
Antonio Martini

Professor in Software Engineering

University of Oslo

Course IN2000
2024-02-13

Antonio Martini - Associate Professor in Software Engineering

Who is Antonio Martini?

Antonio Martini - PhD in Software Engineering

� Italian
� No kebab pizza! J
� 6 years in Sweden, 6 in Norway

– survived many winters!

� Worked as a Software Developer
� PhD in Software Engineering at Chalmers
� Principal Strategic Researcher at CA

Technologies
� Independent consultant

� Ericsson, Volvo IT, etc.
� AnaConDebt tool

� Currently:
� Associate Professor at University of Oslo
� Startup founder ACDtek

� Hobbies
� Board games, strategy computer games, pool, etc.
� Football, volleyball, beach volley, fencing
� Piano, Drumset, etc.
� Travel!
� …and no time for them! J

Several projects on architecture and
technical debt

Some collaborators from industry:

Antonio Martini - PhD in Software Engineering

Agenda
� What is software architecture?
� Thinking about architecture

� Stakeholder analysis
� Trade-offs

� Principles of Software Architecture
� Components and APIs
� Design tradeoffs
� Architectural styles

� Intro to Technical Debt

� Summary

� Interacting questions during the lecture

� Relevant for the project and activities

Antonio Martini - Associate Professor in Software Engineering

Antonio Martini - Associate Professor in Software Engineering

What’s the difference?

Antonio Martini - Associate Professor in Software Engineering

Where do we build a
park here?

Software architecture is…

� All of the followings:

� Overall system structure

� The important stuff –
whatever that is

� Things that people perceive
as hard to change

� A set of architectural design
decisions

Antonio Martini - Associate Professor in Software Engineering

Software Architecture characteristics

� Multitude of stakeholders

� Quality driven (tradeoff)

� Separation of concerns

� Recurring styles
(patterns)

� Conceptual integrity
(vision)

Antonio Martini - Associate Professor in Software Engineering

Why software architecture?
� To get a grasp of a complex system
� Facilitates the communication among the

stakeholders about their needs
� Support decisions about future development

and maintenance
� Reuse
� Budget

� Analysis of the product before it’s built
� Cost reduction
� Risk reduction

Antonio Martini - Associate Professor in Software Engineering

You can’t ignore architecture
� All products HAVE an

architecture
� It can be bad
� It can be good

� In all projects we SHOULD
think about architecture
� Maybe less in small projects
� Maybe more in large projects

� Thinking about the
architecture is a necessary
(and smart) process

Antonio Martini - Associate Professor in Software Engineering

Antonio Martini - Associate Professor in Software Engineering

How to choose an architecture

� It can be quite difficult
� Where do we start?

Antonio Martini - Associate Professor in Software Engineering

Business drives architecture

Antonio Martini - Associate Professor in Software Engineering

Business goals

Architecture

A process to think about architecture

Antonio Martini - Associate Professor in Software Engineering

Stakeholders analysis

Business goals

Qualities

Tradeoffs

Solution

Architectural Significant
requirements

Who?

What do they need?

What should the system do?

What qualities are important?

What should we focus on?

How should we implement it?

Stakeholders analysis (1)
� You might need to accommodate several

stakeholders

� Stakeholder: “an individual, group, or organization,
who may affect, be affected by, or perceive itself to
be affected by a decision, activity, or outcome of a
project”

� Who are the main stakeholders for a game app like
Pokemon Go?
� What are their needs?
� Write down 2

○ <Stakeholder> : <Need>

Antonio Martini - Associate Professor in Software Engineering

Stakeholder analysis (2)

� Let’s consider the three stakeholders below:

� User of the app

� Sales

� Engineers

Antonio Martini - Associate Professor in Software Engineering

Needs examples
� Sales’ needs:

� “we need to deliver the app fast”
� “we need the app to be available for both

Android and iOS”

� Users’ needs
� “we want to have an experience without bugs”
� “we want it to get the information in real time”

� Engineers’ needs
� “we need to test the app easily”
� “we need to be able to deploy new features

quickly after the first release”

Antonio Martini - Associate Professor in Software Engineering

System Qualities

Antonio Martini - Associate Professor in Software Engineeringhttps://www.iso.org/standard/22749.html

Qualities (non-functional)
� Maintainability - the ease with which a product can be maintained

� E.g. Fix defects, meet new requirements, etc.

