
Eksamen IN1900 H2022

1/21

 Informasjon om eksamen
 UNIVERSITY OF OSLO

 Faculty of mathematics and natural sciences

 Written exam in IN1900 - fall 2022

Exam date: December 2, 2022
Exam time: 0900 - 1300 (four hours)

Permitted aids: None.
A calculator is available in Inspera.

It is important to read this information carefully before you start.

The exam contains multiple choice questions, and text questions where you shall write short
programs or read programs and write the output from the program. There are 15 questions that
should be answered in total, and in total 75 points available on these questions. Question 16 shall
not be answered, but is used by the examiners during the grading of the exam, to include the
points from the mid term exams.

The number of points available is specified for each question. For questions with multiple sub-
questions, each sub-question has the same number of points. On multiple choice questions you
get the same score (0) for a wrong answer and for not answering at all, so you should always
mark an answer.

If you are missing information you can make your own reasonable assumptions, as long as they
are in line with the "nature" of the question. In text questions you should then specify the
assumptions you made, for instance in comments to the code.

All code in the question texts is written in Python 3.

Most of the questions lead to short code with little need for comments, unless you do something
complicated or non-standard (which is not recommended; but in this case the comments should
explain the ideas behind the program to make it easier to evaluate the code).

A question may ask you to write a function. A main program which calls the function is in this case
not needed, unless it is specifically asked for in the question text.

Eksamen IN1900 H2022

2/21

1 Finne verdi i en liste
We want to find all positions in a list L that contain a certain value x. The positions are to be stored
in a list called pos. Below are two alternative suggestions for code to solve this task.

Alternative 1:
pos = []
for i in range(0, len(L)):
 if L[i] == x:
 pos.append(x)

Alternative 2:
pos = [k for k in range(len(L)) if L[k]==x]

Which of the alternatives is/are correct?

Select one alternative:

Alternative 1 is correct

Alternative 2 is correct

Both are correct

Both are wrong

Maximum marks: 2

Eksamen IN1900 H2022

3/21

2 Hvilke hører sammen?
We have the following three lists: x = [-1,0,1], y = [1,2,3,4], liste = [1, 2, [1], [2], [[1]], [[2]]]. To
the left of the table below are seven expressions, and at the top of the table are six possible results
of evaluating these expressions. Match the correct result to each expression.

Please match the values:

1 2 [1] [2] [[1]] [[2]]

liste[3]

liste.index([1])

liste[x[-1]]

liste[x[2]+y[2]]

liste[y[x[0]]]

liste[y[1]:y[2]]

liste[y[3]][0]

Maximum marks: 3.5

Eksamen IN1900 H2022

4/21

3 Hvilken linje mangler?
We want to write a program that asks the user for a mathematical expression and then computes
and prints the answer. The expression should be a valid Python expression and can only include
numbers, blanks, parentheses and the four basic operations +, -, *, /. Examples of valid
expressions are:
 4/3
 2*(1+6) - 7/18 + 93

Here is a program sketch:

expression = input("Expression: ")
A line is missing here
print(f"{expression} = {answer}")

One line is missing in the code. Which of the following lines must be added?
Select one alternative:

answer = double(expression)

answer = eval(expression)

answer = exec(expression)

answer = exec(lambda x: expression)

answer = expression

Maximum marks: 2

Eksamen IN1900 H2022

5/21

4 Funksjoner med parametre
We want to write a class that implements this function:

The function takes one argument (x) and has three parameters (a,b,c). It should be possible to set
the values of the three parameters first, and then call the function by simply writing f(x). Here's a
suggested solution:

import sqrt from math

class Quadratic:
 def __init__(self, a, b, c):
 self.a, self.b, self.c = a, b, c

 def __call__(x):
 r = sqrt(b*b - 4*a*c)
 solution1 = (-b-r) / (2*a)
 solution2 = (-b+r) / (2*a)
 return solution1, solution2

f = Quadratic(2, 5, 3)
print(f(2))

Unfortunately, the program does not work as it should. What error(s) are present in the program?
Fill in your answer here

Maximum marks: 3

Eksamen IN1900 H2022

6/21

5 Finne antall like verdier
We have two lists x and y containing numbers, and we want to find out how many common values
there are in the lists. The answer should be stored in a variable named count. If, for instance, x =
[-5, -2, -6, -3, -8] and y = [-2, -3, 6, 14,-3], the variable count should get the value 2 since there
are two common values (-2 and 3). Which of the code alternatives to the left will work? (Answer
"Yes" for the code alternatives you think will work, and "No" for the alternatives that in your opinion
do not give the correct result).

