Antonio Martini

Associate Professor in Software Engineering
Oslo University

Principal, Strategic Researcher
CA Technologies, Barcelona, Spain

Course IN2001
2018-02-13

ARCHITECTURE IN ANDROID
AND TECHNICAL DEBT

Antonio Martini - Associate Professor in Software Engineering

AS
Qﬁﬁ 0 2
& %
A
£ 2.
z 2
=4 “
N
occct

technologies

Who is Antonio Martini?

® ltalian
* No kebab pizza! ©
e 7 years in Scandinavia— survived many winter

® Previously
e Worked as a Software Developer
e PhD in Software Engineering
e Postdoc at Chalmers, Gothenburg

¢ Independent Consultant
o project with Ericsson
o project with Volvo Group

® Currently:

e Principal, Strategic Researcher at CA
Technologies

e Associate Professor at Oslo U.
e Independent Consultant

® Hobbies

e Board games, strategy computer games, pool, etc.
e Football, volleyball, beach volley, fencing

e Piano, Drumset, etc.

e Travel

e ...and no time for them! © rtini - PhD in Software Engineering

technologies

Worked with and for several
companies

RUNDFO

A BOEING COMPANY ERICSSON

)
Q_c,\‘ 2
N G
< 2
z)
- »
4 N
Occct

Antonio Martini - PhD in Software Engineering technologies

What is Software
Architecture?

iP5 093
7 G
a5 Z
£
z 4
=] 2]
N
X&) ccct

Antonio Martini - Associate Professor in Software Engineering tech no|ogie$

What's the difference?

Where can you run public transport efficiently?
Which city is easier to grow?
Where do you have a good emergency system?

Antonio Martini - Associate Professor in Software Engineering techno|ogies

Software architecture is...

@ All of the followings:

e Qverall system structure

e A set of architectural design
decisions

e Things that people perceive
as hard to change

e The “important stuff’ —
whatever that is

Antonio Martini - Associate Professor in Software Engineering technologies

Software Architecture Characteristics

® Multitude of stakeholders
® Quality driven (tradeoff)
® Separation of concerns

® Recurring styles
(patterns)

® Conceptual integrity
(vision)

Antonio Martini - Associate Professor in Software Engineering

Why software architecture?

® To get a grasp of a complex system

® Facilitates the communication among the
stakeholders about their needs

® Support decisions about future
development and maintenance
e Reuse
e Budget

® Analysis of the product before it's built

e Cost reduction
e Risk reduction

SAS O
& X2
& 2
a 2.
z w
=4)
4 S
dccct

Antonio Martini - Associate Professor in Software Engineering techno]ogies

Size does(n’'t) matter

® All products HAVE an architecture
e |t can be bad
e |t can be good

@ In all projects we SHOULD think about
architecture

e Less in small projects
e More in large projects

® Thinking about the architecture is a necessary @

process Ca

Antonio Martini - Associate Professor in Software Engineering technologies

Don’t undervalue architecture...

YOU KNOW THE
MONKEYS DONT FLY
THE ROCKET, RIGHT?

AND TED
WON'T BE
WRITING

CODE.

EROMONED ED HO
SOFTWARE ARCHITECT
BECAUSE HE DOESN'T
KNOW HOW TO CODE.

AT FIRST I THOUGHT
IT WAS A BAD IDEA.
THEN I REMEMBERED
THAT SOMETIMES
MONKEYS ARE ASTRO—
NAUTS.

@ScottAdamsSays
@ 2017 Scott Adams, Inc/Dist by Andrews McMeel

£
8
i —
3
2

Antonio Martini - Associate Professor in Software Engineering techno|0gies

How to think about
Architecture

\IAS og
& <o
S 2
&
z [
=] 2]
\
X&) ccct

Antonio Martini - Associate Professor in Software Engineering tech no|ogie$

How to choose an architecture

@ It can be quite difficult
® Where do we start?