� Performance – how efficiently software can perform a task
� E.g. How long does it take to load a web-page?

� Security – how solid the system is in protecting from attacks by malicious actors or by
disruptions
� E.g. Confidential data leaks

� Reliability - ability of equipment to function without failure
� E.g. Bugs

� Usability - perform the tasks safely, effectively, and efficiently while enjoying the experience
� E.g. Easy-to-use UI

� Compatibility - the ability of software and hardware from different sources to work together
without having to be altered to do so
� E.g. New software that runs on older cars

� Portability - easily made to run on different platfotms
� E.g. Android, IOS, etc.

Antonio Martini - Associate Professor in Software Engineering

Tag your tasks

Antonio Martini - Associate Professor in Software Engineering

From needs to qualities - sales

� Sales’ needs:
1. “we need to deliver the app fast”
2. “we need the app to be available for both

Android and iOS”

� Qualities?
1. No quality – Time constraint
2. Portability

Antonio Martini - Associate Professor in Software Engineering

System Qualities - Sales

Antonio Martini - Associate Professor in Software Engineering

From needs to qualities - users

� Users’ needs
1. “we want to have an experience without

bugs”
2. “we want it to see the real time results

quickly”

� Qualities?
1. Reliability
2. Performance

Antonio Martini - Associate Professor in Software Engineering

System Qualities – Users

Antonio Martini - Associate Professor in Software Engineering

From needs to qualities - engineers

� Engineers’ needs
1. “We need to test the app easily”
2. “We need to be able to deploy new features

quickly after the first release”

� Qualities?
1. Testability – Mantainability
2. Modifiability – Maintainability

Antonio Martini - Associate Professor in Software Engineering

System Qualities - Engineers

Antonio Martini - Associate Professor in Software Engineering

System Qualities – All stakeholders

Antonio Martini - Associate Professor in Software Engineering

Can we say yes
to everyone?

Antonio Martini - Associate Professor in Software Engineering

Very often the
answer is NO

Are there some conflicts?

� Example:
� Sales’ needs

1. “we need to deliver the app fast”
2. “we need the app to be available for both Android

and iOS”
� Or else:

1. Budget constraint
2. Portability

� Can we achieve both? We need to
investigate more (e.g. with a workshop)

Antonio Martini - Associate Professor in Software Engineering

Can we say yes to both needs?

� We discuss the needs together with the
stakeholders
We discover that:
� Sales want to deliver in 3 months
� To make the app portable both for Android and iOS, we

need to:
○ Use special libraries
○ Learn more skills
○ Test in more environments

� Conclusion: it takes 5 months
� The answer is NO. What do we do?

� We ask the stakeholders to prioritize the needs
� We reach a tradeoff

Antonio Martini - Associate Professor in Software Engineering

What’s the best architecture?

� The best architecture is the best tradeoff
among several qualities according to the
business goals of the stakeholders

Antonio Martini - Associate Professor in Software Engineering

Tradeoff(s)
� We generate solutions and scenarios

1. Solution 1:
○ It takes 5 months to make the product portable
○ We deliver in 5 months

2. Solution 2:
○ We deliver in 3 months
○ We make the app portable later

� Which one do we choose?
� Why?

Antonio Martini - Associate Professor in Software Engineering

Cost/Benefit and risk analysis
� Which solution is best?

� Solution 1:
○ Waiting 2 more months (5-3) costs us several customers

� Risk: competitor app might “steal” our customers
� Risk: if another app steals our customers, we don’t get visibility on

the media
○ But we get customers from both platforms

� Solution 2:
○ It will cost more to deliver

� We need to deliver the app in 3 months for Android
� We will need to re-write it for both platforms
� Total: 3 months + 4 to rewrite = 7 months

○ But we reach the customers of one platform soon
� We gain visibility

Antonio Martini - Associate Professor in Software Engineering

Scenarios and analysis
Market share
short-term

Market share
long-term

Costs Total

Solution
1

(we lose
market share
against
competitor)

(we deliver to both
platforms)

(lack of visibility)

(cheaper in total)

Solution
2

(we gain
market share
against
competitor)

(good visibility)

(no users in one
of the platforms)

(we need to
rewrite)

Antonio Martini - Associate Professor in Software Engineering

benefit

risk

Scenarios and analysis
Market share
short-term

Market share
long-term

Costs Total

Solution
1

(we lose
market share
against
competitor)