Please match the values:

Yes No

Alternative A

Alternative B

Alternative C

Alternative D

Alternative E

Maximum marks: 2.5

Eksamen IN1900 H2022

7/21

6 Terminerer løkken?
We have the following program:

import numpy as np
x = np.array([1,2])
y = np.array([1,2])
while <expression>:
 x = x * y
 y = x + y

where <expression> is one of the logical expressions below. Some of the logical expressions will
make the loop terminate (i.e., the loop criterion will become False after a finite number of
iterations), while others will result in an infinite loop. We will in this question disregard other events
that can make the loop terminate, such as variable overflow or someone turning off the computer.

For each of the alternatives below, mark whether the loop terminates or gives an infinite loop.
Recall that x[0] % 2 == 0 is a test that is True if x[0] is an even integer and False if x[0] is an odd
integer.

Please match the values:

Terminates Infinite loop

x[0] < 8

x[0] < 8

x[0] <= y[0]

False

x[1] <= y[1]

x[0] < 1

x[0] % 2 == 0

Maximum marks: 3.5

Eksamen IN1900 H2022

8/21

7 Feilhåndtering (exceptions)
We have the following program:

import sys
x = [0, 1, 2, 3]
try:
 v1 = int(sys.argv[1])
 v2 = int(sys.argv[2])
 answer = x[v1] / x[v2]
except ValueError:
 print("Error A")
 sys.exit()
except IndexError:
 print("Error B")
 sys.exit()
except ZeroDivisionError:
 print("Error C")
 sys.exit()

We try to run the program from the command line with each of the alternatives shown below (on
the left side of the table). Decide for each row in the table what is printed by the program (where
"No output" means that nothing is printed).

Please match the values:

Error A Error B Error C No output

python divide.py

python divide.py verdi1 verdi2

python divide.py 0 0

python divide.py 1 1 0 3

python divide.py 0 -3

Maximum marks: 2.5

Eksamen IN1900 H2022

9/21

8 Summer og testfunksjoner
The inverse hyperbolic tangent function has the following series approximation:

a) Write a Python function inv_tanh(x,n) that for a given x and n computes and returns the sum
above, and which includes all terms with degree n.

b) Write a test function for inv_tanh(x,n). The test function shall compare the answer
from inv_tanh(x,50) with the answer from the function atanh(x) in the math module. We assume
that the latter function gives the correct answer. The test is to be performed for three values of x in
the open interval (-1,1). You can choose the x values yourself. For n=50 you can assume that the
series approximation is accurate to at least 10 decimal places.
Fill in your answer here

Maximum marks: 6

1

Eksamen IN1900 H2022

10/21

9 To for-løkker
We run the following program:

x = list(range(100))

value1 = 0
for k in range(0,len(x)):
 value1 += x[-k] - x[k]

value2 = 0
for k in range(0,len(x)-1):
 value2 += x[-k] - x[k]

print(f"value1 = {value1}, value2 = {value2}")

What is printed?
Fill in your answer here

Maximum marks: 5

1

Eksamen IN1900 H2022

11/21

10 Implementere et folkeregister
The government of the country Ruritania has a population register which for every citizen
contains four pieces of information: social security number (ID number), name, occupation, and
address. The population register is stored in a text file register.txt which has four columns and a
header, and where the first three lines may look like this (the whole file is much longer, however):

Fnr Navn Yrke Adresse
10125564233 Ole Olsen Lege Gåsemyrgaten 14, 0323 Gåseby
30069912345 Signe Nes Lærer Gufsealleen 5, 6233 Olsby

All entries in a column start in exactly the same character position as the header. Once per
month the file is to be updated so that people who should no longer be in the register are removed
(for instance those who died during the last month), and new citizens are added (for instance all
newborn children and all new immigrants).

