isinstance(beta, (float, int)): # is it a number?
self.beta = lambda t: beta # wrap as function

elif callable(beta):
self.beta = beta

...

The method set_initial_condition(self, S_0,E2_0) shall create and
store a list self.initial_condition containing the initial values of S,E1, E2, I, Ia,
and R (in this particular order). The initial values for S and E2 are passed as
arguments to the method. All other initial conditions can be set to zero.

The method get_population(self) should simply return the value of the
population of the region, which is equal to the sum of all the initial conditions
(i.e., S0 + E20 since the others are zero).

Finally, write a special method __call__(self, t, u) which returns the
right hand side of the ODE system defining the SEIR model, just as the class in
Problem 1. Remember that the attribute self.beta is now a function of time,
and it needs to be treated as such inside the __call__ method.

b) Write a test function test_ProblemSEIR() to verify that the class works
correctly. Inside the test function you create an instance of the class and call
the set_initial_condition method with suitable arguments. Then include
three assert statements to verify that the class behaves as expected:

1. Assert that the attribute initial_condition has the expected value

2. Assert that the method get_population returns the expected result.

3. Use the same test as for the SEIR function in Problem 1 to assert that
that the call method works.

All these tests can be put inside the same test function.

4



c) Now we will create a class SolverSEIR with three methods; a constructor, a
method solve(self, method), and a method plot(self,states) for plotting
the solution. The constructor should take the arguments problem (an instance
of class ProblemSEIR), T (the final time) and dt, and store them as attributes.

The solve(self, method) shall solve the SEIR system of ODEs by a
method of your choice from the ODESolver. Use the following sketch for this
method:

def solve(self, method=RungeKutta4):
solver = method(self.problem)
solver.set_initial_condition(...)
"""
Insert code here to calculate
the number of time steps from T and dt
"""
t = np.linspace(...)
t, u = solver.solve(t)

Finally, the plot(self,states) shall take a list of strings as input, which
specifies the specific variables we want to plot. For instance, the call solver.plot([’I’,’Ia’,’R’])
should plot the variables I, Ia, and R.

Add the following code at the bottom of the file:

if __name__ == "__main__":
test_ProblemSEIR()

S_0 = 5e6
E2_0 = 100
problem = ProblemSEIR(beta=0.4)
problem.set_initial_condition(S_0,E2_0)
solver = SolverSEIR(problem,T=150,dt=1.0)
solver.solve()
solver.plot([’S’,’I’,’Ia’,’R’])

The test function should of course pass with no output, and remaining lines
should result in a plot that looks exactly like the one you got in Problem 1

Filename: SEIR.py

5



Problem 3. Simulate a pandemic outbreak
In this exercise we will use the classes ProblemSEIR and SolverSEIR from
Problem 2 to simulate possible scenarios of the Covid19 pandemic in Norway.
The code should be written in a separate file outbreak.py, which should import
from SEIR.py.

a) Create a function for simulating the Covid19 outbreak in Norway. The
function should look like this

def outbreak_Norway(beta, num_days, dt):
...

and should call the methods of the ProblemSEIR and SolverSEIR classes to
construct and solve the problem, and then plot the two variables I and Ia.
Use the same initial conditions as in the previous problems. Call the function
using beta=0.33, num_days =150, dt =1.0. Find the peak of the I category,
either by a visual inspection of the plot or by a suitable call to the builtin
max function. Estimates from the early phase of the pandemic indicated that
about 20% of the infected cases would need hospital care, and 5% would need a
mechanical ventilator. There are around 700 ventilators in Norwegian hospitals.
How does this number compare to your estimate?

b) Until now we have assumed that β is constant. The β parameter describes
the probability that a contagious person (in E2, I, Ia) meets and infects a
susceptible person. In reality, β depends on numerous factors, including the
infectiousness of the disease itself, immunity of the population resulting from
vaccination and previous infections, as well as the general behaviour of the
population. We will now extend our model to use a piecewise constant β.

Epidemiologists often refer to the reproduction number R of an epidemic,
which is the average number of new persons that an infected person infects. The
critical number is R = 1, since if R < 1 the epidemic will decline, while for R > 1
it will grow exponentially. In the simplest models, the relationship between R
and β is R = βτ , where τ is the mean duration of the infectious period. In our
model, which has multiple infectious categories, we have

R = re2β/λ2 + riaβ/µ+ β/µ,

since the mean durations of the E2 period is 1/λ2 and the mean duration of
both I and Ia is 1/µ. The choice of β = 0.33 gives R ≈ 2.62, which is the value
used by the Institute of Public Health (FHI) to model the early stage of the
outbreak in Norway, from mid February to mid March 2020. As we all know,
severe restrictions on travel and social interactions were introduced in Norway on
March 12, 2020. These restrictions substantially reduced the number of contacts
between infected and susceptible persons, which is represented in the model as a
reduction in the parameter β.

Write a function beta(t) which represents the piecewise constant β:

β(t) =
{

0.33 for t < 30
0.083 for t > 30

Call the function outbreak_Norway from a) with the new piecewise constant β.
What happens? How does the plot compare to the one you got in a)?

