
UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Examination in: INF1100 — Introduction to
programming with scientific
applications

Day of examination: Tuesday, December 16, 2008

Examination hours: 14.30 – 17.30.

This examination set consists of 7 pages.

Appendices: None.

Permitted aids: None.

Make sure that your copy of the examination set is
complete before you start solving the problems.

• Read through the complete exercise set before you start solving the
individual exercises. If you miss information in an exercise, you can
provide your own reasonable assumptions as long as you explain them
in detail.

• The maximum possible score on the exam is 75 points. There are 8
exercises, and the number of points for each exercise is given in the
heading.

Exercise 1 (5 points)

Write a function even(N) that returns a list of all even numbers
2, 4, 6, . . . , N .

(Continued on page 2.)

Examination in INF1100, Tuesday, December 16, 2008 Page 2

Exercise 2 (10 points)

A file with name mydat.txt contains two columns of numbers, corresponding
to x and y coordinates on a curve. The start of the file looks as this:

-1.000000 -0.761594

-0.959184 -0.743913

-0.918367 -0.725124

-0.877551 -0.705190

Make a program that can plot the y coordinates in the second column against
the x coordinates in the first column. There are no empty lines in the file.

Exercise 3 (10 points)

The formula for a line going through the points (x0, y0) and (x1, y1) takes the
form

y = y0 +
y1 − y0
x1 − x0

(x− x0) . (1)

The purpose of this exercise is to write a class Line that can be used as
follows in an interactive Python session:

>>> from Line import Line

>>> point1 = (0,-1)

>>> point2 = (2,4)

>>> line = Line(point1, point2)

>>> line(0) # compute y corresponding to x=0

-1

>>> line(1)

1.5

That is, the constructor takes two points on the line and a call method
can compute the y value corresponding to a given x. The file containing
class Line must be written so that it can be used as a module. Write the
complete module file. The module file should have a test block containing
the test from the interactive session above.

Exercise 4 (10 points)

Consider the following game. You pay 1 unit of money to throw 16 dice.
If the sum of the dice is larger than 70, you win 75 units of money. Make
a computer program that can help you decide whether you will win or lose
money in the long run by playing this game.

(Continued on page 3.)

Examination in INF1100, Tuesday, December 16, 2008 Page 3

Exercise 5 (10 points)

Integrals of the form ∫ T

0

G(t)dt

can be approximated by the Monte Carlo integration method:

∫ T

0

G(t)dt ≈
T

n+ 1

n∑
p=0

G(tp), (2)

where t0, t1, . . . , tn are random numbers uniformly distributed in the interval
[0, T].

Write a function MonteCarlo(G, T, n) that returns an approximation to
the integral above using the method (2). The mathematical function G(t)
is assumed to be implemented in a Python function G(t). Use the uniform
function in the built-in Python module random to draw the random numbers.

Write a main program that calls the MonteCarlo function for computing

∫ 2π

0

sin3 t dt

with n = 100000.

Exercise 6 (10 points)

The Midpoint method for solving an ordinary differential equation

dy

dt
= f(y, t), y(0) = Y

consists in first taking a Forward Euler step:

y1 = y0 +∆tf(y0, 0),

where y0 = Y is the initial condition at t = 0 and ∆t is the time step length.
The next steps in the Midpoint method are computed by the formula

yk+1 = yk−1 + 2∆tf(yk, tk), k = 1, 2, 3, . . .

yk is a short notation for y(tk) and tk = k∆t.

The purpose of the exercise is to write and test a function midpoint(f, Y,

N, dt) that returns the solution of an ordinary differential equation using
the Midpoint method. The right-hand side function f(y, t) of the differential
equation is represented by a Python function f(y, t); Y is the initial value
(Y); N is the number of steps to be calculated; and dt is the time step
length (∆t). The midpoint function should return two arrays: the solution
(y0, y1, . . . , yN) and the corresponding time values (t0, t1, . . . , tN).

(Continued on page 4.)

Examination in INF1100, Tuesday, December 16, 2008 Page 4

Exemplify the use of the midpoint function by solving the differential equa-
tion

dy

dt
= −Ay, y(0) = 1,

where A is a positive constant to be specified on the command line. Read
also N and ∆t from the command line. Visualize the numerical solution and
the exact solution (y(t) = e−At) in the same plot.

Exercise 7 (10 points)

The purpose of this exercise is to implement the Midpoint method defined
in the previous exercise in a class hierarchy representing numerical methods
for ordinary differential equations. The superclass in this hierarchy, called
ODESolver, stores f(y, t) and ∆t in the constructor, and provides a method
initcond for setting the initial condition and a method integrate for car-
rying out N steps in the solution method. Here is the complete code of class
ODESolver:

(Continued on page 5.)

