Antonio Martini

Professor in Software Engineering

University of Oslo

Course IN2000
2024-02-13

ARCHITECTURE AND TECHNICAL DEBT

Antonio Martini - Associate Professor in Software Engineering

®© @®

Who is Antonio Martini?

ltalian
e No kebab pizza! ©

e 6 years in Sweden, 6 in Norway
— survived many winters!

Worked as a Software Developer
PhD in Software Engineering at Chalmers

Principal Strategic Researcher at CA
Technologies

Independent consultant
e Ericsson, Volvo IT, etc.
e AnaConDebt tool

Currently:
e Associate Professor at University of Oslo
e Startup founder ACDtek

Hobbies

e Board games, strategy computer games, pool, etc.
e Football, volleyball, beach volley, fencing

e Piano, Drumset, etc.

e Travel

...and no time for them! © artini - PhD in Software Engineering

Several projects on architecture and
technical debt

Some collaborators from industry:

‘

A BOEING COMPANY

KNowlit

Z [novit

CA LEvEns

\"
&
A\r
o
z
=

‘
VOLVO

-

V-
Tetra Pak®

Antonio Martini - PhD in Software Engineering

Agenda

® What is software architecture?

@ Thinking about architecture
e Stakeholder analysis
e Trade-offs
® Principles of Software Architecture
e Components and APlIs
e Design tradeoffs
e Architectural styles

@ Intro to Technical Debt
® Summary

@ Interacting questions during the lecture ?

® Relevant for the project and activities %

Antonio Martini - Associate Professor in Software Engineering

What is Software
Architecture?

What's the difference?

Where do we build a
park here?

e e
” - v e

Lack of Urban Plannin
Public transit, parks, schools are after thoughts.
Inefficient, siloed everyone out for themselves.
No common services.
No rules, standards or policies

Not scalable; growth is constrained

Good Urban Plannin
Future looking: planning and analysis
Efficient, governed, planned constructions
Common Services (streets, schools, utilities)
Standards (fire, safety, quality)

Organised, structured, scalable for growth

Antonio Martini - Associate Professor in Software Engineering

Software architecture is...

@ All of the followings:

e Qverall system structure

e The important stuff —
whatever that is

e Things that people perceive
as hard to change

e A set of architectural design
decisions

Software Architecture characteristics
&
4

® Multitude of stakeholders
@ Quality driven (tradeoff)

® Separation of concerns

information

® Recurring styles ,
(patternS)) Y appearance jabveahsaflgrt

® Conceptual integrity
(vision)

Antonio Martini - Associate Professor in Software Engineering

Why software architecture?

® To get a grasp of a complex system

® Facilitates the communication among the
stakeholders about their needs

® Support decisions about future development
and maintenance
e Reuse
e Budget

® Analysis of the product before it's built
e Cost reduction
e Risk reduction

Antonio Martini - Associate Professor in Software Engineering

You can’t ignore architecture

® All products HAVE an
architecture
e |t can be bad
e |t can be good

@ In all projects we SHOULD
think about architecture
e Maybe less in small projects
e Maybe more in large projects

@ Thinking about the
architecture is a necessary
(and smart) process

Antonio Martini - Associate Professor in Software Engineering

How to think about
Architecture

How to choose an architecture

@ It can be quite difficult
® Where do we start?

Antonio Martini - Associate Professor in Software Engineering

Business drives architecture

A process to think about architecture

Who?

What do they need?

What should the system do?
What qualities are important?

What should we focus on?

