
UNIVERSITY OF OSLO
Faculty of mathematics and natural sciences

Examination in INF2220 — Algorithms and data structures

Day of examination: 14. December 2012

Examination hours: 14:30 – 18:30

This problem set consists of 18 pages.

Appendices: None

Permitted aids: All printed and written

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Contents
1 Miscellaneous questions (weight 12%) page 2
2 Huffman coding (weight 12%) page 5
3 Topological sorting (weight 12%) page 8
4 Optimal money change (weight 12%) page 9
5 Binary trees and binary search trees (weight 20%) page 11
6 B-Trees (weight 12%) page 14
7 Sorting (weight 20%) page 15

Some general advice:

• Make sure your handwriting is easy to read (unreadable answers are
always wrong . . .)

• Remember to justify your answers.

• Keep your comments short and concise. If you use well-known data-
structures (list, set, map) there is no need to explain how they work or
behave. In general: when using basic abstract data types from the library,
you can use them without explaining what they do.

• The weight of a problem indicates how we estimate its difficulty. You may
take that into account as you organize your time.

Good luck!
Dino Karabeg & Martin Steffen

(Continued on page 2.)

Examination in INF2220, 14. December 2012 Page 2

Hints for correcting: In general, the programming language was Java. For
the exam, we intend to take it more relaxed in that pure Java typos (like missing
semicolons and similar things the compiler would be able to find) etc should not
count negatively. The “pseudo-ness” of the code should be within reasonable
bounds. If “implementation” is required, we should give say 25% if no code is
provided but an algorithmic solution is described sufficently clear such that a
(correct) algorithm is identifyably described in the text. Correct means, however,
that for instance the “recursion case” and the base cases are described. Things
like “one should go recursively through the tree and calculate the maximum”, i.e.,
wishy-washy fishing in the dark like that does not give points (even if recursion
would be employed in a standard solution).
In general, we do not care whether a “algorithm” is implemented in as “method”
like n.m(arg1, arg2) (where n is the node of a tree), or as a “procedure”
m(n,arg1,arg2). Solutions like n.m(n,arg1,arg2) (i.e., the node is use as
callee and method argument) leads to 30% less points for coding, since this shows
weakness in mastering programming properly.

Problem 1 Miscellaneous questions (weight 12%)

1a Time complexity (weight 4%)
What is the worst-case complexity of the following piece of code, in terms of the
input parameter n?

int z = 0;
for (int i = n ; i >= 1; i = i / 2) {

for (int j = 1 ; j <= n ; j ++) {
z = z + i + j ;

}
}

Solution: n log n

Hints for correcting: All or nothing.

1b SCCs in graphs (weight 4%)
Given the directed graph G with nodes a,. . . ,f of Figure 1.

1. Which are the strongly connected components in G (just list them).

2. Illustrate, how they can be determined algorithmically by giving the stages
of the algorithm step by step. One step should correspond to one “graph
traversal step” (i.e., following an edge/visiting a node in the graph) not more
fine-grained.

3. Assume an undirected graph. Describe (no actual code required) a way to
determine SCCs for undirected graphs which is simpler compared to the way

(Continued on page 3.)

Examination in INF2220, 14. December 2012 Page 3

a b

c

d

e

f

Figure 1: Directed graph

it’s done for directed ones?1 Does this simplification leads to an improvement
in the worst-case time complexity? Explain your claim in a few words.

Solution:

1.
{{d, f, a, e, b}, {c}}

2. The final outcome here must of course be the SCCs given above. Since an
animation kind of solution is requested (similar to what we did in the lecture).
Different possible runs are of course possible, depending on non-deterministic
choices. Basically, there can be two different choices for the first phase: starting
at c or starting at another node (the solition does the latter). There will be either
two dfs’s (starting at c) or 1, starting anyplace else.

One possible first fase is given in 2, I don’t give an animation by showing it step
by step, but collapse it into one pic where the pair of numbers are: the first one
is the visiting time the second one the finishing time. This the numbers shown
define uniquely one particular run of an (iterated) DFS, starting at d (at “time” 1)
and ending at d as well (finishing “time” 12). If course it’s a coincidence that the
first DFS finds all nodes (and this the smallest overall starting time is the largest
overall finishing time). I show also the DFS-tree, but it’s not required.

