
Antonio Martini

Associate Professor in Software Engineering
Oslo University

Principal, Strategic Researcher
CA Technologies, Barcelona, Spain

Course IN2001
2018-02-13

Antonio Martini - Associate Professor in Software Engineering

Who is Antonio Martini?

Antonio Martini - PhD in Software Engineering

� Italian
� No kebab pizza! J
� 7 years in Scandinavia– survived many winters!

� Previously
� Worked as a Software Developer
� PhD in Software Engineering
� Postdoc at Chalmers, Gothenburg
� Independent Consultant

○ project with Ericsson
○ project with Volvo Group

� Currently:
� Principal, Strategic Researcher at CA

Technologies
� Associate Professor at Oslo U.
� Independent Consultant

� Hobbies
� Board games, strategy computer games, pool, etc.
� Football, volleyball, beach volley, fencing
� Piano, Drumset, etc.
� Travel!
� …and no time for them! J

Worked with and for several
companies

Antonio Martini - PhD in Software Engineering

Antonio Martini - Associate Professor in Software Engineering

What’s the difference?

Antonio Martini - Associate Professor in Software Engineering

Where can you run public transport efficiently?
Which city is easier to grow?
Where do you have a good emergency system?
…

Software architecture is…

� All of the followings:

� Overall system structure

� A set of architectural design
decisions

� Things that people perceive
as hard to change

� The “important stuff” –
whatever that is

Antonio Martini - Associate Professor in Software Engineering

Software Architecture characteristics

� Multitude of stakeholders

� Quality driven (tradeoff)

� Separation of concerns

� Recurring styles
(patterns)

� Conceptual integrity
(vision)

Antonio Martini - Associate Professor in Software Engineering

Why software architecture?
� To get a grasp of a complex system
� Facilitates the communication among the

stakeholders about their needs
� Support decisions about future

development and maintenance
� Reuse
� Budget

� Analysis of the product before it’s built
� Cost reduction
� Risk reduction

Antonio Martini - Associate Professor in Software Engineering

Size does(n’t) matter
� All products HAVE an architecture

� It can be bad
� It can be good

� In all projects we SHOULD think about
architecture
� Less in small projects
� More in large projects

� Thinking about the architecture is a necessary
process

Antonio Martini - Associate Professor in Software Engineering

Don’t undervalue architecture...

Antonio Martini - Associate Professor in Software Engineering

Antonio Martini - Associate Professor in Software Engineering

How to choose an architecture

� It can be quite difficult
� Where do we start?

Antonio Martini - Associate Professor in Software Engineering

Business drives architecture

Antonio Martini - Associate Professor in Software Engineering

Business goals

Architecture

A process to think about architecture

Antonio Martini - Associate Professor in Software Engineering

Stakeholders analysis

Business goals

Qualities

Tradeoffs

Solution

Architectural Significant
requirements

Who?

What do they need?

What should the system do?

What qualities are important?

What should we focus on?

How should we implement it?

Stakeholders analysis (1)
� You might need to accommodate several

stakeholders

� Stakeholder: “an individual, group, or
organization, who may affect, be affected
by, or perceive itself to be affected by a
decision, activity, or outcome of a project”

� Who are the main stakeholders of your
app?

Antonio Martini - Associate Professor in Software Engineering

Stakeholders analysis (2)
� Let’s consider the three stakeholders below:

� User of the app

� Sales

� Engineers

� What are their needs?
� Write down 2 important needs for each

stakeholder
Antonio Martini - Associate Professor in Software Engineering

Needs examples
� Sales’ needs:

� “we need to deliver the app fast”
� “we need the app to be available for both

Android and iOS”

� Users’ needs
� “we want to have an experience without bugs”
� “we want to get the information quickly”

� Engineers’ needs
� “We need to test the app easily”
� “We need to be able to add features quickly

after the first release”

� Example of a need that we don’t have:
Security

Antonio Martini - Associate Professor in Software Engineering

System Qualities

Antonio Martini - Associate Professor in Software Engineeringhttps://www.iso.org/standard/22749.html

From needs to qualities - sales

� Sales’ needs:
1. “we need to deliver the app fast”
2. “we need the app to be available for both

Android and iOS”