AS
2>
O 2
A
e 2
> w
=4 “
N
dccct

Antonio Martini - Associate Professor in Software Engineering techno|ogies

Business drives architecture

TAS O
& =2
& e
£ 2.
> w
= @
N
occct

Antonio Martini - Associate Professor in Software Engineering tech nologies

A process to think about architecture

Who?

What do they need?

What should the system do?
What qualities are important?

What should we focus on?

How should we implemer&?a

Antonio Martini - Associate Professor in Software Engineering tech no|ogies

Stakeholders analysis (1)

® You might need to accommodate several
stakeholders

® Stakeholder: “an individual, group, or
organization, who may affect, be affected
by, or perceive itself to be affected by a
decision, activity, or outcome of a project”

® Who are the main stakeholders of your
app?

AS O
g
~ @
A 2
z w
=4)
D &

dccct

Antonio Martini - Associate Professor in Software Engineering technologies

Stakeholders analysis (2)
® Let's consider the three stakeholders below:
e User of the app

e Sales

e Engineers

® What are their needs?

e Write down 2 important needs for each
stakeholder

Antonio Martini - Associate Professor in Software Engineering technologies

Needs examples

® Sales’ needs:
* “we need to deliver the app fast”

e “we need the app to be available for both
Android and iOS” ,, ==

® Users’ needs
e “we want to have an experience without bugs”
* “we want to get the information quickly”

® Engineers’ needs
* “We need to test the app easily”

* “We need to be able to add features quickly
after the first release”

® Example of a need that we don’t have:
Security

Antonio Martini - Associate Professor in Software Engineering ‘technologies

System Queg

Analysability Estability
Changeability Stability
Maintaina-

bility

Attractiveness
Operability

Learnability Ressource utilisation
Understandability Time behaviour

Suitability
Interoperability

Portability

+ Compliance

Regularity

Ada ptability
Accuracy

Reliability

Maturity
Recoverability

https://www.iso.org/standard/22749.html ftWare Engineering techn0|ogies

From needs to qualities - sales

® Sales’ needs: “f ‘8'
1. “we need to deliver the app fast” V@;"; §V

2. ‘we need the app to be available for both §
Android and iOS”

® Qualities?
1. No quality — Budget constraint
2. Portability

Antonio Martini - Associate Professor in Software Engineering techno]ogies

System Qug

Analysability Estability
Changeability Stability
Maintaina-

bility

Attractiveness
Operability

Learnability Ressource utilisation
Understandability Time behaviour

Suitability
Interoperability

Portability
+ Compliance

Regularity Adaptability

Accuracy

Reliability

Maturity
Recoverability

Software Engineering

technologies

From needs to qualities - users

® Users’ needs

1. “we want to have an experience without
bugs”
2. “we want to get the information quickly”

® Qualities?
1. Reliability
2. Efficiency (Performance)

Antonio Martini - Associate Professor in Software Engineering technologies

System Queg

Analysability Estability
Changeability Stability
Maintaina-

bility

Attractiveness
Operability

A

Learnability Ressource utilisation
Understandability Time behaviour

Suitability
Interoperability

Portability

+ Compliance

Regularity

Ada ptability
Accuracy

Reliability
Fault tolera nc' Maturity

Recoverability

Software Engineering technologies

From needs to qualities - engineers

® Engineers’ needs
1. “We need to test the app easily”

2. “We need to be able to add features quickly
after the first release”

® Qualities?
1. Testability — Mantainability
2. Changeability — Maintainability

Antonio Martini - Associate Professor in Software Engineering technologies

System Qug ngineers

T
- y

» "Esta bility
Changeablllty SLldbiliLy
Maintaina-
Attractiveness bility
Operability

Learnability Ressource utilisation
Understandability Time behaviour

Suitability
Interoperability

Portability

+ Compliance

Regularity

Ada ptability
Accuracy

Reliability

Maturity
Recoverability

Soitware Engineering

technologies

System Qualitie

T
- y

Bstability
-
Changeability

SLldbiliLy

Maintaina-

bility

Attractiveness
Operability

A

Learnability Ressource utilisation
Understandability Time behaviour

Suitability
Interoperability

Portability
+ Compliance

Ada ptability

Regularity

Accuracy ‘
Reliability
Fault tolera nc' Maturity

Recoverability

Soitware Engineering

Al| stakeholders

technologies

Can we afford to say yes to everyone”?