Antonio Martini - Associate Professor in Software Engineering

Stakeholders analysis (1)

® You might need to accommodate several
stakeholders

@® Stakeholder: “an individual, group, or organization,
who may affect, be affected by, or perceive itself to

be affected by a decision, activity, or outcome of a
project”

® Who are the main stakeholders for a game app like
Pokemon Go?

e \What are their needs?
e Write down 2
o <Stakeholder> : <Need>

Antonio Martini - Associate Professor in Software Engineering

Stakeholder analysis (2)

® Let’s consider the three stakeholders below:

e User of the app
e Sales

e Engineers

Needs examples

® Sales’ needs:
* “we need to deliver the app fast”

e “we need the app to be available for both
Android and iOS” , =

® Users’ needs

e “we want to have an experience without bugs”
e “we want it to get the information in real time” %

® Engineers’ needs
e “we need to test the app easily”

* “we need to be able to deploy new features
quickly after the first release”

Antonio Martini - Associate Professor in Software Engineering

System Qualities

PORTABILITY

Installability
Replaceability A
Adaptability

N\
MAINTAINABILITY \
Modularity
Reuseability ISO/I EC
Modifiability .
Mot 25010:2011
Analyzability Systems and software
Quality Requirements
and Evaluation
(SquaRE) products
model
SECURITY
Integrity :
Confidentiality ,‘f
Non-repudiation /
Accountability ——
Authenticity RELIABILITY
Availability
Recoverability
Maturity

Fault tolerance

https://www.iso.org/standard/22749.html

FUNCTIONAL SUITABILITY

Functional correctness
Functional completeness
Functional appropriateness

Capacity
Resource utilization
Time behavior

COMPATIBILITY

Interoperability
Co-existence

USABILITY

Operability
User error protection

Antonio Martini - Associate Professor in Software Engineering

PERFORMANCE EFFICIENCY

Qualities (non-functional)

® Maintainability - the ease with which a product can be maintained
e E.g. Fix defects, meet new requirements, etc.

@ Performance — how efficiently software can perform a task
e E.g. How long does it take to load a web-page?

® Security — how solid the system is in protecting from attacks by malicious actors or by
disruptions
e E.g. Confidential data leaks

@ Reliability - ability of equipment to function without failure
e E.g.Bugs

@ Usability - perform the tasks safely, effectively, and efficiently while enjoying the experience
e E.g. Easy-to-use Ul

® Compatibility - the ability of software and hardware from different sources to work together

without having to be altered to do so
e E.g. New software that runs on older cars

@ Portability - easily made to run on different platfotms
e E.g. Android, IOS, etc.

Antonio Martini - Associate Professor in Software Engineering

Tag your tasks

130 Open 659 Closed Author ~
©

Il t3c remove perl dependency and references -~ ansible (improvement | (tech debt) | unused code
#7829 opened 2 weeks ago by jpappa200 - Changes requested 1 of 4 tasks

Il Fix parameters permission conditional x (lowimpact) (tech debt) (Traffic Ops
#7739 opened on Aug 22 by ericholguin 1 of 4 tasks

() Ansible Playbooks should upgrade to APIv4 ansible | highimpact | { improvement ' (medium difficulty)
#7654 opened on Jul 18 by rimashah25 C:D TO API v3 remo...

@ Remove Traffic Ops APIv3 | improvement ' (medium difficulty) (tech debt | Traffic Ops
#7653 opened on Jul 18 by rimashah25 Cl'D TO API v3 remo...

[: Refactor by renaming CCR to Traffic Router/TR ~ (tech debt
#7193 opened on Nov 14, 2022 by rimashah25 - Draft O 4 tasks done

(© Testing Delivery Services are not full representations low difficulty | (low impact) (tech debt) | tests
#7189 opened on Nov 14, 2022 by ocket8888

Il Add blueprint for a Global Configuration object -~ | blueprint | (tech debt
#7015 opened on Aug 11, 2022 by ocket8888 Q 4 tasks done

Antonio Martini - Associate Professor in Software Engineering

Label ~ Proj

tech debt

TO Client (Go)

From needs to qualities - sales

® Sales’ needs: %5 3’
_ s
1. “we need to deliver the app fast” Y= ,(‘V

2. “we need the app to be available for both %
Android and iOS”

