SILICON LABS

RISC-V: The Free and Open RISC Instruction Set Architecture

ARJAN BINK | NOVEMBER 1 2019

Content

= Silicon Labs

= Oslo office (former Energy Micro)

" Introduction to the RISC-V Instruction Set Architecture (ISA)
= Base ISA
= Standard extensions

= RISC-V cores
= Commercial & Open Source
= OpenHW
= PULP’s RI5CY CPU (ETH Zurich)

= Custom extensions

= Summer internship @ Silabs Norway
= RISC-V Compliance
= RI5CY bus interfaces

Global mixed-signal semiconductor company

(lot
Founded in 1996; public since 2000 (NASDAQ: SLAB) e
et
~1,500 employees and 16 R&D locations worldwide Q:_:_:_._...
teseeecs
Track record of innovation & differentiation TULTIL LR,

20 year pioneer in mixed-signal and RF technologies
Fabless model. 7B+ devices shipped & 1,700+ patents

EFM32 Gecko microcontroller (MCU) — Energy Micro - 2010

CPU and Memory Clock Management Energy Management
e
Memory High Freq High Freq Volt |
: Crystal Osc RC Osc oltage Voltage
ARM Cortex-M3 processor meﬁ:'on y e T
Low Freq Low Freq
Crystal Osc RC Osc
Pﬁ)la?Zm Debug DMA » Power-on Brown-out
g Interface Watchdog Auxiliary Reset Detector
Memory Oscillator RC Osc

Peripheral Reflex System

Serial Interfaces I/O Ports Timers and Triggers Analog Modules Security

External General Timer/ Peripheral
B us Purpose CO unter Reﬂex System ADC

Interface /O

USART AES

Low Energy Real Time
Timer Counter

External
Interrupt

Low Energy
UART

LCD Analog
Pullse Watchdog Controller Comparator

Counter

L5d

Global
Semiconductor
Alliance

2015, 2016, 2017 & 2018 MOST RESPECTED
SEMICONDUCTOR COMPANY

20 Years of Connectivity

A track record of multiple industry first,
transforming or disrupting large markets

Founded

1996

PC Modem
Breakthrough
soft modem

1996

RF Synthesizers
15t RF CMOS
device in any
phone

HQ R&D Size Nasdaq
Austin, 16 global 1500 people SLAB
Texas, USA locations S

Crystal Oscillators
Ultra-low jitter XOs and
VCXOs

High-performance
Clock Generator
Disruptive DSPLL®
architecture

Aero Transceivers
Dominated GSM
cellular market

8-bit MCUs
High-performance 8051
core and analog
peripherals

FM/AM Tuners

TV Tuners

15t CMOS tuner for CE & Market leader

automotive

EZRadio® Transceiver
Sub-GHz short-range
wireless

since 2011

EFM32 MCUs
Energy-friendly 32-bit
Gecko technology

ZigBee SoCs
Mesh networking
market leader

Simplicity Studio

1st integrated MCU &
RF development
environment

Al

JEa
3

Thread Protocol
Founding member of
Thread Group

Wireless Modules
Bluetooth, Wi-Fi and
ZigBee modules and
protocol stacks

f

Pearl/Jade Gecko
Next-gen EFM32 MCUs
with HW cryptography

2016

Wireless Gecko
Multiprotocol,
multiband SoC portfolio

EFR32MG21 Series 2 Multiprotocol Wireless SoC - 2019

CPU and Memory

Serial Interfaces

Energy

Clock Management
9 Management

Voltage
Regulator

Low Frequency Ultra Low Frequency Brownout
Crystal Oscillator RC Oscillator Detector

Fast Startup Low Frequency Power-on
RC Oscillator RC Oscillator Reset

32-bit Bus

PRS — Peripheral Reflex System

I1/0 Ports Timers and Triggers Analog Modules

External
Interrupts

Pin Reset

20 GPIO 2 : 12-bit ADC

Atchd 2 x Analog
SN - - Compafamf

Real Time
Counter

m * Multiple systems with multiple cores
Host

EM3
Stop]

EM4
Shutoff

ARM Cortex-M33
Memories (Flash + RAMs)
Analog + digital peripherals

Secure Element

Hardware Cryptographic Acceleration

= AES (128/192/256), SHA-1, SHA-2 (SHA-
224/SHA256), ECC (256-bit), ECDSA (256-bit)
and ECDH (p192, p256), HMAC, J-PAKE

True Random Number Generator (TRNG)
Secure Boot
Secure Debug / Debug Access Control

Unique ID

Radio

Zigbee, Thread and Bluetooth mesh

Introduction to the RISC-V Instruction Set Architecture

RISC-V and RISC-V foundation

= RISC-V is an Instruction Set Architecture (ISA)

Free and open ISA
= Partitioned into unprivileged spec, privileged spec, external debug spec

= https://riscv.org/specifications/

= https://riscv.org/specifications/privileged-isa/

= https://riscv.org/specifications/debug-specification/
= Defines 32, 64 and 128 bit ISA

= No implementation, just the ISA

Born in academia and research in 2010

= Computer Science Division @ University of California, Berkeley

4 RISC

= R|SC-V foundation

Governs the RISC-V open standard
Founded in 2015

More than 275 members

Non-profit corporation controlled by its members

Directs the future development

Drives the adoption of the RISC-V ISA

Board of Directors with representatives from

Bluespec, Inc.

