
Eksamen IN1900 H2023

1/18

 Forside
UNIVERSITETET I OSLO
Det matematisk-naturvitenskapelige fakultet
Written exam in IN1900
2023 Fall

Date and time: Monday 4/12 from 09:00 to 13.00 (4 hours)

Permitted aides: None
A calculator is available in Inspera

It is important that you read this information carefully before you start answering the
questions.

If you need to zoom in the exam set, hold ctrl and push + eller - on the numeric keyboard.

The exam contains multiple choice questions, and text questions where you shall write short
programs or read programs and write the output from the program. There are 13 questions that
should be answered in total, and in total 75 points available on these questions. Question 14 shall
not be answered, but is used by the examiners during the grading of the exam, to include the
points from the mid term exams.

The number of points available is specified for each question. For questions with multiple sub-
questions, each sub-question has the same number of points. On multiple choice questions you
get the same score (0) for a wrong answer and for not answering at all, so you should always
mark an answer.

If you are missing information you can make your own reasonable assumptions, as long as they
are in line with the "nature" of the question. In text questions you should then specify the
assumptions you made, for instance in comments to the code.

All code in the question texts is written in Python 3.

Most of the questions lead to short code with little need for comments, unless you do something
complicated or non-standard (which is not recommended; but in this case the comments should
explain the ideas behind the program to make it easier to evaluate the code).

A question may ask you to write a function. A main program which calls the function is in this case
not needed, unless it is specifically asked for in the question text.

Eksamen IN1900 H2023

2/18

1 Hva skrives ut?
What is printed in the terminal window when the following code is run?
a = []
for i in range(3):
 a.append([i,i+1])

print(a[-1])

Select one alternative:

[2, 3]

[3, 4]

4

3

Maximum marks: 2

Eksamen IN1900 H2023

3/18

2 Hva skrives ut?
What is printed in the terminal window when the following code is run?

import numpy as np

class Parabola:
 def __init__(self, c0, c1, c2):
 self.c0, self.c1, self.c2 = c0, c1, c2

 def __call__(self, x):
 return self.c0 + self.c1 * x + self.c2 * x**2

class Line(Parabola):
 def __init__(self, c0, c1):
 super().__init__(c0, c1, 0)

line1 = Line(1,1)
print(line1(1), isinstance(line1, Parabola))

Select one alternative:

TypeError: 'Line' object is not callable

2 False

2 True

2

Maximum marks: 2

Eksamen IN1900 H2023

4/18

3 Sortere en liste
We wish to sort a list L from the smallest to the largest value. The list contains only numbers.
Below you find two alternative code segments for performing this task. Which of the codes is/are
correct?

Alternative 1:
for i in range(len(L)):
 for k in range(len(L)-i-1):
 if L[k+1] <= L[k]:
 L[k], L[k+1] = L[k+1], L[k]

Alternative 2:
for i in range(len(L)):
 min_idx = i
 for k in range(i+1,len(L)):
 if L[k] < L[min_idx]:
 min_idx = k
 L[i], L[min_idx] = L[min_idx], L[i]

Select one alternative:

Alternative 2 is correct

Alternative 1 is correct

Both codes are correct

None of the codes are correct

Maximum marks: 2

Eksamen IN1900 H2023

5/18

4 Lesing av fil
We have stored precipitation data in a file precip.txt, with the following contents:
Month Precip Normal
Jan 100.5 58.0
Feb 45.9 46.0
Mar 72.6 41.0
Apr 99.7 48.0
May 17.0 60.0
Jun 39.9 80.0

Here the middle column is the measured precipitation and the right column is the normal
precipitation for the given month. There are no empty lines in the file.

The code below is supposed to read this file and count the number of months when the measured
precipitation exceeded the normal:
count = 0
with open('precip.txt', 'r') as infile:
 for line in infile:
 words = line.split()
 count += float(words[1]) > float(words[2])

Unfortunately the code does not work as intended. Write the answer to the following two questions
in the text field below.
a) In which line will the code stop and print an error message?
b) Can you suggest a change in the code to make it work as intended?

Fill in your answer here

1

Joakim Sundnes
a) The code will stop on the line “count += float(…)”, when it attempt to read the
first line of the file. In this line words[1] has the value “Precip”, and trying to convert this
to a number with float will give a ValueError.

b) Inserting a infile.readline() before the loop will make the code work, since it will then
skip the processing of the first line.