® Qualities?
1. No quality — Time constraint
2. Portability

Antonio Martini - Associate Professor in Software Engineering

System Qualities - Sales

PORTABILITY FUNCTIONAL SUITABILITY
— —

\
\ /
nstallabili \ / .
tly \\ / Functional correctness
-1 \ /
Replaceability \\ Functional completeness
Adaptability Functional appropriateness

MAINTAINABILITY
Mo ciny PERFORMANCE EFFICIENCY
Reuseability ISO/I Ec
Modifiability i Capacity
Testability 2 50 10' 20 1 1 Resource utilization
Analyzability Systems and software Time behavior
Quality Requirements
and Evaluation
(SquaRE) products
model
— COMPATIBILITY
SR AR Interoperability
Integrity Co-existence
Confidentiality /
/
Non-repudiation /£
Accountability I USABILITY
Authenticity RELIABILITY Operability
Availability User error protection
Recoverability
Maturity

Fault tolerance

Antonio Martini - Associate Professor in Software Engineering

From needs to qualities - users

® Users’ needs
1. “we want to have an experience without
bugs”
2. "“we want it to see the real time results
quickly”

® Qualities?
1. Reliability
2. Performance

Antonio Martini - Associate Professor in Software Engineering

System Qualities - Users

PORTABILITY FUNCTIONAL SUITABILITY
Installability \ / .

i 'Q'l\ _f Functlonal correctness
Replaceability \ Functional completeness

Adaptability Functional appropriateness

MAINTAINABILITY
Modullariey PERFORMANCE EFFICIENCY
Reuseability ISO/I Ec
Modifiability s apa
Testability 2 50 10' 20 1 1 Resource utilization
Analyzability Systems and software Time behavior
Quality Requirements
and Evaluation
(SquaRE) products
model
— COMPATIBILITY
SR AR Interoperability
Integrity Co-existence

Confidentiality
Non-repudiation
Accountability
Authenticity

USABILITY

Operability
User error protection

RELIABILITY
Recoverability
Maturity

Fault tolerance

Antonio Martini - Associate Professor in Software Engineering

From needs to qualities - engineers

® Engineers’ needs
1. “We need to test the app easily”

2. “We need to be able to deploy new features
quickly after the first release”

® Qualities?
1. Testability — Mantainability
2. Modlifiability — Maintainability

Antonio Martini - Associate Professor in Software Engineering

ystem Qualities - Engineers

PORTABILITY 7 FUNCTIONAL SUITABILITY

Functional correctness
Functional completeness
Functional appropriateness

Installability \\
Replaceability \
Adaptability

MAINTAINABILITY

Modularity

Modifiabilr
Testability

PERFORMANCE EFFICIENCY

ISO/IEC
25010:2011

Systems and software
Quality Requirements
and Evaluation
(SquaRE) products
model

Capacity
Resource utilization
Time behavior

COMPATIBILITY

SECURITY

Interoperability

Integrity - Co-existence
Confidentiality y N\ o
Non-repudiation
Accountability e USABILITY
Authenticity RELIABILITY Operability

Availability User error protection

Recoverability

Maturity

Fault tolerance

Antonio Martini - Associate Professor in Software Engineering

System

PORTABILITY

nstallability

Replaceability 3\,“
Adaptability

MAINTAINABILITY

Modularity

Vioditiabilr
Testability

ISO/IEC
25010:2011

Systems and software
Quality Requirements
and Evaluation
(SquaRE) products
model

[E—

SECURITY

Integrity
Confidentiality
Non-repudiation
Accountability
Authenticity

RELIABILITY

Recoverability
Maturity
Fault tolerance

Qualities - All stakeholders

FUNCTIONAL SUITABILITY

Functional correctness
Functional completeness
Functional appropriateness

Resource utilization
Time behavior

COMPATIBILITY

Interoperability
Co-existence

USABILITY

Operability
User error protection

Antonio Martini - Associate Professor in Software Engineering

PERFORMANCE EFFICIENCY

Can we say yes

to everyone? = M A RI? FB’EY

Very often the
answer Is

Are there some conflicts?

