
Making an Android app
The right way



Who am I?

Thomas Lindsjørn

Senior Android developer

Making apps for 10 years



Life as an app developer

● Teams / Scrum

● Job interviews

● Hobby projects



Lecture overview
Part 1: Overview - Mobile apps - Android 
Development - Good architecture, why and 
how?

Part 2: Live coding - refactor FilmAppen to use 
good architectural principles



Cross platform Nativevs.



Cross platform / Hybrid
● Code sharing - “write once, run everywhere”
● Complicated testing - “write once, debug everywhere”
● Features not available on all platforms
● Different design guides and principles for each platform
● Smaller ecosystem: Fewer resources, more bugs
● Performance hits
● Popular tools:

○ Xamarin - C#
○ React Native - JS
○ JS + HTML: Progressive Web Apps, Cordova



Native
● Great tools
● Plenty of libraries
● Performance
● Design guides / principles
● More languages:

○ Java or Kotlin for Android
○ Obj-C or Swift for iOS
○ JS / other language for web
○ C# for Windows 
○ Yet another language for backend?

● Costly / resource-heavy business wise in early / startup stages



Android framework
Language:
Java or Kotlin

C / C++



What is a good code base?

● Robust
● Performant
● Good UX and design
● Expected behaviour

● Easy to understand and expand the 
code

Product Owner

Developers

User

Other Stakeholders / 
team members



Principles of good architecture

● Maintainability
● Testability
● Performance

Separation of Concerns

Single responsibility principle



A bad example



The MVP Pattern

● Separates concerns
● Provides testability



Modified MVP for Android

● View lifecycle out of our control
● Repository: Decide where to fetch Models 

from - backend or cache?



Final architecture



Live coding - Refactor FilmAppen