Based on the first phase, the second one must start at d and deliver the first scc
{a, b, d, e, f} before the second scc {c}.

Hints for correcting:

1. It’s all or nothing. Explanations what SCCs are and how to find etc (without
giving the requested answer) don’t count anything. How the “list” of SCCs is
given does not matter.

2. We expect a “animation” kind of solution in the style we had in the lecture.
To get full points there, the given pictures must show that the student has
understood the core of the algorithm. I.e., the following points must be
visible

• the first have must be an (iterated) DFS, the order of fininalizing a node
(“finishing time”) must be clearly visible

1As a side remark: as you remember the notion of strongly connected components and just
connected components coincide for undirected graphs.

(Continued on page 4.)

Examination in INF2220, 14. December 2012 Page 4

2/11

a

3/10

b

4/5

c

1/12d

6/9

e
7/8

f

Figure 2: Possible first phase

• it must be clear that the second (iterated) DFS runs in the graph with
“reversed” edges.

• the second (iterated) DFS must clearly take the finishing times of the
first phase into acount, and the SCCs must be build up during this
second phase.

Unlike in the first sub-task: it’s not all or nothing. It’s not required that the
students depict the dfs-trees graphically, some may, because that’s what we
did in the lecture. Giving only the DFS-tree without the finishing time is
not good enough. It’s also not required that the visiting times are shown,
relevant is only the order of the finishing times. A representation as the
one given here (not a step-by-step series of pics) is fine too, provided it’s
accompagnied with a explanation what the numbers mean and how the first
phase influences the second.

1c Boyer Moore (weight 4%)
Show the good suffix shift for the needle (called “nål” on the Norwegian slides)
n the form of a table:

ANANASBANAN

Hints for solving: That one should be simple and routinely. Write an array
which is as long as the needle. Here, the needed is of length 11, so the array will
go from 0 to 10, following standard operational procedure. It seems that this word
contains all complications that can happen in GSC.

Solution: The solution could be written in a table like that. The mis-match column
is not required, but this resembles the format as was done in the lecture, so some people

(Continued on page 5.)

Examination in INF2220, 14. December 2012 Page 5

a b

5
c

12d

e

f

Figure 3: Second phase (based on the first)

will do probably a similar solution.

index mismatch shift array
0 N 1
1 AN 11
2 NAN 2
3 ANAN 11
4 BANAN 7
5 SBANAN 7
6 ASBANAN 7
7 NASBANAN 7
8 ANASBANAN 7
9 NANASBANAN 7
10 ANANASBANAN 7

Hints for solving: The needle is of length 11, the array must be of length 11, so
the index is from 0 to 10

Hints for correcting: Depending on whether the subcases (7, 2, 10 etc) are
found the points can be scaled.

Problem 2 Huffman coding (weight 12%)

2a Huffman tree (weight 2%)
Assume that an input file has given you the following frequency table:

(Continued on page 6.)

Examination in INF2220, 14. December 2012 Page 6

letter frequency
A 2
B 6
C 10
D 7
E 1
F 1
G 3

Draw a Huffman tree based on the frequency table.

Solution: One solution is given in Figure 4. It’s not the only solution. The first 4
letters, when building the tree, are determined (E, F, A, G), so the corresponding sub-tree
must occur in all solutions. After that point one has a choice (two trees with weight 7).

30

17

7

4

2

E F

A

G

C

13

B D

Figure 4: Huffman (one solution)

2b Huffman coding (weight 5%)
Assume an alphabet (= reservoir of characters) of size 16 (say a, b, . . . , p), and a
text of length 100 characters. Assume you have a Huffman encoding where the
letter a is encoded by a single bit, say 0. What conclusion can one draw about the
frequency of the letter in the given text?

Solution: To have a code of length 1 means: in the run of huffman, the letter a must
be treated only in the last step, i.e., not combined with any other letters until the last
combination. In the step before the last step there are 3 “trees” (one of thema) and no tree
is allowed to be smaller than a.
Assuming first that not all letters are actually used. Then the reasoning goes like this: If a
letter has frequency 50, he has necessarily a code length 1. If 49, then it’s not guaranteed,
there could be two letters 49 and 2, and then 1 letter with 49 will not be coded with length
0. So no letter can be must be longer
it must never be that the other (100-a)/2 larger than the frequency of a.

(Continued on page 7.)