® Are there some conflicts?

® Example?

® Sales’ needs
1. “we need to deliver the app fast”

2. “we need the app to be available for both Android
and iOS”

® Or else:

1. Budget constraint
2. Portability

® Can we achieve both?

Antonio Martini - Associate Professor in Software Engineering techno]ogies

Can we say yes to both needs?

® We investigate further the details.
We discover that:
e Sales want to deliver in 3 months

e To make the app portable both for Android and
I0S, we need to:

o Use special libraries
o Learn more skills
o Test in more environments

e Conclusion: it takes 5 months

® The answer is NO. What do we do”?
e We ask the stakeholders to prioritize the needs
e \We reach a tradeoff

Antonio Martini - Associate Professor in Software Engineering

TAS O
& X2
~ @
A 2
z w
=4)
D &
dccct

technologies

Tradeoff(s)

® We generate solutions and scenarios

1. Solution 1:

o We take 5 months to make the product
portable

o We deliver in 5 months
2. Solution 2:
o We deliver in 3 months
o \We make the app portable later on

® Which one do we choose? Why?

SAS O
& X2
~ @
A 2
z w
=4)
D 5
dccct

Antonio Martini - Associate Professor in Software Engineering techno]ogies

Cost/Benefit and risk analysis

® Which solution is best?

e Solution 1
o Waiting 2 months more (5-3) costs us several
customers
e Risk: competitor app might “steal” our customers
» Risk: if another app steals our customers we don’t get
visibility in media
e Solution 2
o It will cost more to deliver
* \We need to deliver the app in 3 months for Android
* We will need to re-write it for both platforms
e Total: 3 months + 4 to rewrite = 7 months
o But we reach the customers of one platform soon
e We gain visibility

Antonio Martini - Associate Professor in Software Engineering techno]ogies

Scenarios and analysis

Solution -- ++ +
1 (vs competitor) (both platforms) (cheaper in total)

(lack of visibility)

Solutionl] ++ + -
2 (vs competitor) (visibility) (rewrite)

(no users in one
platform)

Antonio Martini - Associate Professor in Software Engineering technologies

Tradeoff(s) example

® We generated solutions and scenarios

1. Solution 1:
o We take 5 months to make the product portable
o We deliver in 5 months
2. Solution 2:
o We deliver in 3 months
o We make the app portable later on

® Which one do we choose?

e We choose Solution 2
o We deliver the app in 3 months
o We skip portability for now

® Why?

e Because it's better according to the cost/benefit
analysis

Antonio Martini - Associate Professor in Software Engineering techno]ogies

System Qualitie Al| stakeholders

T
- y

Bstability
-
Changeability

SLldbiliLy

Maintaina-

bility

Attractiveness
Operability

A

Learnability Ressource utilisation
Understandability Time behaviour

Tradeoff:

suratl we need to
uitability

Interoperability postpone

portability

+ Compliance

Regularity

Accuracy ‘
Reliability
Fault tolera nc' Maturity

Recoverability

Soitware Engineering

technologies

Are there other conflicts? ‘8'

4
& \
® Sales’ needs: *&@‘?@

W $
e “we need to deliver the app fast” == 2

e “we need the app to be available for both
Android and iOS” =

® Users’ needs

e “we want to have an experience without
bugs”

* “we want to get the output quickly”

® Engineers’ needs

e “We need to test the app easily”

e “‘We need to be able to add features
quickly after the first release”

Antonio Martini - Associate Professor in Software Engineering

technologies

Another (classical) conflict

® Sales
® “we need to deliver the app fast”
{\";g% ®

® Engineers

® “We need to be able to add features quickly after
the first release”

® Or else: Maintainability

® We will talk about this later on
@ Technical Debt

Antonio Martini - Associate Professor in Software Engineering techno]ogies

Building a good solution

Antonio Martini - Associate Professor in Software Engineering tech no|ogies

What does it mean Maintainable code?