(we deliver to both
platforms)

(lack of visibility)

(cheaper in total)
0

Solution
2

(we gain
market share
against
competitor)

(good visibility)

(no users in one
of the platforms)

(we need to
rewrite)

+1

Antonio Martini - Associate Professor in Software Engineering

benefit

risk

Tradeoff(s) example
� We generated solutions and scenarios

1. Solution 1:
○ We take 5 months to make the product portable
○ We deliver in 5 months

2. Solution 2:
○ We deliver in 3 months
○ We make the app portable later on

� Which one do we choose?
� We choose Solution 2

○ We deliver the app in 3 months
○ We skip portability for now

� Why?
� Because it’s better according to the cost/benefit

analysis
Antonio Martini - Associate Professor in Software Engineering

System Qualities – Trade-off

Antonio Martini - Associate Professor in Software Engineering

Tradeoff:
we need to
postpone
portability

Available methodology

� ATAM
� https://resources.sei.cmu.edu/library/asset-

view.cfm?assetid=5177
� CBAM

� https://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=513476

Antonio Martini - Associate Professor in Software Engineering

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=5177
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=5177
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=513476
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=513476

Antonio Martini - Associate Professor in Software Engineering

Keeping down complexity
� We represent software with high level

entities
� Components, modules, layers, etc.

� And communication patterns
� Interfaces, Dependencies, etc.

� To make something that is very complex
understandable by humans
� To share similar mental models

Antonio Martini - Associate Professor in Software Engineering

Component
� An element that implements a set

of functionalities of features
� Examples:

� Functional: a Graphical User
Interface component
○ Where you define all the look and feel

� Business-oriented: the Cart module
○ Implements where the user put the

articles to buy

Antonio Martini - Associate Professor in Software Engineering

Component A

Components, services and APIs

Antonio Martini - Associate Professor in Software Engineering

Component A Component B

Service
C

Service
D

Service
E

Component A Component B
API BAPI A

Service
C

Service
D

Service
E

API – Application Programming
Interface

Antonio Martini - PhD in Software Engineering

Component
A

Component B

Need action
Very

complicated
code

API – Application Programming
Interface

Antonio Martini - PhD in Software Engineering

Component
A

Need action API

Component B

Very
complicated

code

External APIs

Antonio Martini - PhD in Software Engineering

Our Software
Product

Customized
content

Event-driven
content

Components

Components

Components
API

API

API

Users

GPS

Body sensors

Eye tracking

Beware of the terminology
� Modules, components, services…

� … are often confused
� … are used in different ways in different

contexts
� … are “just” containers

� Suggestion: try to understand from the
context what they refer to

Antonio Martini - Associate Professor in Software Engineering

Architecture design

� Tradeoff to reduce complexity

Antonio Martini - Associate Professor in Software Engineering

Tradeoff

Stable interfaces (APIs) Implement once (reuse)

Separation of concerns

1. Why stable APIs?

Antonio Martini - Associate Professor in Software Engineering

� If the API changes continuously of my
component

� All the other components need to
change with me!!

Component

API

2. Reuse

Antonio Martini - Associate Professor in Software Engineering

Component A

Product P1 Product P2

Component A Component A

What’s the problem with too
much reuse?
� Too many stakeholders!
� Too much coordination!

Antonio Martini - Associate Professor in Software Engineering

Component A

Product
P1

Product
P2

Product
P3

3. Good separation of concerns

� In Android, the following
architectural pattern is
recommended

� We separate three layers:
� Model:

○ Manage how all the data is stored and
accessed

� View:
○ Passively shows the data from the Model
○ Collects the events produced by the user

� e.g. the “Tap”
� ViewModel:

○ interprets the user events and what data
is needed

○ chooses the right way to show the results

Antonio Martini - Associate Professor in Software Engineering

View

ViewModel

Model

Events
Graphics

What data is needed?
What layout to show?

Data
API to access data

MVVM in Android

Antonio Martini - Associate Professor in Software Engineering

View

ViewModel

Model

Events
Graphics

What data is needed?
What layout to show?