Your task is to make a Python program that performs this file update. The update is performed by
first reading the file into a dictionary, with the ID number as key and the rest of the information as
the associated value. All required changes (removing and adding persons) are then performed on
this dictionary, and after this has been done the entire dictionary is written back to file.

People to be added to the register are listed in a separate file newpersons.txt, which has exactly
the same format as the register.txt file described above. People to me removed are in a separate
file remove.txt, which contains a single column with the ID numbers of the people to be removed
(this file has no header).

a) Write the function read_register(), which reads the entire file register.txt to a dictionary, as
explained above. The function should return the dictionary.

b) Write the function add_to(register) where the argument register is a dictionary made by the
function in question a). The function should read the file newpersons.txt and make the necessary
changes to the dictionary. The function should return the updated dictionary.

c) Write the function remove_from(register) where the argument register is a dictionary made
by the function in question a). The function should read the file remove.txt and make the
necessary changes to the dictionary. The function should then return the updated dictionary.

d) Write the function write_register(register) which writes the dictionary register to the
file register.txt. You can assume that the existing file with the same name is not write protected,
so your program will simply overwrite this file.

Fill in your answer here

1

Eksamen IN1900 H2022

12/21

Maximum marks: 8

Eksamen IN1900 H2022

13/21

11 Beregne verdien til et polynom
Chebychev polynomials of the first kind are a sequence of polynomials
defined as follows:

The first four polynomials in the sequence are:

.

In general, is a polynomial of degree n.

Write a Python function chebychev(n, x) that computes and returns the value of in a given
point x.

Hint: If you have computed the values and , then it is easy to compute the value

 from the formula above. Write a for loop which either stores all the values
 in a list, or that just stores the two last values and updates these for

each iteration.

Remark: The question is to be solved with a loop. It is also possible to solve the task with
recursion, but this is not part of the course and it is not the solution we are seeking here.

Fill in your answer here

Maximum marks: 5

1

Eksamen IN1900 H2022

14/21

12 Finne polynomkoeffisienter
You should now write a program that, for a given value of n, finds the coefficients of the n+1 first
Chebychev polynomials . Recall that these are defined as ,

, og for . In general, is a polynomial of
degree 0, a polynomial of degree 1, a polynomial of degree 2, etc.
Since all the n+1 polynomials have degree less than or equal to n, we can for
write:

where are the coefficients of the polynomial. That is, is the j'th
coefficient of the i'th polynomial. Some of these coefficients will be equal to 0. For example, for
the first polynomial (corresponding to) we have while

. We want to compute all the polynomial coefficients and
store them in a Numpy array. To do this we first create a 2-dimensional array of the correct size
and with zeros in all entries:

 B = np.zeros((n+1,n+1))

and we subsequently fill in the correct values into the array such that the array element B[i,j]
becomes equal to the j'th coefficient of the i'th polynomial . When we are finished, the
coefficients of the first polynomial should be stored in B[0,0], B[0,1], ..., B[0,n], and the
coefficients of the next polynomial should be stored in B[1,0], B[1,1],, B[1,n], and so
on.

The procedure to fill in values in the array B is as follows. We first fill in values in the first two
rows of B which correspond to respectively and . After that, we can use the
following formulas to fill in values in the remaining rows of B, one row at a time ():

Write a Python function chebychev_coef(n) that finds the coefficients of the n+1 first Chebychev
polynomials with the method described above. The function should return the coefficients as a 2-
dimensional numpy array with n+1 rows and n+1 columns. Take care that the special cases n=0
and n=1 are also handled correctly.
Fill in your answer here