� Qualities?
1. No quality – Budget constraint
2. Portability

Antonio Martini - Associate Professor in Software Engineering

System Qualities - Sales

Antonio Martini - Associate Professor in Software Engineering

From needs to qualities - users

� Users’ needs
1. “we want to have an experience without

bugs”
2. “we want to get the information quickly”

� Qualities?
1. Reliability
2. Efficiency (Performance)

Antonio Martini - Associate Professor in Software Engineering

System Qualities – Users

Antonio Martini - Associate Professor in Software Engineering

From needs to qualities - engineers

� Engineers’ needs
1. “We need to test the app easily”
2. “We need to be able to add features quickly

after the first release”

� Qualities?
1. Testability – Mantainability
2. Changeability – Maintainability

Antonio Martini - Associate Professor in Software Engineering

System Qualities - Engineers

Antonio Martini - Associate Professor in Software Engineering

System Qualities – All stakeholders

Antonio Martini - Associate Professor in Software Engineering

Can we afford to say yes to everyone?

� Are there some conflicts?

� Example?
� Sales’ needs

1. “we need to deliver the app fast”
2. “we need the app to be available for both Android

and iOS”
� Or else:

1. Budget constraint
2. Portability

� Can we achieve both?

Antonio Martini - Associate Professor in Software Engineering

Can we say yes to both needs?

� We investigate further the details.
We discover that:
� Sales want to deliver in 3 months
� To make the app portable both for Android and

iOS, we need to:
○ Use special libraries
○ Learn more skills
○ Test in more environments

� Conclusion: it takes 5 months
� The answer is NO. What do we do?

� We ask the stakeholders to prioritize the needs
� We reach a tradeoff

Antonio Martini - Associate Professor in Software Engineering

Tradeoff(s)
� We generate solutions and scenarios

1. Solution 1:
○ We take 5 months to make the product

portable
○ We deliver in 5 months

2. Solution 2:
○ We deliver in 3 months
○ We make the app portable later on

� Which one do we choose? Why?

Antonio Martini - Associate Professor in Software Engineering

Cost/Benefit and risk analysis
� Which solution is best?

� Solution 1
○ Waiting 2 months more (5-3) costs us several

customers
� Risk: competitor app might “steal” our customers
� Risk: if another app steals our customers we don’t get

visibility in media
� Solution 2

○ It will cost more to deliver
� We need to deliver the app in 3 months for Android
� We will need to re-write it for both platforms
� Total: 3 months + 4 to rewrite = 7 months

○ But we reach the customers of one platform soon
� We gain visibility

Antonio Martini - Associate Professor in Software Engineering

Scenarios and analysis
Benefit:
Users short-
term

Benefit:
User long-term

Cost Total

Solution
1

--
(vs competitor)

++
(both platforms)

-
(lack of visibility)

+
(cheaper in total)

0

Solution
2

++
(vs competitor)

+
(visibility)

-
(no users in one
platform)

-
(rewrite)

+1

Antonio Martini - Associate Professor in Software Engineering

Tradeoff(s) example
� We generated solutions and scenarios

1. Solution 1:
○ We take 5 months to make the product portable
○ We deliver in 5 months

2. Solution 2:
○ We deliver in 3 months
○ We make the app portable later on

� Which one do we choose?
� We choose Solution 2

○ We deliver the app in 3 months
○ We skip portability for now

� Why?
� Because it’s better according to the cost/benefit

analysis
Antonio Martini - Associate Professor in Software Engineering

System Qualities – All stakeholders

Antonio Martini - Associate Professor in Software Engineering

Tradeoff:
we need to
postpone
portability

Are there other conflicts?
� Sales’ needs:

� “we need to deliver the app fast”
� “we need the app to be available for both

Android and iOS”

� Users’ needs
� “we want to have an experience without

bugs”
� “we want to get the output quickly”

� Engineers’ needs
� “We need to test the app easily”
� “We need to be able to add features

quickly after the first release”
Antonio Martini - Associate Professor in Software Engineering

Another (classical) conflict
� Sales

� “we need to deliver the app fast”

� Engineers
� “We need to be able to add features quickly after

the first release”
� Or else: Maintainability

� We will talk about this later on
� Technical Debt

Antonio Martini - Associate Professor in Software Engineering

Antonio Martini - Associate Professor in Software Engineering

What does it mean Maintainable code?