® Example:

® Sales’ needs

1. “we need to deliver the app fast”

2. “we need the app to be available for both Android
and iOS”

® Or else:
1. Budget constraint
2. Portability

® Can we achieve both? We need to
investigate more (e.g. with a workshop)

Antonio Martini - Associate Professor in Software Engineering

Can we say yes to both needs?

® We discuss the needs together with the
stakeholders
We discover that:
e Sales want to deliver in 3 months

e To make the app portable both for Android and iOS, we
need to:

o Use special libraries
o Learn more skills
o Jest in more environments

e Conclusion: it takes 5 months

® The answer is NO. What do we do?
e We ask the stakeholders to prioritize the needs
e We reach a tradeoff

Antonio Martini - Associate Professor in Software Engineering

What’s the best architecture?

® The best architecture is the best tradeoff
among several qualities according to the
business goals of the stakeholders

PORTABILITY FUNCTIONAL SUITABILITY

lns(allabilif)f Functional | correctness

Replaceability Fu | compl

Adaptability Fun | approp!
MAINTAINABILITY
Modularity ERF A E EFFICIE
Reuseability ISO/IEC ‘) - :
Modifiability - Capacity
Testability 2 5010'20 11 Resou ilizati

el Time behavior

Interoperability
Co-existence

Analyzability Systems and software
Quality Requirements
and Evaluation
(SquaRE) products
model
. COMPATIBILITY
JRITY

Integrity

Confidentiality

Non-re| pudiation

h us

Accountability

Authenticity RELIABILITY Operability
Availability U P
Recoverability
Maturity

It toleranc

Antonio Martini - Associate Professor in Software Engineering

Tradeoff(s)

® We generate solutions and scenarios

1. Solution 1:
o It takes 5 months to make the product portable
o We deliver in 5 months
2. Solution 2:
o We deliver in 3 months
o We make the app portable later

® Which one do we choose”? ?
® Why?

Antonio Martini - Associate Professor in Software Engineering

Cost/Benefit and risk analysis

® Which solution is best?

e Solution 1:

o Waiting 2 more months (5-3) costs us several customers
» Risk: competitor app might “steal” our customers

* Risk: if another app steals our customers, we don’t get visibility on
the media

o But we get customers from both platforms

e Solution 2:

o It will cost more to deliver
* We need to deliver the app in 3 months for Android
* We will need to re-write it for both platforms
e Total: 3 months + 4 to rewrite = 7 months
o But we reach the customers of one platform soon
e We gain visibility

Antonio Martini - Associate Professor in Software Engineering

Solution
1

Solution
2

] [—

(we lose
market share
against
competitor)

(we gain
market share
against
competitor)

mm [ISK

Scenarios and analysis %"

(we deliver to both (cheaper in total)
platforms)

I

(lack of visibility)

(good visibility) (we need to

rewrite)
| I—

(no users in one
of the platforms)

Antonio Martini - Associate Professor in Software Engineering

Solution
1

Solution
2

] [—

(we lose
market share
against
competitor)

(we gain
market share
against
competitor)

m [SK

Scenarios and analysis %"

(we deliver to both (cheaper in total) @

platforms)
I

(lack of visibility)

(good visibility) (we need to .

rewrite)
| I—

(no users in one
of the platforms)

Antonio Martini - Associate Professor in Software Engineering

Tradeoff(s) example

® We generated solutions and scenarios

1. Solution 1:
o We take 5 months to make the product portable
o We deliver in 5 months
2. Solution 2:
o We deliver in 3 months
o We make the app portable later on

® Which one do we choose?

e \We choose Solution 2
o We deliver the app in 3 months
o We skip portability for now

® Why?