Eksamen IN1900 H2023

6/18

Maximum marks: 6

5 Hvilke hører sammen?
We have the following two lists: x = [-1,0,1] and y = [0, 1, [0], [1], [[0], [1]]]. On the left in the table
below you find six expressions, and on top of the table you find six possible results from
evaluating these expressions. Find the ones that fit together.
Please match the values:

0 [0] [[1]] [[0]] [1] 1

y[x[-2]:x[-1]]

y[x[0]][x[0]]

y[sum(x)]

y.index(1)

y[x[0]][x[-1]:]

y[3]

Maximum marks: 3

Eksamen IN1900 H2023

7/18

6 Feilhåndtering (exceptions)
We have the following program stored in the file multiply.py:
import sys
data = [0, 1, 2, 3, 4]

try:
 assert len(sys.argv) >= 3
 ind1 = int(sys.argv[1])
 ind2 = int(sys.argv[2])
 result = data[ind1] * data[ind2]
except IndexError:
 print("Error A")
 exit()
except AssertionError:
 print("Error B")
 exit()
except ValueError:
 print("Error C")
 exit()

We try to run the program from the command line with the alternatives shown below. For each
row, choose what will be printed by the program, where "No output" means that nothing is printed.

Please match the values:

Error A No output Error B Error C

python multiply.py v1 v2

python multiply.py 2 3 5 7 9

python multiply.py 5 7

python multiply.py 12

python multiply.py 1 2

python multiply.py

Maximum marks: 3

Eksamen IN1900 H2023

8/18

7 Diskontinuerlig funksjon
The Heaviside function is defined as follows:

a) Assume that the argument x is a number (not a number or a list) and implement the Heaviside
function as a Python function heaviside(x).

b) Write a test function which tests heaviside(x), for at least two different values of the argument
x.

c) Write a new implementation of the Heaviside function, which works when the argument x is a
numpy array or a list. For this function you can assume that the argument is always a list or array,
not a scalar. The function shall return a list or array of the same length as the input argument. Call
the function heaviside2(x).

Fill in your answer here

Maximum marks: 9

1

Joakim Sundnes
Solution at the end of the exam set.

Joakim Sundnes
Solution at the end of the exam set.

Eksamen IN1900 H2023

9/18

8 Sum implementert som en klasse
The hyperbolic sine function sinh(x) can be approximate by a series:

We want to implement a Python class SinHyp, which calculates this series. We write the class in
a file/module named hyperbolic.py, and want it to support the following use:

from hyperbolic import SinHyp
sinh_approx = SinHyp(N=4)
print(sinh_approx(x=1.0))
print(sinh_approx)

This code should give the following output:
1.1752011684303352
Approximate sinh, N = 4
(The first line is the value of the sum for N=4 and x=1.0)

a) Write the code for the class SinHyp. The operation ! (factorial) is found in the math module with
the name factorial.

b) As we increase N, the approximation of sinh(x) improves. This can be demostrated by
computing the distances

between the true value sinh(x) and the approximate values, for different values of N (for instance
for) for a given value of x, and plotting the points . Write code for
computing these distances and plotting them. You can assume that the true value of sinh(x) can
be computed with the function sinh(x) in the math module.

Fill in your answer here

1

Joakim Sundnes
Solution at the end of the exam set.

Eksamen IN1900 H2023

10/18

Maximum marks: 8

Eksamen IN1900 H2023

11/18

9 Klasse for polynomer
A general polynomial of degree N can be written on the form

Such a polynomial can be represented as a list of length N+1, where the element with index i is the
coefficient in front of the term of degree i (c).

A class that uses this data structure to represent a polynomial can be implemented as follows:

class Polynomial:
 def __init__(self, coefficients):
 self.coeff = coefficients

 def __call__(self, x):
 s = 0
 for i in range(len(self.coeff)):
 s += self.coeff[i] * x**i
 return s

The constructor takes a list of coefficients as input and stores the list as an attribute. The method
__call__ evaluates the polynomial for a given x.

a) We want the class to support the following use:
p1 = Polynomial([0,1,2])
p2 = Polynomial([0,0,1])
p3 = p1 + p2

Here, p3 should be an instance of the class Polynomial, which represents the sum of p1 and
p2. Explain how the class needs to be extended for this code to work. Which method must be
added? What arguments should it accept, and what should it return? You do not need to write
code, but explain the extension as precisely as possible.

b) Write the code for the extension you described in a) Remember that the two polynomials to be
added do not necessarily have the same degree.

Fill in your answer here

i

1

Joakim Sundnes
Solution at the end.