® Changeable
@ Testable
@ ...

® We need a good Separation of Concerns
e Not all the code in one file
o E.g. an Activity

e Separate in different parts of the system (modules)
what concerns different aspects of the system
e E.g.
o The data (database access)
o The view (the user interface)

TAS O
& X%
~ &,
A 2.
z w
=4)
4 S
dccct

Antonio Martini - Associate Professor in Software Engineering technologies

Good separation of concerns

® In Android the MVP architectural
pattern is recommended

® \We separate three layers:
e Model:

o Manage how all the data is stored and
accessed

e View:
o Passively shows the data from the Model

o Collects the events produced by the user
e e.g. the “Tap”

e Presenter:

o Interprets the user events and what data
is needed

o chooses the right way to show the results

Antonio Martini - Associate Professor in Software Engineering tech no|0gies

Architecture and MVP in Android

@ Architecture guidelines in Android

® Hands-on example of MVP on the web

SAS O
& X2
/& >
E 2,
z 2
=4)
4 \
dccct

Antonio Martini - Associate Professor in Software Engineering techno]ogies

https://developer.android.com/topic/libraries/architecture/guide.html
https://medium.com/@cervonefrancesco/model-view-presenter-android-guidelines-94970b430ddf

A few guidelines (1)

1. Improve Testability Fragment
e Write a “dumb View”
o You don’t have to test a complex v
framework (Activity, Framework, ...) b;.q
o You only test your presenter (which
you write yourself)

o E.gQ.
» When you write the code to execute for 2 [Atatatioads
button, do not write it in the Activity, but Code:
call a method in the Presenter public void tappedButtonGo{

while () {

if () {.}
}
}

Antonio Martini - Associate Professor in Software Engineering technologies

A few guidelines (2)

® Make Presenter Framework-Independent

e Do not depend on Android classes when writing
the Presenter
o Much better to test!

o Do not need an emulator

TAS O
& 2
~ @
a 2
z w
=4)
4 5
dccct

Antonio Martini - Associate Professor in Software Engineering techno]ogies

A few guidelines (3)

@ Define naming conventions

e Mainly 2 categories

o Actions from the Presenter
* |load(), etc.

o User Events interpreted by the Presenter
e buttonGoPressed(), etc.

Antonio Martini - Associate Professor in Software Engineering

technologies

Other guidelines...

® You might find a lot of guidelines

e many might be useful

o but not necessarily for this project
e some are context-dependent

o only worth for some kinds of Apps

® Choose wisely!

e you won't be able to have a perfect architecture the
first (few) time(s) you implement an App

e but it's worth thinking about a few important
guidelines from the beginning

® You will see a more hands-on example in the
next lecture given by Thomas Lindsj@rn

Antonio Martini - Associate Professor in Software Engineering

technologies

MVP in your App (Android Arch.)

Activity / Fragment

LiveData 3

Model Remote Data Source

w webservice

Antonio Martini - Associate Professor in Software Engineering tech no|ogies

MVP in your App (nhext lecture)

View
(HomeFragment)

l RxJava

streams

Model (Movie) Remote Data Source

OKEittp
storage “

Antonio Martini - Associate Professor in Software Engineering tech no|ogies

_ A

Technical Debt

A (classical) conflict among
stakeholders .@

7w
‘

® Sales == s
® ‘we need to deliver the app fast e

® Engineers
@ Maintainability

® What should we do?

Antonio Martini - Associate Professor in Software Engineering techno]ogies

After the investigation ¥

® Sales
® “we need to deliver the app fast”
® We need to deliver in 3 months

® Engineers
® Maintainability

® 2 solutions:

1. We can deliver in 2 months without
a good architecture (MVP)

2. We can deliver in 3 months and 2 weeks @

with MVP

® What should we do? How to quantify the cost/benefit? ca

Antonio Martini - Associate Professor in Software Engineering techno]ogies

Architectural Technical Debt

® If we take the decision of solution 1, we
accumulate Architectural Technical Debt

® But what does it mean?