Examination in INF2220, 14. December 2012 Page 7

Hints for correcting: Full points for statement over frequency and short
explanation. We do not except a full formula, because we have not specified how
exactly we mean. A sure conclusion is: to be possible, the a must be taken in
the last step. Since there are potentially different trees, the argument must be to
think: what can prevent that from happening. The following forumula states: if
you divide the rest of the alphabet into two halves, then a with one bit is possible,
if in the second-to last step (with 3 “trees”) it’s possible to take the other two:∑

x∈A1

x ≤ a and
∑
x∈A2

≤ a and A1 ∪ A2 ∪ {a} = {a, . . . , p}

Hints for solving: from the TA: The f(A) >= f(X) and f(A) >= f(Y) where X
and Y are the niece/nephew sub-trees of A in the Huffman tree (and the f(A) >=
ceil(f(T)/3) given by this relation where T is the whole tree), may not be so easy to
see right away. Should be given a higher weight than 2A. I think this is a good
problem, because it is not automatic points, and you may have to think and draw
a little bit to see the solution.

2c Huffman coding (weight 5%)
In general, a given text may have more than one Huffman encoding, all achieving
optimality as defined in the lecture. Assume some text using an alphabet with 4
letters a, b, c, and d.

Question: Is it possible, that the text has 2 different Huffman encodings
corresponding to the left resp. the right binary tree?

a b c d

a

b

c d

In case of Yes, show it by giving an example (i.e., a frequency table for the 4
letters) that this is possible. Or, in case of No, provide an argument that this is
not possible.

Solution: The answer is yes. An easy frequency table is the following;

a 2
b 2
c 1
d 1

(Continued on page 8.)

Examination in INF2220, 14. December 2012 Page 8

Hints for correcting: It’s all or nothing. A correct guess without explanation
gives zero point.

Hints for solving: One TA found that one easy.
For me (ms), the task is not 100% easy. At first sight, it seems impossible: an
optimal code, having a balanced tree, then one should not have an unbalanced one
as well. Let’s start with c and d. In both codings they are the siblings, and they
are in tendency also the ones furthest away, so in tendency they should have the
lowest frequencies, and not much generality is lost assuming they are both equal,
say both have frequency 1. Both together have frequency 2 which is they weight
of their common father (in both trees, as said, they are immediate siblings). Now
this is the of the trees which is identical in both encodings. Since, the placement
for this combined node is different comparing both trees. In the unbalanced one,
the cd node of weight 2 is a minimal one. I.e., the weights of the remaining two
must be ≥ 2. (Actually, since b is “favored” over a in the unbalanced tree we know
a ≥ b. If it were properly <, the unbalanced tree would be impossible. At that
point whe have already a solution: a = b = 2 and b = d = 1. The size of the encoding
is.

2× 2 + 2× 2 + 1× 2 + 1× 2 = 12

For the unbalanced tree it’s

2× 1 + 2× 2 + 1× 3 + 1× 3 = 12

So that’s fine then.

Problem 3 Topological sorting (weight 12%)

3a Checking for compatible sorting (weight 9%)
Assume a directed, acyclic graph (DAG) G = (V, E). Furthermore, you have given
the nodes (all of them) of V in a fixed sequence. Implement an efficient algorithm
which checks whether the given sequence is a valid topological sorting of the given
DAG.

Solution: There are two obvious solutions to that.

Direct implementation: It’s an easy adaptation of top-sort. The top-sort is based on the
following idea: calculate the “in-degree” of all the nodes, and then do the following

1. “find” a node with in-degree 0

2. pick it as next in the sorting

3. decrease the in-degrees of it’s neighbhors by one (since the picked node is
considered done)

That’s the standard one. This needs to be adapted in such a way, that while doing
the above steps it’s checked at the same time that a node with indegree 0 is the next
in “given order”. We did not specify how the order is actually given. Students should
come up with a decent solution, such as an array or a list.

(Continued on page 9.)

Examination in INF2220, 14. December 2012 Page 9

Smartass solution: Another way to do it is as follows: realize that the “given order” is
a DAG in itself. So we have 2 DAGs with the same nodes! One can add the “given
order” as additional edges to the given DAG and then check for asyclicity i.e., try
whether this combined graph has a topological sorting. If it has, the answer is yes.