� Changeable
� Testable
� …

� We need a good Separation of Concerns
� Not all the code in one file

○ E.g. an Activity
� Separate in different parts of the system (modules)

what concerns different aspects of the system
� E.g.

○ The data (database access)
○ The view (the user interface)

Antonio Martini - Associate Professor in Software Engineering

Good separation of concerns
� In Android the MVP architectural

pattern is recommended
� We separate three layers:

� Model:
○ Manage how all the data is stored and

accessed
� View:

○ Passively shows the data from the Model
○ Collects the events produced by the user

� e.g. the “Tap”
� Presenter:

○ interprets the user events and what data
is needed

○ chooses the right way to show the results
Antonio Martini - Associate Professor in Software Engineering

View

Presenter

Model

Events
Graphics

What data is needed?
What layout to show?

Data
API to access data

Architecture and MVP in Android

� Architecture guidelines in Android
� https://developer.android.com/topic/libraries/

architecture/guide.html#recommended_app
_architecture

� Hands-on example of MVP on the web
� https://medium.com/@cervonefrancesco/mo

del-view-presenter-android-guidelines-
94970b430ddf

Antonio Martini - Associate Professor in Software Engineering

https://developer.android.com/topic/libraries/architecture/guide.html
https://medium.com/@cervonefrancesco/model-view-presenter-android-guidelines-94970b430ddf

ViewA few guidelines (1)
1. Improve Testability

� Write a “dumb View”
○ You don’t have to test a complex

framework (Activity, Framework, …)
○ You only test your presenter (which

you write yourself)
○ E.g.

� When you write the code to execute for a
button, do not write it in the Activity, but
call a method in the Presenter

Antonio Martini - Associate Professor in Software Engineering

Fragment

Button “Go”

Code:
while {…}
if {…}

call

Presenter
MyPresenter Class

Code:
public void tappedButtonGo{

while () {
if () {…}

}
}

A few guidelines (2)

� Make Presenter Framework-Independent
� Do not depend on Android classes when writing

the Presenter
○ Much better to test!
○ Do not need an emulator

Antonio Martini - Associate Professor in Software Engineering

A few guidelines (3)

� Define naming conventions
� Mainly 2 categories

○ Actions from the Presenter
� load(), etc.

○ User Events interpreted by the Presenter
� buttonGoPressed(), etc.

Antonio Martini - Associate Professor in Software Engineering

Other guidelines…
� You might find a lot of guidelines

� many might be useful
○ but not necessarily for this project

� some are context-dependent
○ only worth for some kinds of Apps

� Choose wisely!
� you won’t be able to have a perfect architecture the

first (few) time(s) you implement an App
� but it’s worth thinking about a few important

guidelines from the beginning

� You will see a more hands-on example in the
next lecture given by Thomas Lindsjørn

Antonio Martini - Associate Professor in Software Engineering

MVP in your App (Android Arch.)

Antonio Martini - Associate Professor in Software Engineering

View

Presenter

Model

Events
Graphics

What data is needed?
What layout to show?

Data
API to access data

MVP in your App (next lecture)

Antonio Martini - Associate Professor in Software Engineering

View

Presenter

Model

Events
Graphics

What data is needed?
What layout to show?

Data
API to access data

Antonio Martini - Associate Professor in Software Engineering

A (classical) conflict among
stakeholders

� Sales
� “we need to deliver the app fast”

� Engineers
� Maintainability

� What should we do?

Antonio Martini - Associate Professor in Software Engineering

After the investigation
� Sales

� “we need to deliver the app fast”
� We need to deliver in 3 months

� Engineers
� Maintainability

� 2 solutions:
1. We can deliver in 2 months without

a good architecture (MVP)
2. We can deliver in 3 months and 2 weeks

with MVP

� What should we do? How to quantify the cost/benefit?
Antonio Martini - Associate Professor in Software Engineering

Architectural Technical Debt

� If we take the decision of solution 1, we
accumulate Architectural Technical Debt

� But what does it mean?