Examination in INF1100, Tuesday, December 16, 2008 Page 5

import numpy

class ODESolver:

"""

Superclass for numerical methods solving ODEs

dy/dt = f(y, t)

Attributes:

t: array of time values

y: array of solution values (at time points t)

k: step number of the most recently computed solution

f: callable object implementing f(y, t)

dt: time step (assumed constant)

"""

def __init__(self, f, dt):

self.f = f

self.dt = dt

def method(self):

"""Advance solution one time step."""

raise NotImplementedError

def initcond(self, Y):

self.y = [] # y[k] is solution at time t[k]

self.t = [] # time levels in the solution process

self.y.append(Y)

self.t.append(0)

self.k = 0 # time level counter

def integrate(self, N):

"""Advance solution N steps forward in time."""

for i in range(N):

ynew = self.method()

self.y.append(ynew)

tnew = self.t[-1] + self.dt

self.t.append(tnew)

self.k += 1

return numpy.array(self.y), numpy.array(self.t)

Subclasses implement various numerical methods by providing their specific
version of the method called method, which advances the solution one step
forward in time. For example, the Forward Euler scheme may be imple-
mented in a separate file as

(Continued on page 6.)

Examination in INF1100, Tuesday, December 16, 2008 Page 6

from ODESolver import ODESolver

class ForwardEuler(ODESolver):

def method(self):

y, dt, f, k, t = \

self.y, self.dt, self.f, self.k, self.t[-1]

ynew = y[k] + dt*f(y[k], t)

return ynew

Implement the Midpoint scheme from the previous exercise in a subclass
Midpoint. Exemplify the use of the Midpoint class by solving the same
problem as in the previous exercise, i.e., dy/dt = −Ay, y(0) = 1. Set A = 1,
∆t = 0.1 and N = 50. Print the computed yN value and the exact value
e−AN∆t.

Exercise 8 (10 points)

The classes ODESolver, ForwardEuler, and Midpoint from the previous ex-
ercise were developed with scalar ordinary differential equations in mind (not
several (an array of) functions). However, they may also work for systems
of differential equations provided that the initial condition Y is an array and
that f(y, t) returns an array. We can either demand the user to ensure this,
or we can modify class ODESolver to convert Y and f to arrays automatically.
Following the latter idea, we replace the statement

self.y.append(Y)

in the initcond method by

self.y.append(numpy.asarray(Y))

The numpy.asarray function converts its argument to an array if it is not
already an array. We also replace the simple assignment

self.f = f

in the constructor of class ODESolver by

self.user_f = f

self.f = self.f_array_return

where f array return is a new method in class ODESolver that calls the
user’s f function, stored in self.f, and then converts the return value to an
array:

def f_array_return(self, y, t):

rhs = self.user_f(y, t)

return numpy.asarray(rhs)

(Continued on page 7.)

Examination in INF1100, Tuesday, December 16, 2008 Page 7

Assume that the above modifications are made in class ODESolver, and hence
that ODESolver, ForwardEuler, and Midpoint work for systems of ordinary
differential equations even if the user specifies Y as a list and lets f return a
list. (Note that class ODESolver from the course software already includes
the modifications above, but the modification of self.f is done in a more
compact way: self.f = lambda y, t: numpy.asarray(f(y, t)).)

The task in this exercise is to apply the Midpoint or ForwardEuler classes
to solve a second-order differential equation,

u′′ + P (u′) +Q(u) = 0, u(0) = a, u′(0) = 0,

written as a system of two first-order equations

d

dt
y0 = y1,

d

dt
y1 = −P (y1)−Q(y0)

The initial conditions are y0(0) = a and y1(0) = 0. P and Q are functions
specified as

P (u′) = b|u′|u′

Q(u) = c sin(u)

These choices correspond to an oscillating pendulum driven by gravity and
slowed down by air resistance. The symbols a, b, and c are given positive
constants.

Implement a right-hand side function f(y, t) for the system of the two first-
order equations listed above. You may use a plain Python function for f or
(better) a class with a call method and b and c as attributes.

Create a ForwardEuler or Midpoint instance and use it to solve the second-
order differential equation when a = c = 1 and b = 0.2. Use ∆t = π/40
and take N = 320 steps. Plot the solution u(t) versus t (recall that the
solution returned from ForwardEuler.integrate is a two-dimensional array
containing both u(t) and u′(t) values).

END