e Because it's better according to the cost/benefit
analysis

Antonio Martini - Associate Professor in Software Engineering

System Qualities - Trade-off
" Tradeoft.

we need to
postpone
portability

FUNCTIONAL SUITABILITY

Functional correctness
Functional completeness
Functional appropriateness

ISO/IEC
25010:2011

Systems and software
Quality Requirements
and Evaluation
(SquaRE) products
model

PERFORMANCE EFFICIENCY

Resource utilization
Time behavior

Modifiability
Testabili

COMPATIBILITY

[E—

SECURITY Interoperability
Ity Co-existence
Confidentiality /

/
Non-repudiation /

Accountability USABILITY

Authenticity RELIABILITY Operability

User error protection

Recoverability
Maturity
Fault tolerance

Antonio Martini - Associate Professor in Software Engineering

Available methodology

® ATAM

@ CBAM

Antonio Martini - Associate Professor in Software Engineering

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=5177
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=5177
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=513476
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=513476

Principles of Software
Architecture

Keeping down complexity

® We represent software with high level
entities

e Components, modules, layers, etc. : ‘

® And communication patterns

e |Interfaces, Dependencies, etc. S

® To make something that is very complex
understandable by humans

e To share similar mental models

Antonio Martini - Associate Professor in Software Engineering

Component -

® An element that implements a set
of functionalities of features

® Examples:

e Functional: a Graphical User
Interface component

o Where you define all the look and feel

e Business-oriented: the Cart module

o Implements where the user put the
articles to buy \Y

Antonio Martini - Associate Professor in Software Engineering

Components, services and APIs

t . LIRS O
&

~
=
=)

Antonio Martini - Associate Professor in Software Engineering

APl - Application Programming
Interface

Antonio Martini - PhD in Software Engineering

APl - Application Programming
Interface

Antonio Martini - PhD in Software Engineering

External APIs

Beware of the terminology

® Modules, components, services...

® ... are often confused

@ ... are used in different ways in different
contexts

@ ... are “just” containers

® Suggestion: try to understand from the
context what they refer to

Antonio Martini - Associate Professor in Software Engineering

Architecture design

® Tradeoff to reduce complexity

Separation of concerns

Stable interfaces (APIs)

Antonio Martini - Associate Professorin Software Engineering

Implement once (reuse)

1. Why stable APIs?

@ If the APl changes continuously of my
component

@ All the other components need to
change with me!!

Antonio Martini - Associate Professor in Software Engineering

2. Reuse

Antonio Martini - Associate Professor in Software Engineering

What's the problem with too
much reuse?

® Too many stakeholders!
® Too much coordination!

]]

3. Good separation of concerns

@ In Android, the following
architectural pattern is
recommended

® We separate three layers:

e Model:
o Manage how all the data is stored and
accessed
e View:
o Passively shows the data from the Model
o Collects the events produced by the user
e e.g.the “Tap”
e ViewModel:
o interprets the user events and what data
is needed
o chooses the right way to show the results

Antonio Martini - Associate Professor in Software Engineering

MVVM in Android

Activity / Fragment

l L 3

iveData

Model Remote Data Source

Antonio Martini - Associate Professor in Software Engineering

Architecture in Android

® Architecture guidelines in Android

Antonio Martini - Associate Professor in Software Engineering

https://developer.android.com/topic/architecture
https://developer.android.com/topic/architecture

Updated architecture for Android

@ Essentially the same concepts

Ul elements View

State holders
|

Domain Layer (optional)

Domain Layer (optional)

Data Layer Data Layer

Repositories

Data Sources

Antonio Martini - Associate Professor in Software Engineering

Layers

@ High level separation of concerns

® A way to reduce dependencies (only one
way)

Antonio Martini - Associate Professor in Software Engineering

Other architectural styles

® Microservices
® Client-server

® Cloud
® ...