Data
API to access data

Architecture in Android

� Architecture guidelines in Android
� https://developer.android.com/topic/architect

ure

Antonio Martini - Associate Professor in Software Engineering

https://developer.android.com/topic/architecture
https://developer.android.com/topic/architecture

Updated architecture for Android

� Essentially the same concepts

Antonio Martini - Associate Professor in Software Engineering

View

ViewModel

Model

Layers

� High level separation of concerns
� A way to reduce dependencies (only one

way)

Antonio Martini - Associate Professor in Software Engineering

User Interface

Application

Operating System

Other architectural styles

� Microservices
� Client-server
� Cloud
� …

� More in other courses (e.g. IN5140)

Antonio Martini - Associate Professor in Software Engineering

Antonio Martini - Associate Professor in Software Engineering

Another (classical) conflict
� Sales

� “we need to deliver the app fast”

� Engineers
� “We need to be able to add features quickly after

the first release”
� Or else: Maintainability

� In two words:
� Technical Debt

Antonio Martini - Associate Professor in Software Engineering

What is Technical Debt?

Antonio Martini - Associate Professor in Software Engineering

What the users see

Antonio Martini - Associate Professor in Software Engineering

What the developers see

Antonio Martini - Associate Professor in Software Engineering

What’s the problem? It works!...

� …for now…

� It might have leakages
� Every now and then, the water doesn’t flow

� It costs a lot to maintain
� Every time the plumber tries to fix it it takes days!

� It’s hard to extend
� Forget about connecting a washing machine!

Antonio Martini - Associate Professor in Software Engineering

Antonio Martini - PhD in Software Engineering

"Shipping first time code is like going into
debt”

“A little debt speeds development so long
as it is paid back promptly with a

rewrite…”

“Every minute spent on not-quite-right
code counts as interest on that debt”

Ward Cunningham

Current Definition

� In software-intensive systems, technical
debt is a design or implementation
construct that is expedient in the short
term, but sets up a technical context that
can make a future change more costly
or impossible. Technical debt is a
contingent liability whose impact is
limited to internal system qualities,
primarily maintainability and evolvability

Antonio Martini - PhD in Software Engineering

P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing Technical Debt in Software
Engineering (Dagstuhl Seminar 16162)

Current Definition

� In software-intensive systems, technical
debt is a design or implementation
construct that is expedient in the short
term, but sets up a technical context that
can make a future change more costly
or impossible. Technical debt is a
contingent liability whose impact is
limited to internal system qualities,
primarily maintainability and evolvability

Antonio Martini - PhD in Software Engineering

P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing Technical Debt in Software
Engineering (Dagstuhl Seminar 16162)

Technical Debt and software development

Antonio Martini - PhD student in Software Engineering

P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical Debt: From Metaphor to Theory
and Practice,” IEEE Software

Expensive!

The TD landscape of kinds of TD

Antonio Martini - PhD in Software Engineering

P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical Debt: From Metaphor to Theory
and Practice,” IEEE Software

Example

� Demo
� “Magic” Numbers

○ It’s Code debt

Antonio Martini - PhD in Software Engineering

Beware of the dreadful

Demo-Demon
DEMO

What was technical debt in this
example?
� Debt

� Sub-optimal solution

� Principal
� Cost of repaying (or not taking) the debt

� Interest
� Cost of impact

� Was it worth taking the debt?

Antonio Martini - PhD in Software Engineering

Example 1
� We use changes as cost
� We want to change the deck size from 40 to 52

� Debt
� Sub-optimal solution

○ Not using a constant for the deck size

� Principal
� Cost of repaying (or not taking) the debt

○ Implementing the constant in the beginning:
� +1 change

� Interest
� Cost of maintenance (or other impacts)

○ When we changed the deck size
� +5 changes

� Was it worth taking the debt?
� Principle / interest = 1/5
� We would have saved 4 changes (4/5)

Antonio Martini - PhD in Software Engineering

Example 2
� We use changes as cost
� We add a method and we want to change the deck size as in Example 1

� Debt
� Sub-optimal solution

○ Not using a constant for the deck size

� Principal
� Cost of repaying (or not taking) the debt

○ Implementing the constant in the beginning:
� +1 change

� Interest
� Cost of maintenance (or other impacts)

○ When we changed the deck size
� +6 changes

� Was it worth taking the debt?
� Principle / interest = 1/6
� We would have saved 5 changes (5/6)

Antonio Martini - PhD in Software Engineering

As the software
grows, the

interest also
grows!