Eksamen IN1900 H2023

12/18

Maximum marks: 8

Eksamen IN1900 H2023

13/18

10 Implementere et kunderegister
A company keeps a register of unpaid invoices in a text file register.txt, with the following format:
Invoice id. Customer id. Name Amount Due date
57893; 101456; Ole Olsen; 999.00 ; 31.01.2023
34216; 10343; Knut Knutsen; 1499.00; 21.01.2023
89134; 101456; Ole Olsen; 499.00; 20.01.2023

Each line contains information about a single invoice, but multiple invoices can be registered to
the same customer, as indicated in the file above. There are no blank lines in the file. Your task is
to make Python functions for reading and updating such a register.

a) Write a function process_invoice(inv_line), which takes a string with information about an
invoice as input, and returns a dictionary with the invoice information (Remark: in this sub-
question you shall not use the file register.txt). You can assume that the string has the same
format as a single line in the file given above (except for the header line). The dictionary shall
have keys 'inv_id', 'cust_id', 'name', 'amount', and 'date', and the corresponding values shall be
taken from the string. For instance, it shall be possible to use the function in the following way:

line = "57893; 101456; Ole Olsen; 999.00 ; 31.01.2023"
invoice = process_invoice(line)

After this call, the dictionary invoice shall have the value

{'inv_id': 57893, 'cust_id': 101456, 'name': 'Ole Olsen', 'amount': 999.0, 'date': '31.01.2023'}

b) Write the function read_register(filename), which reads a file with the same format as the
file register.txt above, and returns a dictionary with the information in the file. This dictionary shall
have one key/value pair for each customer. For instance, the file register.txt listed above contains
information about two customers (one customer has two invoices), and the resulting dictionary
should then contain two key/value pairs. Each key shall be the customer id and the
corresponding value shall contain information about all the invoices for this customer. To achieve
this, each value in the dictionary shall be a new dictionary with keys 'name' og 'invoices', where
the value of 'name' is the customer name og 'invoices' is a new dictionary with the invoice id
(inv_id) as key and a tuple with the amount and date as value. For example, if the
file register.txt has the contents listed above, the function call

 register = read_register('register.txt')

shall result in a dictionary with the following contents:

 {101456: {'name': 'Ole Olsen', 'invoices': {57893: (999.0, '31.01.2023'), 89134: (499.0,
 '20.01.2023')}}, 10343: {'name': 'Knut Knutsen', 'invoices': {34216: (1499.0,
'21.01.2023')}}}

Note that each customer only shows up once, but each customer can have one or more
invoices. You can reuse the function process_invoice from sub-question a) to process the file.

Fill in your answer here

1

Eksamen IN1900 H2023

14/18

Maximum marks: 8

Joakim Sundnes
Solution at the end.

Eksamen IN1900 H2023

15/18

11 Differenslikninger
We have the following system of difference equations for :

The system is a variant of the famous Lotka-Volterra model, which describes the dynamics in a
population of predators and prey, where x is the number of prey and y the number of predators
at a given time t . The parameters a,b,c and d are positive constants.

Write a function LotkaVolterra(N, a, b, c, d, x0, y0) which computes the solution of the
difference equation above for . The other arguments to the function are the
parameters a,b,c,d and the initial values og . The function shall return the solution as a tuple
(x, y), where x is a list (or array) with solution values and y is a list (or array)
with solution values .
Fill in your answer here

n n
n

Maximum marks: 6

1

Joakim Sundnes
Solution at the end.

Eksamen IN1900 H2023

16/18

12 Fitzhugh-Nagumo-modellen I
The Fitzhugh-Nagumo model is a famous ODE-model that describes the electrical signal in cells
like nerve cells or heart cells. The model is given by:

The parameters are constants that can be adjusted to control the behavior of the
model.

a) Write a class that implements this model. The class shall have a constructor, which takes the
five model constants as arguments and stores them as attributes, and a __call__ method that
implements the right hand side of the model. The __call__ method must be defined so that the
model can be solved with the solvers in the ODESolver class hierarchy (attached).

b) Write code to solve the model for the time interval to with 400 time steps, using
the RungeKutta4 class from the ODESolver hierarchy, and plot the solutions v and w in the
same window. Use the parameter values ,
and initial values .

Fill in your answer here

Maximum marks: 10

1

Joakim Sundnes
Solution at the end.

Eksamen IN1900 H2023

17/18

13 Fitzhugh-Nagumo-modellen II
The SciPy library includes a function root(fun, x0), which can be used to solve non-linear
equations on the form . The function can be imported with

 from scipy.optimize import root

and the two arguments to the function are as follows:

fun - a Python function that implements the mathematical function f(x). The function must take a
single argument (x), which is an array of arbitrary length, and return an array of the same length
as x.

x0 - start value (initial guess) for the solution. This should be an array of the same length as the
argument to the function f.