� Let’s start from the beginning…

Antonio Martini - Associate Professor in Software Engineering

Antonio Martini - PhD in Software Engineering

Ward Cunningham

Antonio Martini - PhD in Software Engineering

"Shipping first time code is like going into
debt”

“A little debt speeds development so long
as it is paid back promptly with a

rewrite…”

“Every minute spent on not-quite-right
code counts as interest on that debt”

Ward Cunningham

Current Definition

� In software-intensive systems, technical
debt is a design or implementation
construct that is expedient in the short
term, but sets up a technical context that
can make a future change more costly
or impossible. Technical debt is a
contingent liability whose impact is
limited to internal system qualities,
primarily maintainability and evolvability

Antonio Martini - PhD in Software Engineering

P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing Technical Debt in Software
Engineering (Dagstuhl Seminar 16162)

Current Definition

� In software-intensive systems, technical
debt is a design or implementation
construct that is expedient in the short
term, but sets up a technical context that
can make a future change more costly
or impossible. Technical debt is a
contingent liability whose impact is
limited to internal system qualities,
primarily maintainability and evolvability

Antonio Martini - PhD in Software Engineering

P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing Technical Debt in Software
Engineering (Dagstuhl Seminar 16162)

What is technical debt?
� Debt = sub-optimal solution

� Save time by non-applying the optimal solution
○ You gain a benefit now (borrow money)
○ but you pay the consequences later (you will pay

the interest)

Antonio Martini - PhD in Software Engineering

First of all: What is Technical Debt?

Antonio Martini - PhD student in Software Engineering

P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical Debt: From Metaphor to Theory
and Practice,” IEEE Software

Expensive!

Credit Card example

� You pay 100 $ at the shop
with your credit card instead of
using cash
� You borrow money from the bank

� Next month, you receive the bill of 1100 $
� The interest is 1000% per month
� You probably did not know the interest…?
� Would you have borrow the money with Credit Card

if you knew the interest?

Antonio Martini - PhD in Software Engineering

Credit Card in Software Development
� Technical sub-optimal solutions are like the debt

in the credit card.
� But everyone involved needs to know how much

is the interest
� To communicate the risk of high interest when

we borrow quality, we use “Technical Debt”

Antonio Martini - PhD in Software Engineering

Technical
Issue

Technical
Debt Interest Budget

Decisions

Think as

Understand,
calculate and
communicate

Repay
the debt

What is technical debt in practice?
� TD includes internal quality issues, not external quality

� TD is not a bug!

� External quality might be influenced by internal quality

� Example: it might be more difficult to fix a bug because of the

technical debt

Antonio Martini - PhD in Software Engineering

Internal Quality External Quality

Technical Debt

Includes

Effects perceived by

the organization

• Productivity

• Reusability

• ...

Affects

Effects perceived by

the customer

• Bugs

• Usability

• …

Includes

� TD includes internal quality issues, not external quality

� TD is not a bug!

� External quality might be influenced by internal quality

� Example: it might be more difficult to fix a bug because of the

technical debt

Antonio Martini - PhD in Software Engineering

Internal Quality External Quality

Technical Debt

Includes

Effects perceived by

the organization

• Productivity

• Reusability

• ...

Affects

Effects perceived by

the customer

• Bugs

• Usability

• …

Affects

What is technical debt in practice?

Negative effect

is the Interest of

Technical Debt

The TD landscape of kinds of TD

Antonio Martini - PhD in Software Engineering

P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical Debt: From Metaphor to Theory
and Practice,” IEEE Software

Horror Story

� Technical debt and Architecture

Antonio Martini - PhD in Software Engineering

Optimal architectural decision

� Example:
� Standard public API

Antonio Martini - PhD in Software Engineering

Comp A

Standard API

Let’s put a
standard API

here… so later
we can update
the component
independently

During feature development…

Antonio Martini - PhD in Software Engineering

Comp A

Standard API

We need
these new

features! Our
competitor is

already
delivering

them!

Comp B

No problem, let’s
add a component B.
The teams will use
the standard API!

…with fast delivery comes…

� Deliver fast!

Antonio Martini - PhD in Software Engineering

Comp A Comp B

Standard API

Private API

(ATD)

ATD
We need

these new

features! Our

competitor is

already

delivering

them!

Fast!