1

Eksamen IN1900 H2022

15/21

Maximum marks: 5

Eksamen IN1900 H2022

16/21

13 Representere polynom som klasse
You will in this question write a class for representing the Chebychev polynomial . The
class should have the following name and structure:

class Chebychev:
 def __init__(self, n):
 # Code missing here

 def __call__(self, x):
 # Code missing here

 def __str__(self):
 # Code missing here

The class should be possible to use in this way:

T = Chebychev(3) # Instance of the class representing
print(T) # OUTPUT: 4x^3-3x^1
print(T(2)) # Evaluate for x = 2, OUTPUT: 26

a) Complete the method __init__(self,n). You can assume that the function chebychev_coef(n)
from the previous question is already present in your program and that it can be used without
import. You can also assume that the latter function works as specified, even if you did not
answer the previous question.

b) Complete the method __call__(self,x). This method should compute and return the value of
the Chebychev polynomial for the given value of x.

c) Complete the method __str__(self). This method should return a text representation of the
Chebychev polynomial , as shown in the example above. The output should only include
the non-zero terms and should look like normal mathematical formulae. We want the sign of each
term to be handled correctly, so that negative terms are written as, for instance, "-3x" and not "+
-3x". For simplicity you can disregard other special cases. For instance, it is not necessary to
simplify x^1 and x^0 to x and 1, respectively.

Fill in your answer here

1

Eksamen IN1900 H2022

17/21

Maximum marks: 9

Eksamen IN1900 H2022

18/21

14 Differenslikninger
We have the following system of difference equations for :

The system is called the Bogdanov map after the Russian mathematician Rifkat Bogdanov.

a) Write a function bogdanov(N, k, x0, y0) that computes the solution to the difference
equations above, for . The three last arguments to the function are the
parameter k and the initial conditions and . The function should return the solution as a
tuple (x,y), where x is a list (or array) with the solution values and y is a list
(or array) with the solution values .

b) We can not decide numerically whether an infinite sequence of numbers
converges or not. However, we can get an indication of convergence by computing the first N+1
values of the sequence and checking whether the last two numbers are approximately equal
(which might indicate that the sequence is approaching convergence). Write a Python function
convergence(x, eps) that uses this criterion to indicate whether a sequence converges. Here, x
is a list containing the first values of a sequence and eps is a tolerance. The function shall return
True if the two last values are closer than the tolerance, and otherwise False.

c) Explain briefly how the function you wrote in question b) can be used to indicate whether the
solution returned from the function bogdanov in point a) converges.

d) Some difference equations have a solution that does not converge, but instead cycles through
(i.e. repeats indefinitely) a finite number of values. For instance, the sequence 0,1,0,1,0,1,0,1, ...
cycles through the values 0,1 while the sequence 0,1,2,0,1,2,0,1,2,... cycles through the values
0,1,2. The length of the cycle is 2 and 3, respectively, in these two cases. In general, a cycle can
have length k > 0. This means that the first k values of the sequence, , are
identical to the next k values (i.e., , , ...,

), which in turn are equal to the next k values , etc.
Assume that we have already written a function isCycle(x,k) which checks if the sequence x (a
list) has a cycle of length k (a positive integer) and which in that case returns True (and otherwise
False). Use this function to write a new function findCycle(x, kmax) that finds the smallest value
of in the interval such that x cycles through values. If the function finds
such a k it should return this value. If it does not find such a k, it should return 0.
Fill in your answer here

1

Eksamen IN1900 H2022

19/21

Maximum marks: 12

Eksamen IN1900 H2022

20/21

15 Planeters bane rundt sola
In this question we study the motion of a planet around the sun. Assume that the planet at time
has the position and the velocity vector . Then, from
Newton's laws, one can show that the motion is governed by these six differential equations:

Write a Python program that solves this ODE system, using the ODESolver module (see
attached file), when the initial conditions are given by

. The program should use the RungeKutta4
method with time points given by
 time_points = np.linspace(0,50,5001)
where we assume that numpy has been imported with import numpy as np. The solution should
be written to the screen as a table with four columns and with one row for each time point (see
the example below). Time points should be written with two decimals, while the other values
should be written with four decimals. Make sure that the table is nicely formatted so that numbers
in the same column start in the same position on the line. Note that the table should only include
time and position, while the velocity vector is not included in the output.