® Let’s start from the beginning...

TAS O
& slo
) >
E 2,
z 2
=4)
4 \
dccct

Antonio Martini - Associate Professor in Software Engineering techno]ogies

Antonio Martini - PhD in Software Engineering

Ward Cunningham

"Shipping first time code is like going into
debt”

“A little debt speeds development so long
as it 1s paid back promptly with a
rewrite...”

“Every minute spent on not-quite-right
code counts as interest on that debt”

Current Definition

® In software-intensive systems, technical
debt is a design or implementation
construct that is expedient in the short
term, but sets up a technical context that
can make a future change more costly
or impossible. Technical debt is a
contingent liability whose impact is
limited to internal system qualities,
primarily maintainability and evolvability

P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing Technical Debt in Software‘ a
Engineering (Dagstuhl Seminar 16162)

Antonio Martini - PhD in Software Engineering ‘techn0|ogies

Current Definition

® technical
debt design o implementation
expedient short
term

future change more costly

P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing Technical Debt in Software‘ a
Engineering (Dagstuhl Seminar 16162)

Antonio Martini - PhD in Software Engineering techn0|ogies

What is technical debt?

® Debt = sub-optimal solution
e Save time by non-applying the optimal solution
o You gain a benefit now (borrow money)

o but you pay the consequences later (you will pay
the interest)

TAS O
& X2
& 2
A 2
z w
=4)
D &
dccct

Antonio Martini - PhD in Software Engineering techno]ogies

First of all: What is Technical Debt?

Visible

Architectural,
Structural

features

— ®
Negaﬁve Technical
Value Debt Expensive! [&%

P. Kruchten, R. L. Nord, and |. Ozkaya, “Technical Debt: From Metaphor to T‘ora
and Practice,” IEEE Software

Antonio Martini - PhD student in Software Engineering technologies

Positive
Value

Credit Card example

@ You pay 100 $ at the shop
with your credit card instead of
using cash

e You borrow money from the bank
® Next month, you receive the bill of 1100 $
e The interest is 1000% per month
e You probably did not know the interest...?
e Would you have borrow the money with Credit Card &%

if you knew the interest?

Antonio Martini - PhD in Software Engineering tech no|0gies

Credit Card in Software Development

® Technical sub-optimal solutions are like the debt
In the credit card.

® But everyone involved needs to know how much
IS the interest

® To communicate the risk of high interest when
we borrow quality, we use “Technical Debt”

Technical
, Repay
| Issu? Think as the debt

Technical | Interest B Budget
Debt Decisions

Understand,
calculate and
communicate
Antonio Martini - PhD in Software Engineering technologies

What is technical debt in practice?

® 1D includes internal quality issues, not external quality
e TD is not a bug!
@® External quality might be influenced by internal quality

e Example: it might be more difficult to fix a bug because of the
technical debt

Technical Debt

Includes

Affects

Antonio Martini - PhD in Software Engineering

technologies

What is technical debt in practice?

® 1D includes internal quality issues, not external quality
e TD is not a bug!

@® External quality might be influenced by internal quality

e Example: it might be more difficult to fix a bug because of the
technical debt

Technical Debt 8

. Affects is the Interest of
Includes Technical Debt

Antonio Martini - PhD in Software Engineering

technologies

The TD landscape of kinds of TD

architecture
Architectural debt Low internal quality

New feat
Structural debt Code complexity Code smells

Test debt Coding style violations
Documentation debt

Additional functionality

Technological gap

Evolution issues: evolvability

P. Kruchten, R. L. Nord, and |. Ozkaya, “Technical Debt: From Metaphor to Theory/.
and Practice,” IEEE Software -G

technologi

Antonio Martini - PhD in Software Engineering

Horror Story

® Technical debt and Architecture

New features Low internal quality

Additional functionality Code complexity Code smells Low external quality

Test debt Coding style violations
Documentation debt

Antonio Martini - PhD in Software Engineering techn0|ogies

Optimal architectural decision

® Example:
e Standard public API

Standard API we can update
the component

ST I A

Antonio Martini - PhD in Software Engineering techno|0gies

During feature development...