We have to

deliver fast,

let’s use the

private API…

we’ll change it

later

� The violation is spreading to
many components

Antonio Martini - PhD in Software Engineering

Comp A Comp B Comp C Comp D

Standard API

Private API
(ATD)

Comp E

ATD ATD ATD ATD

…the accumulation of sub-
optimal decisions…

We have to deliver fast, let’s
add a dependency, we’ll

remove it later

We have to deliver fast, let’s
add a dependency, we’ll

remove it later

We have to deliver fast,
let’s use the private API!
We’ll change it later…

Fast!

…until, one day…
� New requirement

Antonio Martini - PhD in Software Engineering

Comp A Comp B Comp C Comp D

Standard API

Private API
(ATD)

Comp E

ATD ATD ATD ATD

We need
these new

features! Our
competitor is

already
delivering

them!

Ok, we can replace this
component. The teams used

the standard API!

…the development is not fast
anymore…
� Costly to remove the violation and

difficult to estimate the impact

Antonio Martini - PhD in Software Engineering

Comp A Comp B Comp C Comp D

Standard API

Private API
(ATD)

Comp E

ATD ATD ATD ATDOH NO! We
have to
change

everything!

We need
these new

features! Our
competitor is

already
delivering

them!

…and a crisis starts.

Antonio Martini - PhD in Software Engineering

Comp A Comp B Comp C Comp D

Standard API

Private API
(ATD)

Comp E

ATD ATD ATD ATD

Impossible to
refactor now!
We need to
deliver the
features!

We have to
refactor, but we

need time…

So should we
refactor or
continuing
with other
features?

� Non-allowed dependencies = “Taking” the Debt
� Save time by non-applying the

optimal solution

� Cost of removing dependencies = Principal
� How much does it cost to provide

the optimal solution?

� Extra evolution cost
� Replacing the component

� Other impacts
� Increasing principal
� Difficult/Wrong estimation
� Lead time increases

Antonio Martini - PhD in Software Engineering

= Interest

So what is Architectural Technical Debt?

So what is Architectural Technical Debt?

� Non-allowed dependencies = “Taking” the Debt
� Save time by non-applying the

optimal solution

� Cost of removing dependencies = Principal
� How much does it cost to provide

the optimal solution?

� Extra evolution cost
� Replacing the component

� Other impacts
� Increasing principal
� Difficult/Wrong estimation
� Lead time increases

Antonio Martini - PhD in Software Engineering

= Interest

Important

Growing interest

Antonio Martini - PhD in Software Engineering

Time

AT
D

 in
te

re
st

 c
os

t

Principal

Low interest

Cycle2 Cycle nCycle1 …………………..

If the interest is low, TD is
actually a good choice:

we don’t need to refactor

Growing interest

Antonio Martini - PhD in Software Engineering

Time

AT
D

 in
te

re
st

 c
os

t

Principal

Low interest

Linear interest

Cycle2 Cycle nCycle1 …………………..

Growing interest

Antonio Martini - PhD in Software Engineering

Time

AT
D

 in
te

re
st

 c
os

t

Principal

Low interest

Linear interest

Non-linear interest

Cycle2 Cycle nCycle1 …………………..

Growing interest

Antonio Martini - PhD in Software Engineering

Time

AT
D

 in
te

re
st

 c
os

t

Principal

Low interest

Linear interest

Non-linear interest

Cycle2 Cycle nCycle1 …………………..

What if it was
the interest for

the loan?

Growing interest

Antonio Martini - PhD in Software Engineering

Time

A
T

D
 in

te
re

st
 c

os
t

Principal

Low interest

Linear interest

Non-linear interest

Cycle2 Cycle nCycle1 …………………..

Crisis

Need to identify
this interest early
on!

Martini, Bosch: “The Danger of Architectural Technical Debt: Contagious Debt and Vicious Circles,”
in accepted for publication at WICSA 2015, Montreal, Canada.

So, what happens in the end?
� Research study in 7 organizations *

Antonio Martini - PhD in Software Engineering

Time

Te
ch

nica
l D

ebt

Crisis

Productivity
Te

ch
nica

l D
ebt

Productivity
R

efactoring

A
T

D
 a

c
c
u
m

u
la

ti
o
n

� The accumulation of
Technical Debt…

� …Leads to crises

* Martini, A., Bosch, J., Chaudron, M., 2015. [1] “Investigating Architectural Technical Debt Accumulation
and Refactoring over Time: a Multiple-Case Study,” Information and Software Technology.