Hints for correcting:

Smartass solution: since this is an implementation task, this solution needs
to program how the two DAGs are combined, i.e., how the list/array (or
separate graph) are actually merged. Words decscibing that this “should
be done” first is not a (full) solution.

3b Complexity (weight 3%)
What is the time complexity of your solution?

Problem 4 Optimal money change (weight 12%)
Design an algorithm which calculates money change in an optimal way in the
sense of not giving unnecessarily many pieces. What is fixed is the currency
system, i.e. the selection of available coins, and available are the following six
kinds of coins (you may think “cent coins”):

1, 2, 5, 10, 20, 50.

The input and output of the algorithm are as follows:

Input: The input is a non-negative, integer amount of money.

Output: The output is an integer corresponding to minimal number of pieces of
coins required to sum up to the required amount of money.

For illustration: Given the amount of money 72, the following two selections of
coins sum up to the correct amount, but the one in the second line uses less pieces
of coins:

72 = 1 + 1 + 10 + 10 + 10 + 10 + 10 + 10 + 10 ⇒ 9 pieces
72 = 20 + 5 + 20 + 5 + 20 + 2 ⇒ 6 pieces

Your algorithm should give the minimal number of coins for all inputs. The
available kinds of coins are fixed as given above.

Solution: The obvious solution uses a greedy approach. I would go for a loop (recursion
is possible too, but I guess most opt for a loop). In the program, adapted in the loop there
will be three data items/structures.

1. the largest “still sensible” coin

2. the remaining amount that still needs to be changed

(Continued on page 10.)

Examination in INF2220, 14. December 2012 Page 10

3. “list” of coins already changed appropriately. Actually, one does not need the list,
since only the number of coins is requested, not which coins are actually used. So
this data structure can be an integer. I use the list here, the loop invariant is clearer.
The number of coins is abviously just the length of the list

Initially : the the largest sensible coin = 50, the remaining amount to be changed =
input, the list of coins already changed = empty.

Loop step: Check the largest sensible coin against the money still to be changed, if it
fits: largest sensible coin unchanged, list of money to change decreased, largest
sensible coin added to the list of if changed money. If it does not fit: take the next
smaller coin in the currency system as largest sensible. The other 2 data structures
are unchanged.

Exit condition: money to be changed still = 0.

Loop invariants: Sum of the money already changed (in the list) plus the money still
to change = original input. The list of money already changed contains coins in
decreasing order (oldest entries largest), since the algo is greedy. The smallest entry
in this list/all entries in this list (when not empty) are ≥ the current “still sensible”
coin

Hints for correcting: The task does not require to state complexity or argue
that the algo works (it depends on the currency system, so it’s not 100% trivial).
I would expect that the above solution (greedy) is the only reasonable one. If one
comes up with a non-greedy one (especially exhausive combinatorial search), even
if that works it will not give full points. Even if we have not requested a good or
given time complexity, abstruse solutions should not give full credit.

Hints for solving: The solution would be based on a greedy approach. On the
one hand that it rather obvious. First of all, the exercise is called optimization and
greedyness was discussed in the context of that parts. Second, it may correspond
to everyday’s experience how to handle cash. Finally, the task in itself is not hard
anyway. Therefore, I would not give the hint “go for a greedy approach” it should
be part of the task.
What is less good is: on closer inspection it’s actually not obvious that the greedy
approach actually works. With a different “currency system”, greedy would not
succeed (or even their may be amounts of money that cannot be represented at all).
Greedy would also fail sometimes, if one does not have an unliminted supply of
coins, but a limited one, like a purse. Since in the task there is lurking something
complicated (which only for the given currency system does not apply), it may be
confusing. Also we should not ask for an argument that the programmed solution
is optimal if the student finds the greedy-approach.

TA: It seems this exercise should have its complexity analyzed as it
makes a point out of the set of coin types is fixed, but it could also
imply the way the code should look (many sequential loops, a single
nested loop with reverse sorted coin types, or many if-else-if blocks
in a loop). The first and second solutions are slightly better (smaller
amplitude linear algorithms), and the second has shorter code and as
such is better, the last one doesn’t seem great (high amplitude linear),
but may seem implied by telling them the set is fixed.

(Continued on page 11.)