® More in other courses (e.g. IN5140)

Antonio Martini - Associate Professor in Software Engineering

_ A

Technical Debt

Another (classical) conflict

® Sales
® “we need to deliver the app fast”

® Engineers

® “We need to be able to add features quickly after
the first release”

® Or else: Maintainability

® In two words:
® Technical Debt

Antonio Martini - Associate Professor in Software Engineering

What is Technical Debt?

Antonio Martini - Associate Professor in Software Engineering

What the users see

Antonio Martini - Associate Professor in Software Engineering

at the developers see

Antonio Martini - Associate Professor in Software Engineering

What's the problem? It works!...

® ...for now...

@ It might have leakages
e Every now and then, the water doesn't flow

@ It costs a lot to maintain
e Every time the plumber tries to fix it it takes days!

@ It's hard to extend
e Forget about connecting a washing machine!

Antonio Martini - Associate Professor in Software Engineering

Ward Cunningham

"Shipping first time code is like going into
debt”

“A little debt speeds development so long
as it is paid back promptly with a
rewrite...”

“Every minute spent on not-quite-right
code counts as interest on that debt”

Current Definition

® In software-intensive systems, technical
debt is a design or implementation
construct that is expedient in the short
term, but sets up a technical context that
can make a future change more costly
or impossible. Technical debt is a
contingent liability whose impact is
limited to internal system qualities,
primarily maintainability and evolvability

P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing Technical Debt in Software f
Engineering (Dagstuhl Seminar 16162)

Antonio Martini - PhD in Software Engineering

Current Definition

® technical
debt design or implementation
expedient short
term

future change more costly

P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing Technical Debt in Software 5
Engineering (Dagstuhl Seminar 16162)

Antonio Martini - PhD in Software Engineering

Technical Debt and software development

Visible

Architectural,
Structural

features
—

s .
Technical
Value Debt Expensivel!

Positive
Value

P. Kruchten, R. L. Nord, and |. Ozkaya, “Technical Debt: From Metaphor to The /%

Yl

and Practice,” IEEE Software

Antonio Martini - PhD student in Software Engineering

The TD landscape of kinds of TD

architecture
Architectural debt Low internal quality

New feat

Additional functionality SEROANE 0o Code complexity Code smells
Test debt Coding style violations

Documentation debt

Technological gap

Evolution issues: evolvability

P. Kruchten, R. L. Nord, and |. Ozkaya, “Technical Debt: From Metaphor to The
and Practice,” IEEE Software -

Antonio Martini - PhD in Software Engineering

® Demo

e “Magic” Numbers

o It's Code debt

architecture

Architectural debt Low internal quality

Structural debt Code complexity { |esmels Low external quality

New features

Additional functionality
Test debt Coding style vio| jns

Documentation debt

Technological gap

Evolution issues: evolvability

Beware of the dreadful

Demo-Demon

Antonio Martini - PhD in Software Engineering

What was technical debt in this
example?

® Debt

e Sub-optimal solution

® Principal
e Cost of repaying (or not taking) the debt

® Interest
e Cost of impact

® Was it worth taking the debt? ?

Antonio Martini - PhD in Software Engineering

Example 1

® We use changes as cost
® We want to change the deck size from 40 to 52

® Debt

e Sub-optimal solution
o Not using a constant for the deck size

® Principal

e Cost of repaying (or not taking) the debt

o Implementing the constant in the beginning:
e +1 change

® Interest

e Cost of maintenance (or other impacts)

o When we changed the deck size
e +5 changes

® Was it worth taking the debt?

e Principle / interest = 1/5
e \We would have saved 4 changes (4/5)

Antonio Martini - PhD in Software Engineering

Example 2

® We use changes as cost
® We add a method and we want to change the deck size as in Example 1

® Debt

e Sub-optimal solution
o Not using a constant for the deck size -

® Principal l l! I‘ ‘! !!‘I"!‘!

e Cost of repaying (or not taking) the debt g I'OWS, the

o Implementing the constant in the beginning:
T e interest also
grows!