Standard API

Antonio Martini - PhD in Software Engineering technologies

...with fast delivery comes...

® Deliver fast!

We have to
Standard API deliver fast,
let’s use the
private API...
Private AP we’ll change it

ATD later

Antonio Martini - PhD in Software Engineering

...the accumulation of sub-
optimal decisions...

@ The violation is spreading to
many components

Standard API

Private API
ATD

i let’s use the private API!

We'll change it later...
Antonio Martini - PhD in Software Engineering techno|ogies

...until, one day...

® New requirement

Standard API

Private APl W
ATD

Antonio Martini - PhD in Software Engineering

..the development is not fast ElERS
anymore... v

have to
change
everything!

Antonio Martini - PhD in Software Engineering

/\\’/

continuing
with other %
features? Standard AP R X

s|

Private API
ATD

Antonio Martini - PhD in Software Engineering

So what is Architectural Technical Debt?

“Taking” the Debt

® Non-allowed dependencies

e Save time by non-applying the
optimal solution

@ Cost of removing dependencies = Principal

e How much does it cost to provide
the optimal solution?

® Extra evolution cost
e Replacing the component
® Other impacts
e Increasing principal
e Difficult/Wrong estimation
e Lead time increases

Interest

Antonio Martini - PhD in Software Engineering technologies

So what is Architectural Technical Debt?

® Non-allowed dependencies = "Taking” the Debt

e Save time by non-applying the
optimal solution

Principal

® Cost of removing dependencies

e How much does it cost to provide
the optimal solution?

® Extra evolution cost
e Replacing the component
® Other impacts
e Increasing principal
e Difficult/Wrong estimation
e Lead time increases

Antonio Martini - PhD in Software Engineering techno]ogies

Growing interest

A

ATD interest cost

iLow interest
s ; Principal :} }
: : :
| |

Cycle1Cycle2ooehn. Cycle n

Antonio Martini - PhD in Software Engineering techno|ogies

Growing interest

A

Linear interest ~

ATD interest cost

Principal

Low mterestl

Cycle1Cycle2ooehn. Cycle n

Antonio Martini - PhD in Software Engineering

technologies

Growing interest

A

Linear interest ~

ATD interest cost

Low interest
e Principal } t

Cycle1Cycle2ooehn. Cycle n

Antonio Martini - PhD in Software Engineering techno|0gies

Growing interest

< ek

ifitw
— " the Interest for

//(/// the loan?
/E_Et Principal i} ﬁ

N

/

-

I -
- - Ti

Cycle1Cycle2ccooviviinnnn. Cycle n ca

Antonio Martini - PhD in Software Engineering techno|ogies

Growing interest

A

| . .
A Linear interest ~

ATD interest cost

‘Low interest
e Principal t

Cycle1Cycle2c.coeenin. Cycle n
Martini, Bosch: “The Danger of Architectural Technical Debt: Contagious Debt and Vicious Circle

in accepted for publication at WICSA 2015, Montreal, Canada. _
Antonio Martini - PhD in Software Engineering techno|og|es

ATD accumulation

So, what happens in the end?

® Research study in 7 organizations *

® The accumulation of
Technical Debt...

® ...Leads to crises

Time

* Martini, A., Bosch, J., Chaudron, M., 2015. [1] “Investigating Architectural Technical Debt Accu
and Refactoring over Time: a Multiple-Case Study,” Information and Software Technology.

Antonio Martini - PhD in Software Engineering

\IAS og
0
a
= 7
=4)
dccc >
‘ g

technologies

Again, why is TD dangerous?