The function root returns the solution of the equation as an array x.

a) Write code that uses the root function to find an equilibrium point for the Fitzhugh-Nagumo
model from the previous question, that is, values for and such that .
You can use the same parameter values as in Question 12, and you can assume that an
equilibrium point exists close to the initial values used in Question 12. You can also assume that
you write the code in the same file as the code from Question 12, so there is no need to import or
duplicate the code here.

b) Equilibrium points for an ODE system can be stable or unstable. A bit simplified, an equilibrium
point is stable if the solution of the ODE system approaches for initial values

, where is a small number. If is an unstable equilibrium point, the initial
values will give a solution that moves away from . Explain how you can
use the code you wrote in question 12 to determine if the equilibirum point you found in a) is
stable or unstable. You do not have to write code, but explain as precisely as possible how you
would perform this task.

Fill in your answer here

1

Joakim Sundnes
Solution at the end.

Eksamen IN1900 H2023

18/18

Maximum marks: 8

14 Poeng fra midtveis, til bruk for sensor
This question is not to be answered. It is used by the graders to include points from the midterm
exam.
Fill in your answer here

Format  

 Σ 

Words: 0

Maximum marks: 25

javascript:void('Paragraph Format')
javascript:void('Bold')
javascript:void('Italic')
javascript:void('Underline')
javascript:void('Subscript')
javascript:void('Superscript')
javascript:void('Remove Format')
javascript:void('Copy')
javascript:void('Paste')
javascript:void('Undo')
javascript:void('Redo')
javascript:void('Temporary Backup Snapshots')
javascript:void('Insert/Remove Numbered List')
javascript:void('Insert/Remove Bulleted List')
javascript:void('Insert Special Character')
javascript:void('Table')
javascript:void('Insert Drawing')
javascript:void('Edit formula')
javascript:void('Expand')

Question 12
Attached

import numpy as np

class ODESolver:
 def __init__(self, f):
 self.f = lambda t, u: np.asarray(f(t, u), float)

 def set_initial_condition(self, u0):
 if np.isscalar(u0): # scalar ODE
 self.neq = 1 # no of equations
 u0 = float(u0)
 else: # system of ODEs
 u0 = np.asarray(u0)
 self.neq = u0.size # no of equations
 self.u0 = u0

 def solve(self, t_span, N):
 t0, T = t_span
 self.dt = (T - t0) / N
 self.t = np.zeros(N + 1) # N steps ~ N+1 time points
 if self.neq == 1:
 self.u = np.zeros(N + 1)
 else:
 self.u = np.zeros((N + 1, self.neq))

 msg = "Please set initial condition before calling solve"
 assert hasattr(self, "u0"), msg

 self.t[0] = t0
 self.u[0] = self.u0

 for n in range(N):
 self.n = n
 self.t[n + 1] = self.t[n] + self.dt
 self.u[n + 1] = self.advance()
 return self.t, self.u

class ForwardEuler(ODESolver):
 def advance(self):
 u, f, n, t = self.u, self.f, self.n, self.t
 dt = self.dt
 return u[n] + dt * f(t[n], u[n])

class RungeKutta4(ODESolver):
 def advance(self):
 u, f, n, t = self.u, self.f, self.n, self.t
 dt = self.dt
 dt2 = dt / 2.0
 k1 = f(t[n], u[n],)
 k2 = f(t[n] + dt2, u[n] + dt2 * k1,)
 k3 = f(t[n] + dt2, u[n] + dt2 * k2,)
 k4 = f(t[n] + dt, u[n] + dt * k3,)
 return u[n] + (dt / 6.0) * (k1 + 2.0 * k2 + 2.0 * k3 + k4)

#Question 7:
#a)
def heaviside(x):
 if x < 0:
 return 0
 return 1

#b)
def test_heaviside():
 args = [-1, 0, 1]
 expected = [0, 1, 1]

 for x, e in zip(args, expected):
 assert heaviside(x) == e

#c)
def heaviside2(x):
 result = []
 for x_ in x:
 if x_ < 0:
 result.append(0)
 else:
 result.append(1)
 return result

#Question 8:
from math import factorial, sinh
import matplotlib.pyplot as plt

#a)
class SinHyp:
 def __init__(self, N):
 self.N = N

 def __call__(self,x):
 s = 0
 for k in range(self.N+1):
 s += x**(2 * k + 1)/factorial(2 * k + 1)
 return s

 def __str__(self):
 return f'Approximate sinh, N = {self.N}'

sinh_approx = SinHyp(N=4)
print(sinh_approx(x=1.0))
print(sinh_approx)