® Interest

e Cost of maintenance (or other impacts)

o When we changed the deck size
e +6 changes

® Was it worth taking the debt?

e Principle / interest = 1/6
e \We would have saved 5 changes (5/6)

Antonio Martini - PhD in Software Engineering

Example 3

We use changes as cost
® See example 2, but this time we run the program

® Debt

e Sub-optimal solution
o Not using a constant for the deck size

® Principal _|
e Cost of repaying (or not taking) the debt

o Implementing the constant in the beginning:
* +1 change about cost
, n
© Interest It's also a risk!
e Cost of maintenance (or other impacts)

o When we changed the deck size
e +6 changes

o When we run the script
e There is a bug

® Was it worth taking the debt?
e Same as Example 2 but there was also the risk of bugs

Antonio Martini - PhD in Software Engineering

Suggesting refactoring

C— -

@ During the project, we need to refactor
e E.g. Removing technical debt

@ In your project, you will get the
opportunity to refactor one or more files
during one of the activities...

@ ...using Al

Antonio Martini - Associate Professor in Software Engineering

Another (funny) example of Code debt

Yoda Condition*®

Using if(constant == variable) instead of if(variable == constant), like if(4 == foo).

Because it's like saying "if blue is the sky" or "if tall is the man". ‘

* www.dodgycoder.net/2011/11/yoda-conditions-pokemon-exception.htmi

Antonio Martini - PhD in Software Engineering

Example of Documentation debt

Ninja Comments™®

Also known as invisible comments, secret
comments, or no comments.

* www.dodgycoder.net/2011/11/yoda-conditions-pokemon-exception.htmi

Antonio Martini - PhD in Software Engineering

Horror Story

® Technical debt and Architecture

New features

Additional functionality

architecture

Architectural Low internal quality

Structura| Code complexity Code smells

Test debt Coding style violations
Documentation debt

Antonio Martini - PhD in Software Engineering

Defects

Low external quality

Horror Story

® Technical debt and Architecture

New features

Additional functionality

architecture

Architectural Low internal quality

Structura| Code complexity Code smells

Test debt Coding style violations
Documentation debt

Antonio Martini - PhD in Software Engineering

Defects

Low external quality

Optimal architectural decision

® Example:
e Standard public API

| Iere. .. S0 |a|er

Standard API we can update
the component

. Independently

Antonio Martini - PhD in Software Engineering

During feature development...

Standard API

Antonio Martini - PhD in Software Engineering

...with fast delivery comes...

® Deliver fast!

We have to
Standard API deliver fast,
let’'s use the
private API...

Private API we’ll change it
ATD later

Antonio Martini - PhD in Software Engineering

...the accumulation of sub-
optimal decisions...

® The violation is spreading to
many components

ii let’s use the private API!
We'll change it later... |

Antonio Martini - PhD in Software Engineering

Standard API

Private API
ATD

...until, one day...

® New requirement

Standard API

Private APl W
ATD

Antonio Martini - PhD in Software Engineering

..the development is not fast ElRo

B/ -
anymore... 2

® Costly to remove the violation and gg
difficult to estimate the impact

.
{ ATD

) ATD |

A

have to
change
everything!

o8
%%%

Standard API

Antonio Martini - PhD in Software Engineering

[« [«
refactor or . X ATD
continuing

with other %
features? Standard AP % % %

Prlvate AP

gl/,:

Antonio Martini - PhD in Software Engineering

So to sum up, what's important
about Software Architecture? o

Antonio Martini - Associate Professor in Software Engineering

Summary on Software Architecture

tAS O
< X2
&7 ©
= 2
Z
=]

4
QDCCC$

Antonio Martini - Associate Professor in Software Engineering

Antonio Martini - Associate Professor in Software Engineering

mailto:antonio.martini@ifi.uio.no