Visible

Architectural,
Structural

features

Technical
Value

P. Kruchten, R. L. Nord, and |. Ozkaya, “Technical Debt: From Metaphor to T‘ora
and Practice,” IEEE Software

Positive
Value

Antonio Martini - PhD in Software Engineering technologies

TD accumulation

Problem: TD is invisible!

® Invisible accumulation of TD leads to crises

S) .
00
Cr,,
/7‘}/ N

AS O

Q-CJ\T 5 2
~) @
E 2
z w
=4)

N

dccct

T. Ea

Antonio Martini - PhD in Software Engineering techno|0gies

What can we do about TD? ldentification

® Once again...don’t take debt in the first place!

® Once again...don’t implement sub-optimal
solutions!

@ But in practice you will accumulate some TD.
Then, it's important to make it

VISIBLE

® Who will deal with the software that you have ‘s«
developed needs to know the TD Ca

Antonio Martini - PhD in Software Engineering technologies

ldentification of different kinds of TD

architecture code
Architectural debt Low internal aualitv

Structural debt Code complexity Code smells
Test d Coding style violations

mantatinn dnhé

Technological gap

Quality issues: mair ‘ainability

Manual or
Invisible

Antonio Martini - PhD in Software Engineering technologies

Making TD visible (ldentification)

® When you know you are taking debt, create TD
items to signal that new TD has been taken

e |ssue tracker
e Backlog

e Report the interest of TD! (extra-cost or risk)
@ lteratively check your code to discover TD

® Use available tools
e SonarQube

e AnaConDebt

o Or other tracking systems, e.g. Jira
e Other measures

Antonio Martini - PhD in Software Engineering technologies

https://sonarcloud.io/projects?sort=-analysis_date

® Sales
® “we need to deliver the app fast”
® We need to deliver in 3 months

® Engineers
® Maintainability
® we want to implement the MVP pattern

® 2 solutions:

1. We can deliver in 2 months and 2 weeks without
a good architecture (MVP)

2. We can deliver in 3 months and 2 weeks
with MVP

® We need to understand the principal and the interest of
Technical Debt

Antonio Martini - Associate Professor in Software Engineering techno]ogies

Which one to choose?

1. We can deliver in 2 months and 2 weeks without
a good architecture (MVP)

® We take Architectural Technical Debt
o We save 1 month and 2 weeks now

o We will have to refactor later (principal)
. Let’s say other 3 months (rewrite from scratch)

o The interest is high every time we add a new feature:
. High testability costs
° High maintainability costs
. Can we quantify them?

- E.g. in six months we will add 6 features, and we will spend, for each, 1
additional week

- We have to add 1.5 months of waste

2. We can deliver in 3 months and 2 weeks
with MVP

o Is it a problem to deliver 2 weeks later?

Antonio Martini - Associate Professor in Software Engineering techno]ogies

Scenarios and analysis

Solution + -

1 (vs competitor) (high interest) (3 months
refactoring
needed)

Solution} - + +
(vs competitor) (saved interest) (we don’t have to
refactor)

Antonio Martini - Associate Professor in Software Engineering

technologies

We choose to not accumulate
Technical Debt

® |t's more convenient!

® But not always... sometimes, Technical Debt
can be useful

TAS O
& X2
& 2
A 2
z 2
=4)
D 5
dccct

Antonio Martini - Associate Professor in Software Engineering techno]ogies

Technical Debt in your project:

® Decide what Technical Debt to take or not

@ If took TD during the project, document it by
0ogging:

e Technical Debt Items

o Mention the estimates for
e Cost of Refactoring (Principal)
e Extra-costs (Interest)

@ Deliver the document together with the
project

AS O
T
~ @
A 2
z 2
=4)
D &

dccct

Antonio Martini - Associate Professor in Software Engineering technologies

_ A

Take aways

No thanks!
We are

too busy

Antonio Martini - Associate Professor in Software Engineering techno|ogies

Antonio Martini - Associate Professor in Software Engineering techno|ogies

mailto:antonio.martini@ifi.uio.no