6



Filename: outbreak.py

7



Problem 4. Managing a pandemic
As we are all too aware, the Covid19 pandemic has lasted quite a while and
has come in multiple waves. Numerous mutations of the virus affected its
infectiousness, and frequent changes in the restrictions on travel and social
interactions also impacted the spread of the disease. In the models run by FHI
to understand the pandemic and predict incoming waves, these changes were
reflected as piecewise constant values of the β parameter, similar to the model
implemented in the previous problem, but with many more steps. The file
beta_values.txt includes a list of suitable β values.3 The values are based on
the parameter used by FHI in their real-world pandemic models, but slightly
adapted to fit better in our model.

Implement a piecewise constant β as a class Beta. The class should have (at
least) three methods:

• A constructor __init__(self,filename), which takes a file on the format
of the beta_values.txt as argument, do the necessary processing of the
file, and store the β values and time intervals in suitable data structures.
This can be done in multiple ways, but one option is to store two lists of
equal lenghts; one containing the β values and one containing the start
date for the interval when each β value applies. (With this approach you
can ignore the end dates for each interval). We can assume that t = 0 in
our model corresponds to the date 15.02.2020, so the list of "dates" can be
integers counting from that date. These lists can then be used as lookup
tables inside the __call__ method to evaluate β.
For converting from the dates in the file to an integer counting from the
first date, the datetime module is useful. The most relevant parts of
the datetime module are two classes called date and timedelta, so a
suitable import statement can be

from datetime import date, timedelta

It may also be useful to implement a method to convert from the date
format used in the file to a date object. Such a method may, for instance,
look like this:

str2date(self, date_str):
#convert a date string on the format dd.mm.yyyy
#to a datetime object
day, month, year = (int(n) for n in date_str.split(’.’))
return date(year,month,day)

If you have two dates represented as date objects, they can be substracted
to yield a timedelta object, and the number of days can be accessed as an
attribute of the timedelta class named days. Here’s a short example:

#date0 and date1 are instances of class datetime.date
delta = date1-date0
n_days = delta.days

3The file can be downloaded from
https://www.uio.no/studier/emner/matnat/ifi/IN1900/h22/ressurser/live_programmering/beta_values.txt.

8



Since the processing of the input file will require quite a few lines, the
constructor can end up a bit long and messy. It may be useful to structure
the code a bit by defining one or more methods to perform the file reading
and processing, and then calling the method(s) from the constructor.

• A __call__(self,t) method, which takes the time as input, and return
the β value for the give day. If you created two lists in the constructor, as
suggested above, a suitable approach will be to loop through these lists
and add an appropriate if test to return the correct value of β. There are
many other ways this can be done, and some are probably more elegant,
but this is a simple approach that works.

• A method named plot(self,T) which takes a time point T as argument,
and plots the β function for t between 0 and T.
Hint 1: In order for the plot to capture the jumps and actually look like a
discontinuous function, you need to use quite a few t values. For instance,
using t =np.linspace(0,T,1000) should make the plot look fairly good.
Hint 2: If your __call__ method contains one or more if tests, the usual
approach of sending the entire t array to the function will not work. A for
loop or a call to np.vectorize may then be needed to compute the array
of β values.

If the class defined is implemented correctly, the following test block should
work. Add it to the bottom of your file.

if __name__ == "__main__":
from outbreak import outbreak_Norway
beta = Beta(’beta_values.txt’)
beta.plot(1000)
outbreak_Norway(beta,1000,1)

The β plot, which shows up first, should look similar to the plot in Figure 2. It
is not important that the plot looks exactly the same, but it should be similar.
What does the final plot of the solution look like? (The plot may look less
interesting than you expect, and does not properly capture the multiple waves
of infections observed in Norway.)

Filename: lockdown.py

9



0 200 400 600 800 1000

0.1

0.2

0.3

0.4

0.5

0.6

Figure 2: The piecewise constant β parameter read from file.

Problem 5. Extending the model
The plots you got in Problem 4 probably did not look too interesting, and did
not really capture the dynamics of the Covid19 pandemic in Norway. There may
be several reasons for why the model fails, but one possible explanation is that
there is no import of infected people. After the first wave has been crushed by
the lockdown, the number of infected persons is too low to start off new waves,
even if the reproduction number R > 1 in some time intervals. The goal for this
last part of the project is to modify the class from Problem 2 to account for
import of infected people. There are several ways to include this in the model,
and we shall adopt the simple approach of adding a source term to the equation
for the E2 category. The original equation reads

dE2

dt
= λ1(1 − pa)E1 − λ2E2,

and we may simply modify this to
dE2

dt
= λ1(1 − pa)E1 − λ2E2 + Σ,

to model an influx of Σ people in the E2 category per day. While this simple
model is not the most realistic, it is suitable for illustrating the impact of infection
imports.

Implement a sub-class SEIRimport(ProblemSEIR) of the class you created
in Problem 2. Reuse as much code as possible from the base class. The new
class needs one additional parameter (sigma), so the constructor needs to be
modified. The __call__ method also needs to be modified. You can either copy
the __call__ method code directly into the new class and modify it there, or
call the method from the base class and then modify the resulting list.

Copy the function outbreak_Norway from Problem 3, call it for instance
outbreak_Norway, and modify it to use the class SEIRimport instead of

10



ProblemSEIR. Repeat the last steps from Problem 4 using the modified model
with Σ = 10. Does the plot change from Problem 4?

Filename: covid19.py

11