Examination in INF2220, 14. December 2012 Page 11

Problem 5 Binary trees and binary search trees
(weight 20%)

This task checks whether a binary tree is actually a binary search tree. That
will be done in steps, which can be solved independently. For instance, you can
solve problem 5b assuming you have solved problem 5a, even if you have not (yet)
implemented that part, etc. Following the indicated order of sub-tasks may help,
though.

Common to all sub-tasks: You are given a binary tree whose nodes carry non-
negative integer values (the keys). These values, however, do not necessarily
satisfy the binary search-tree condition.

Hints for solving: The challenge here is to get a decent performance. First
one has to remember that the binary trees are defined recursively, and in an easy
manner. However, the search-tree condition is not defined in the same direct way,
which would give rise to a really simple algorithm.
The following “definition” of a BST is, of course, a “recusive mis-conception”:

A BST is a binary tree where (if not empty in the base case) the key of
the parent is ≥ than the node of the left child and ≤ than the key of the
right child (if they exist) and where recursively both children (if exist)
are BSTs themselves.

With this definition, one would get a straightforward and efficient (log n) check,
but wrong of course. The definition is more subtle, since the key of a node must
be ≥ for all nodes in the left sub-tree for instance. So that’s a non-local condition
(unlike the binary-ness, and like “being balanced” or like being a RB-tree).
The challenge therefore is to get a decent efficiency in the face of this non-locality.

5a Minimum & maximum key (weight 5%)
Now:

Program a method min_key which calculates the minimum of all keys
in the tree. Same for the maximum (call it max_key). Your solution
should have a time complexity ofO(n) (= linear in the number of nodes).

Hint: If you want (or your solution has to) invoke min_key on an empty tree
without nodes (and thus without keys), you can use as result in this case
Integer.MAX_VALUE (the largest integer available). Analogously, the max_key
of an empty tree can be assumed to be 0 (the smallest non-negative integer).

Solution: Simple recursion. I made a functional solution for simplicity. The Leaf in
that solution corresponds to what had been given as a hint for “empty trees”, namely one
can use MAXINT as return value. In the functional setting that’s represented by Leaf-
constructure. In Java, it would depend on concretely how the student would implement
the task, either as a procedure or a method of the nodes, in the latter case, probably the
empty tree would be represented by a null pointer (which would have to be checked, to
protect the “base cases”, either in the method itself, or by the caller, such that the method
is never applied to null-pointers.

(Continued on page 12.)

Examination in INF2220, 14. December 2012 Page 12

Listing 1: determine min

let rec minkey_bt (t : btree) =
match t with

Leaf −> maxint (* assumed : maximal *)
| Node (t l , (k , e) , t r) −> min k (min (minkey_bt t l) (minkey_bt (t l))) ; ;

Hints for correcting: I can’t think of any other solution than a recursive one as
the one given above. Missing the base cases, unchecked null pointers gives 50%
off. If null-pointers are checked, in the sense that the recursion is never applied
to null, however, the outside user could apply it to a null pointer leading to an
exception, then that gives 1 point off (unless the student explains that the the
function is never used that way).

Hints for solving: TA:
Using Math.min and Math.max would simplify this a lot, but you would have to
change almost everything to change min_key to max_key (only a few keywords
and variable names stay the same, and it is easier to write the whole function
again, rather than describe the changes):

i f (n == null) {
return Integer .MAX_VALUE;

}

return Math . min(min_key (n . l e f t) , Math . min(n . key , min_key (n . r ight))) ;

5b Checking for search-tree condition (weight 5%)
Again, you are given a binary tree as in the previous task.

Write a recursive algorithm is_bst which checks that the given
binary tree is a binary search tree, using two procedures max_key and
min_key,

which determine the maximum, resp. the minimum key in a tree.

Solution: This one use the only sensible solution. It’s a direct translation of the
definition of BSTs.

Listing 2: check for BST-ness

let rec isbst_slow (t : btree) : bool =
match t with

Leaf −> true
| Node (t l , (k , _) , t r) −>

(maxkey_bt (t l) <= k) & (minkey_bt (tr) >= k) &
isbst_slow (t l) &
isbst_slow (tr) ; ;

(Continued on page 13.)

Examination in INF2220, 14. December 2012 Page 13

A wrong solution (which I expect some people to do) is: check that the node is larger
(or equal) than the left child and smaller or equal than the right child. That’s not the
definition of BST. Careless memory of the condition (or confusion with the Heap condition
where that kind of local checking works may lead to that wrong solution.
Another solution (less obvious) is to do a in-order traversal and make one counter as the
minimal and then check wether it never goes down.