Example 3
� We use changes as cost
� See example 2, but this time we run the program

� Debt
� Sub-optimal solution

○ Not using a constant for the deck size

� Principal
� Cost of repaying (or not taking) the debt

○ Implementing the constant in the beginning:
� +1 change

� Interest
� Cost of maintenance (or other impacts)

○ When we changed the deck size
� +6 changes

○ When we run the script
� There is a bug

� Was it worth taking the debt?
� Same as Example 2 but there was also the risk of bugs

Antonio Martini - PhD in Software Engineering

It’s not only
about cost

It’s also a risk!

Suggesting refactoring

� During the project, we need to refactor
� E.g. Removing technical debt

� In your project, you will get the
opportunity to refactor one or more files
during one of the activities...

� ...using AI

Antonio Martini - Associate Professor in Software Engineering

Another (funny) example of Code debt

Antonio Martini - PhD in Software Engineering

* www.dodgycoder.net/2011/11/yoda-conditions-pokemon-exception.html

Yoda Condition*

Using if(constant == variable) instead of if(variable == constant), like if(4 == foo).

Because it's like saying "if blue is the sky" or "if tall is the man".

Example of Documentation debt

Antonio Martini - PhD in Software Engineering

Ninja Comments*
Also known as invisible comments, secret
comments, or no comments.

* www.dodgycoder.net/2011/11/yoda-conditions-pokemon-exception.html

Horror Story

� Technical debt and Architecture

Antonio Martini - PhD in Software Engineering

Horror Story

� Technical debt and Architecture

Antonio Martini - PhD in Software Engineering

Optimal architectural decision

� Example:
� Standard public API

Antonio Martini - PhD in Software Engineering

Comp A

Standard API

Let’s put a
standard API

here… so later
we can update
the component
independently

During feature development…

Antonio Martini - PhD in Software Engineering

Comp A

Standard API

We need
these new

features! Our
competitor is

already
delivering

them!

Comp B

No problem, let’s
add a component B.
The teams will use
the standard API!

…with fast delivery comes…

� Deliver fast!

Antonio Martini - PhD in Software Engineering

Comp A Comp B

Standard API

Private API
(ATD)

ATD
We need

these new
features! Our
competitor is

already
delivering

them!

Fast!

We have to
deliver fast,
let’s use the
private API…
we’ll change it

later

� The violation is spreading to
many components

Antonio Martini - PhD in Software Engineering

Comp A Comp B Comp C Comp D

Standard API

Private API
(ATD)

Comp E

ATD ATD ATD ATD

…the accumulation of sub-
optimal decisions…

We have to deliver fast, let’s
add a dependency, we’ll

remove it later

We have to deliver fast, let’s
add a dependency, we’ll

remove it later

We have to deliver fast,
let’s use the private API!
We’ll change it later…

Fast!

…until, one day…
� New requirement

Antonio Martini - PhD in Software Engineering

Comp A Comp B Comp C Comp D

Standard API

Private API
(ATD)

Comp E

ATD ATD ATD ATD

We need
these new

features! Our
competitor is

already
delivering

them!

Ok, we can replace this
component. The teams used

the standard API!

…the development is not fast
anymore…
� Costly to remove the violation and

difficult to estimate the impact

Antonio Martini - PhD in Software Engineering

Comp A Comp B Comp C Comp D

Standard API

Private API
(ATD)

Comp E

ATD ATD ATD ATDOH NO! We
have to
change

everything!

We need
these new

features! Our
competitor is

already
delivering

them!

…and a crisis starts.

Antonio Martini - PhD in Software Engineering

Comp A Comp B Comp C Comp D

Standard API

Private API
(ATD)

Comp E

ATD ATD ATD ATD

Impossible to
refactor now!
We need to
deliver the
features!

We have to
refactor, but we

need time…

So should we
refactor or
continuing
with other
features?

So to sum up, what’s important
about Software Architecture?

Antonio Martini - Associate Professor in Software Engineering

Summary on Software Architecture

Antonio Martini - Associate Professor in Software Engineering

All that is important
and costly to
change later

Architecture is about
tradeoffs and

communication

Architecture is design
should reduce
complexity

The wrong tradeoffs
create dangerous

technical debt

Antonio Martini - Associate Professor in Software Engineering

� antonio.martini@ifi.uio.no

Questions?
Comments?

mailto:antonio.martini@ifi.uio.no