Time x(t) y(t) z(t)
0.00 1.0000 1.0000 1.0000
0.01

You do not have to write code to plot the solution as curves. The relevant parts of the ODEsolver
module are in the attached pdf file.

Fill in your answer here

1

Eksamen IN1900 H2022

21/21

Maximum marks: 6

16 Skal ikke besvares, til bruk under sensuren
This question is not to be answered, but is used by the examiners during the marking of the
exam, to add the points from the midterm exam.

Not to be answered.

Format

 Σ

Words: 0

Maximum marks: 25

javascript:void('Paragraph Format')
javascript:void('Bold')
javascript:void('Italic')
javascript:void('Underline')
javascript:void('Subscript')
javascript:void('Superscript')
javascript:void('Remove Format')
javascript:void('Copy')
javascript:void('Paste')
javascript:void('Undo')
javascript:void('Redo')
javascript:void('Temporary Backup Snapshots')
javascript:void('Insert/Remove Numbered List')
javascript:void('Insert/Remove Bulleted List')
javascript:void('Insert Special Character')
javascript:void('Table')
javascript:void('Insert Drawing')
javascript:void('Edit formula')
javascript:void('Expand')

Question 15
Attached

import numpy as np¬
¬
class ODESolver:¬
 def __init__(self, f):¬
 self.f = lambda u, t: np.asarray(f(u, t), float)¬
¬
 def set_initial_condition(self, U0):¬
 if isinstance(U0, (float,int)): # scalar ODE¬
 self.neq = 1 # no of equations¬
 U0 = float(U0)¬
 else: # system of ODEs¬
 U0 = np.asarray(U0)¬
 self.neq = U0.size # no of equations¬
 self.U0 = U0¬
¬
 def solve(self, time_points):¬
 self.t = np.asarray(time_points)¬
 N = len(self.t)¬
 if self.neq == 1: # scalar ODEs¬
 self.u = np.zeros(N)¬
 else: # systems of ODEs¬
 self.u = np.zeros((N,self.neq))¬
¬
 self.u[0] = self.U0¬
¬
 for n in range(N-1):¬
 self.n = n¬
 self.u[n+1] = self.advance()¬
 return self.u, self.t¬
¬
class ForwardEuler(ODESolver):¬
 def advance(self):¬
 u, f, n, t = self.u, self.f, self.n, self.t¬
 dt = t[n+1] - t[n]¬
 unew = u[n] + dt*f(u[n], t[n])¬
 return unew¬
¬
class RungeKutta4(ODESolver):¬
 def advance(self):¬
 u, f, n, t = self.u, self.f, self.n, self.t¬
 dt = t[n+1] - t[n]¬
 dt2 = dt/2.0¬
 k1 = f(u[n], t[n])¬
 k2 = f(u[n] + dt2*k1, t[n] + dt2)¬
 k3 = f(u[n] + dt2*k2, t[n] + dt2)¬
 k4 = f(u[n] + dt*k3, t[n] + dt)¬
 unew = u[n] + (dt/6.0)*(k1 + 2*k2 + 2*k3 + k4)¬
 return unew¬

Question 5
Attached

Alternative A

count = 0
for e1 in x:
 for e2 in y:
 if e1==e2:
 count += 1

Alternative B

count = 0
for e in x:
 if e in y:
 count += 1

Alternative C

x.sort() # Sort values in x from smallest to largest
y.sort() # Sort values in y
count = 0
for e in x:
 k = 0
 while k < len(y) and y[k] < e:
 k = k + 1
 if y[k] == e:
 count +=1

Alternative D

import numpy as np
x = np.array(x)
y = np.array(y)
count = sum(x==y)

Alternative E

x = np.array(x)
y = np.array(y)
distance = [min(abs(k-y)) for k in x]
distance = np.array(distance)
count = sum(distance==0)