Hints for correcting: The wrong sketched local solution gives not more than 1
point. Getting the base cases uncovered/wrong gives 50% off.

5c Complexity (weight 5%)
Assume a “completely unbalanced” binary tree, i.e., one that resembles a linear
list, for instance: there is no left-child in the whole tree. Under this assumption:

State the time complexity of your solution (in the number of nodes of
the tree) and explain shortly your result.

You can assume that the two procedures max_key and min_key have complexity
O(n) in the number of nodes of the tree.

Solution: quadratic. there are two “loops” (recursions), the outer one and the inner
one (for max resp. min)2. So the complexity is like

// n = length of l i s t = height o f t r e e
for i = 0 to n // recursion for the outer procedure

for j = 0 to i // inner recursion (max/min)
. . . .

Hints for solving: This one is (perhaps) challenging. The danger lies in the fact
that the student may not get the obvious solution in the previous exercise. If he
gets the “intended” solution, the complexity is, unfortunatelyO(n2). If we consider
this danger as too big that the student miss the obvious solution or perhaps even
get the real “good one” maybe not really relying on the max/min stuff, we show
them the ideal solution, and not ask for it.

5d Improved run-time (weight 5%)
Improve the implementation to achieve a better run-time complexity and which
does not use max_key and min_key. Use a recursive procedure is_bst_help as
helper function which takes two additional integer values as argument, say low
and high. Again: Integer.MAX_VALUE is the largest available integer. Your
solution should have a complexity of O(n).

boolean public i s_bs t () {

return this . i s_bst_help (Integer .MAX_VALUE, 0) ;

2Since the tree is unbablance, only max resp. only min will actually be used, depending on
whether the tree is left-unbalanced or right-unbalanced

(Continued on page 14.)

Examination in INF2220, 14. December 2012 Page 14

}

boolean public i s_bst_help (int low , int high) {

< . . . f i l l out >
}

Solution: We are looking for an accumulator solution (similar to the one illustrated by
the fibonacci in the lecture) which may look as follows. The (improvement of) fibonacci
was not recursive, though.

Listing 3: check for BST-ness

let rec isbst_accu ((t , low , high) : btree * int * int) : bool =
match t with
Leaf −> true
| Node (t l , (k , _) , t r) −>
(low <= k) & (k <= high) &
isbst_accu (t l , low , k) &
isbst_accu (tr , k , high) ; ;

Hints for correcting: Since we pretty much force the solution into one
particular direction, I would expect any “creative altertives” (can’t imagine any,
actually) will give little points if any. Difficult to say, though.
As usual, leaving the base cases unproteced, uncovered: 50% off. Mixing up max
and min/low and high in the induction case: 50% off.

Problem 6 B-Trees (weight 12%)
Hints for solving:

TA: Only a single order is given for the trees. The students learn B-
Trees with two orders: M (internal nodes) and L (leaf nodes). L should
probably be specified to be equal to M.

6a Insert (weight 3%)
Assume that the above B-tree of Figure 5 has order M = L = 3. Now: draw the
B-tree that results when the value 53 is inserted.

6b Deletion (weight 3%)
Draw the B-tree that results when the value 5 is deleted from the tree shown in
the above figure.

(Continued on page 15.)

Examination in INF2220, 14. December 2012 Page 15

Figure 5: B-tree

6c Complexity (weight 3%)
Consider now a general case of a B-tree of order M that stores n data elements
(for some M and n). Assuming that each internal node and each leaf is stored in
a separate memory block, estimate the number of disk accesses that are required
for inserting a value in the worst case, as a function of M and n.

Solution: O(logM (n))

6d Amortized cost (weight 3%)
Generally, node splitting, however, occurs not too often: once a node has been split,
it will take several insertions before the same node needs to be split again. The
concept of amortized cost takes this observation into account.
The amortized cost of the insert operation is computed by dividing the number of
disk accesses required by a sequence of inserts, by the number of those inserts-by
considering the worst-case sequence of inserts. Estimate the amortized cost of the
insert operation under the same assumptions as in task 6c above, as a function of
M and n. Discuss the difference between the efficiency of inserts in 6c and 6d.