Again, why is TD dangerous?

Antonio Martini - PhD in Software Engineering

P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical Debt: From Metaphor to Theory
and Practice,” IEEE Software

Problem: TD is invisible!

� Invisible accumulation of TD leads to crises

Antonio Martini - PhD in Software Engineering

Time

Crisis critical point

PRODUCTIVITY TD accu
mulation

PRODUCTIVITY

Refactoring

TD
 a

cc
um

ul
at

io
n TD accu

mulation

Invisible!

What can we do about TD? Identification

� Once again…don’t take debt in the first place!
� Once again…don’t implement sub-optimal

solutions!

� But in practice you will accumulate some TD.
Then, it’s important to make it

� Who will deal with the software that you have
developed needs to know the TD

Antonio Martini - PhD in Software Engineering

VISIBLE

Identification of different kinds of TD

Antonio Martini - PhD in Software Engineering

Automatic Tools

(Do not show impact
of Technical Debt)

Manual or
Invisible

Making TD visible (Identification)
� When you know you are taking debt, create TD

items to signal that new TD has been taken
� Issue tracker
� Backlog
� Report the interest of TD! (extra-cost or risk)

� Iteratively check your code to discover TD

� Use available tools
� SonarQube

○ https://sonarcloud.io/projects?sort=-analysis_date
� AnaConDebt

○ Or other tracking systems, e.g. Jira
� Other measures

Antonio Martini - PhD in Software Engineering

https://sonarcloud.io/projects?sort=-analysis_date

Let’s go back to our conflict…
� Sales

� “we need to deliver the app fast”
� We need to deliver in 3 months

� Engineers
� Maintainability
� we want to implement the MVP pattern

� 2 solutions:
1. We can deliver in 2 months and 2 weeks without

a good architecture (MVP)
2. We can deliver in 3 months and 2 weeks

with MVP

� We need to understand the principal and the interest of
Technical Debt

Antonio Martini - Associate Professor in Software Engineering

Which one to choose?
1. We can deliver in 2 months and 2 weeks without

a good architecture (MVP)

� We take Architectural Technical Debt
○ We save 1 month and 2 weeks now
○ We will have to refactor later (principal)

� Let’s say other 3 months (rewrite from scratch)

○ The interest is high every time we add a new feature:
� High testability costs
� High maintainability costs
� Can we quantify them?

- E.g. in six months we will add 6 features, and we will spend, for each, 1
additional week

- We have to add 1.5 months of waste

2. We can deliver in 3 months and 2 weeks
with MVP
○ Is it a problem to deliver 2 weeks later?

Antonio Martini - Associate Professor in Software Engineering

Scenarios and analysis
Benefit:
Users short-
term

Cost:
Interest long-
term

Cost Total

Solution
1

+
(vs competitor)

-
(high interest)

-
(3 months
refactoring
needed)

-1

Solution
2

-
(vs competitor)

+
(saved interest)

+
(we don’t have to
refactor)

+1

Antonio Martini - Associate Professor in Software Engineering

We choose to not accumulate
Technical Debt
� It’s more convenient!

� But not always… sometimes, Technical Debt
can be useful

Antonio Martini - Associate Professor in Software Engineering

Technical Debt in your project:

� Decide what Technical Debt to take or not
� If took TD during the project, document it by

logging:
� Technical Debt Items

○ Mention the estimates for
� Cost of Refactoring (Principal)
� Extra-costs (Interest)

� Deliver the document together with the
project

Antonio Martini - Associate Professor in Software Engineering

Antonio Martini - Associate Professor in Software Engineering

Antonio Martini - Associate Professor in Software Engineering

Don’t forget about
Architecture!

Communicate with
the Stakeholders

Follow Business
goals, not dogmas

Take Technical Debt
only if necessary

If you must take Technical
Debt, make it visible

Antonio Martini - Associate Professor in Software Engineering

� antonio.martini@ifi.uio.no

Questions?
Comments?

mailto:antonio.martini@ifi.uio.no