#b)
dist = []
for N in range(1,31):

 sinh_approx = SinHyp(N)
 dist.append(sinh(1.0) - sinh_approx(1.0))

plt.plot(dist)
plt.show()

#Question 9:
#a)
"""
The class needs to be extended with a special method __add__. It needs to take one
Polynomial
as argument, in addition to "self", and must return a Polynomial instance
representing
the sum of the two polynomials.
"""

#b)
class Polynomial:
 def __init__(self, coefficients):
 self.coeff = coefficients

 def __call__(self, x):
 s = 0
 for i in range(len(self.coeff)):
 s += self.coeff[i] * x**i
 return s

 def __add__(self, other):
 # return self + other
 # start with the longest list and add in the other:
 if len(self.coeff) > len(other.coeff):
 coeffsum = self.coeff[:] # copy!
 for i in range(len(other.coeff)):
 coeffsum[i] += other.coeff[i]
 else:
 coeffsum = other.coeff[:] # copy!
 for i in range(len(self.coeff)):
 coeffsum[i] += self.coeff[i]
 return Polynomial(coeffsum)

#Question 10:
#a)
def process_invoice(inv_line):
 words = [w.strip() for w in inv_line.split(';')]
 inv_id = int(words[0])
 cust_id = int(words[1])
 cust_name = words[2]
 amount = float(words[3])
 date = words[4]
 invoice =
{'inv_id':inv_id,'cust_id':cust_id,'name':cust_name,'amount':amount,'date':date}
 return invoice

#b)
def read_register(filename):
 customers = {}
 with open(filename) as infile:
 infile.readline()
 for line in infile:
 invoice = process_invoice(line)
 cust_id = invoice['cust_id']
 inv_id = invoice['inv_id']
 info = (invoice['amount'],invoice['date'])
 if cust_id in customers:
 customers[cust_id]['invoices'][inv_id] = info
 else:
 customers[cust_id] = {'name':invoice['name'],'invoices':
{inv_id:info}}

 return customers

#Question 11
def LotkeVolterra(N,a, b, c, d,x0,y0):
 x = [0]*(N+1); y = [0]*(N+1)
 x[0] = x0; y[0] = y0
 for i in range(N):
 x[i+1] = x[i] + a * x[i] - b * x[i] * y[i]
 y[i+1] = y[i] + d * b * x[i] * y[i] - c * y[i]

 return x,y

#Question 11:
from ODESolver import RungeKutta4
import matplotlib.pyplot as plt
import numpy as np

#a)
class FHN:
 def __init__(self, c1, c2, c3, a, b):
 self.c1, self.c2, self.c3 = c1, c2, c3
 self.a, self.b = a, b

 def __call__(self, t, u):
 c1, c2, c3 = self.c1, self.c2, self.c3
 a, b = self.a, self.b
 v, w = u
 dv = c1 * v * (1 - v) * (v - a) - c2 * w
 dw = b * (v - c3 * w)
 return dv, dw

#b)
fhn = FHN(0.26, 0.1, 1.0, 0.13, 0.013)
solver = RungeKutta4(fhn)
solver.set_initial_condition([0.25,0])
t,u = solver.solve([0,400],400)

plt.plot(t,u[:,0])
plt.show()

#Question 13:
#a)
"""
We want to reuse the right-hand-side function of the FHN class,
since this defines the function for which we want to find the roots.
However, this function was defined to be used with the ODESolver class
and therefore takes two arguments, while root expects a function that
takes only one. We can solve this in many ways, for instance writing
a sub-class to FHN or write a new function which calls the FHN instance.
"""
from scipy.optimize import root
init = np.array([0.13,0])

#Simplest solution: wrap an existing FHN instance in a function
def fhn_fun(u):
 return fhn(0.0,u)

solution = root(fhn_fun,init)

#Slightly more advanced, avoids using a global variable
class FHN_eq(FHN):
 def __call__(self,u):
 return super().__call__(0,u)

fhn_eq = FHN_eq(0.26, 0.1, 1.0, 0.13, 0.013)
solution = root(fhn_eq,init)
print(solution)

#b)
"""
One way to determine if an equilibrium point is stable
or unstable is to start with the solution from a)
(i.e., the equilibrium point), perturb it slightly and use it
as an initial condition. If the solution returns to the initial condition
it is a stable equilibrium point, if it doesn't it is unstable.
"""

#possible (simple) solution
eps = 1.0e-2
i_vals = solution.x + eps #add eps to both components of x
solver.set_initial_condition(i_vals)
t,u = solver.solve([0,400],400)
plt.plot(t,u)
plt.show()