Solution: D. "O(log base M of n / M)- becomes constant time for M>= n" _ is a good -
enough answer, get max-1 points. Full credit is given for an attempt to take into account
that the internal nodes don’t split each time a leaf is split._

Problem 7 Sorting (weight 20%)
We abstractly describe a “pancake sorting” problem. You are given a pile of n
pancakes of different sizes. You want to sort the pancakes so that, in the end,
smaller pancakes are on top of larger pancakes. The only operation to change the
pile is insert a spatula3 under the top k pancakes, for some integer, and “flip them
all over together”.

Hints for solving:
3A small, thin instrument used in kitchens for instance to flip burgers or, here, pancakes.

(Continued on page 16.)

Examination in INF2220, 14. December 2012 Page 16

Figure 6: B-tree

Figure 7: B-tree

TA: I would try to keep the top of the stack reverse sorted at all times
when increasing the number of elements we look at. If the new element
is not smaller than the previously bottom one, we flip the whole stack.
Now find the largest K where this element is the largest element (start
with K = L / 2 where L is the size of the stack we are trying to sort
right now (there may be stuff below this)). Then move K halfway in one
or the other direction until you find the right K. Then flip this K sized
stack, then flip K-1 pancakes, then flip all the elements in the sorted
stack and increase the amount of elements we look at. Not sure if there
is a better solution, but I imagine keeping track of whether the stack
is sorted in descending or ascending order at any flip may allow some
optimization.

7a Pancake sorting (weight 12%)
Implement “pancake sorting”. Assume that the data to sort is stored in an array
p, where index 0 refers to the bottom of the “pile of pancakes” and the top of the

(Continued on page 17.)

Examination in INF2220, 14. December 2012 Page 17

(a) (b)

Figure 8: Flipping the top 3 pancakes (from left to right)

pile corresponds to the highest index.
Assume you have 3 methods or procedures at your disposal:

flip(k), max(i,j), and min(i,j).

The first operation is equivalent to the operation described above, the second one
allows to determine the position of a maximum value in the array (“the largest
pancake”) in the elements from p[i], . . .p[j-1]. The min(i,j) for minimal
elements. Note that you have no other operations than flip, max, and min to
access the pan-cake array (note: you are not obliged to use all operations). In
particular, you cannot directly use p[i] for reading and writing to the array.

Solution: There seems only one sensible solution (based on max and flip. I would go for
a loop (not recursion, but works as well). The loop goes through the array p, starting from
the bottom (the other way does not work). Invariant: the lowest k pannekaker are sorted.
Initially, there are 0 pancakes sorted. each iteration: k → k + 1; since the descripion put
the “bottom of the pile” at the lower index, the loop will indeed count up if (as it’s natural)
the k corresponds (+/- 1) to the index in the array, depending on the exact choice of the
loop. So each iteration will have to put the (or a) largest pancake in the unsorted part
on top of the already sorted one. That requires: finding the largest (that’s done with max.
Moving the thusly found max-cake to the bottom of the unsorted part requires 2 flips: one
to flip it up to the overall top, and from there down to the appropriate bottom.

Hints for correcting: If the idea is correct and the code otherwise ok, however,
the “borders” are “one off” that gives 4 points off. Note that we are giving exactly
that max(i,j) finds the position of from i to j − 1, we expect that people must
just that exactly not just “roughly.” If the people misunderstand max or min — it
gives the position not the value— then the task is not solvable. If they then cheat
and somehow access the array in a forbidden way to solve it anyway, then that
cannot give more than 3 points.

7b Complexity (weight 4%)
Assume that the mentioned operations flip, max, and min are of constant time
complexity i.e., O(1) (for instance due to special hardware like a spatula and the
human eye estimating pancake sizes). What’s the worst-case complexity of your
solution.

Solution: Linear.

Hints for correcting: If the program a different solution (can’t imagine any,
though) from the official one and analysze that correctly, it’s fine.

(Continued on page 18.)

Examination in INF2220, 14. December 2012 Page 18

7c Complexity (weight 4%)
Make now, unlike in problem 7b the (reasonable) assumption that the operations
flip, max, and min are linear-time in their input; for flip, linear in the number
of pancakes to be flipped, for max/min, linear in the difference between the two
input parameters. What’s the complexity of your pancake sorting now?

Solution: quadratic

Hints for correcting: Same remark as the previous one.