Google

Microsemi

NVIDIA

NXP

University of California, Berkeley

Western Digital

https://riscv.org/specifications/
https://riscv.org/specifications/privileged-isa/
https://riscv.org/specifications/debug-specification/

RISC-V History

</ RISC-V Timeline

RISC
Main ISA specs
— ratified!
Privileged Arch, v1.10 @ RV32IMFDQC
Reference: Krste Asanovic _ : RVe4IMFDQC
RISC.V Summit, Zurich, May 2019 RISC-V Foundation Incorporated @ Ol Privileged MsU 1.11

Hot Chips 2014 <A | o A
— x
NVIDIA| || © =

User ISAv2.0 IMAFD = dg ke m 5 o

15t Rocket tapeout, EOS14, 45nm AR S| ® <

H|user savi.o, 2 e 2 3 ANEIIE

11 }|Raven-1 tapeout (28nm), %6 = E el | 15| € E =

{ i H 5 (®) | O S L

L1 F|RVC MS thesis First Linux 5 = g ;) 8 ;) ;,, §

RISC-V ISA project begins Port — <9 = -~ N/
—A S oy s S e e
Q "y Vv & ™) © A ® O Q
O O D QDS
v v v v v v v v Vv v

Berkeley World

What is Instruction Set Architecture (ISA)?

A contract between the SW and HW
= SW in this case is the compiler/assembler/operating system
= HW in this case is the micro-architecture

= Number of pipeline stages, branch prediction

= Speculative, out-of-order execution, Super-scaler (static, dynamic)

Micro-architecture PPA are influenced by the choice of ISA
= Simplicity of instruction decode
= Pipeline stall scenarios

Early days ISA’s were often focused on code-size
= Variable length instructions

= Arithmetic operands from register and memory

= Often were called Complex Instruction Sets

These HW/SW contracts led to complex HW design

= Performance (no. of cycles to complete a program) was poor
= Difficult instruction decoding

= Too many pipeline stalls

Source/dest operand Second source operand
Register Register
Register Immediate
Register Memory
Memory Register
Memory Immediate
a.JE EIP + displacer‘nsnt
4 4 8
Condi-| _.
JE tion Displacement
b. CALL
8 32
CALL Offset

c.MOV EBX, [EDI + 45]

6 11 8 8
rim .
MOV |d|w Postbyte Displacement
d. PUSH ESI
5 3
PUSH | Reg

e, ADD EAX, #6765
4 31 32

X86 Addressing modes
and instruction encoding

ADD |Reg|w Immediate

{. TEST EDX, #42
7 1 8

32

TEST w| Postbyte

Immediate

Why a new instruction set?

= Proprietary ISA’s have a slew of problems Number of x86 Instructions over years

= |ntel ISA has too much backward compatibility baggage 1600

= ARMvV7 ISA (2005) also has imperfections
= Some corrected on ARMvS8 (64bit, 2015)

1400

= Proprietary ISA’s suffocate micro-architecture 1200

innovations
1000

®= One needs an expensive ARM architecture license to do

its own micro-architecture 200

= Also, there is no path to add new/specialized
instructions to ISA or low-latency interrupts 600

= New and open-source ISA’s solve both of these
problems

400

= Clean Slate = It can rectify the previous ISA mistakes 200

= Community designed = Leads to a better ISA

0
1978 1981 1982 1986 1994 1998 2001 2002 2004 2006 2008 2010 2014

Hallmarks of a good ISA

12

= Modular not incremental

Intel is the prime example of incremental = 80 instructions in
1978 to 1338 in 2014

The RISC-V Base ISA is frozen and will never change = runs a
full stack software

= Al RISC-V processors run the Base ISA

RISC-V supports optional ISA extensions (modules) or
specialized applications

= SIMD, Vector, Bit Manipulation, Privileged, Fast Interrupt, even Security!

= Suitable for both low-cost and high-performance
processors

RISC-V supports both 32 GP registers and 16 GP registers
architecture (embedded)

= Reduced number of gates = Lower cost, active power and leakage
It also supports 16-bit opcodes (compressed)

= Reduced Code size = reduce Flash capacity = reduced cost

= Agnostic to processor micro-architecture
= Pipeline length, branch prediction, speculative out-of-order, ...
= No delayed branching or delay loading
= MIPS, 5-stage pipeline
= No conditional execution

= ARM, OOO unfriendly (register renaming issues)

= Should consider the processor implementation complexity
and performance into account

= Load/Store approach

= |oad/store instructions are separate from ALU instructions
= Fixed instruction length
= Fixed position for register addresses

= Register access start as soon as the instruction is fetched

Lessons learned from the ARM ISA mistakes

13

ARMv7 (2005) ISA problems:

No hard-wired zero register
= Reduces the number of instructions significantly
= Examples: nop = addi x0, x0, 0

PC as a general purpose register
= Complicates hardware branch prediction

16 GP registers instead of 32

= Causing issues for compiler/linker (too many push and
pops onto stack)

HW trouble-maker instructions

* Load multiple, Conditional execution, e.g.
= |DMIAEQ SP!, {R4-R7, PC}

32bit ISA and Thumb2 (16/32bit) separate ISA’s
= Need to branch to odd byte addresses to switch mode

= ARMv8 (2015) has made progress:

It does have a zero registers (not true for ARMv8-M)
It now carries 32 GP registers (16 for ARMv8-M)
PCis not a GP any more (not true for ARMv8-M)

No multiple load/store (not true for ARMv8-M)

No conditional execution (not true for ARMv8-M)

= But, it still has issues

No fixed location source/destination in instructions
Conditional move instructions
Complex addressing modes

64bit ARM cores can not switch to Thumb-2 ISA
= Thumb-2 ISA only works with 32bit addresses

Still not modular

= 1000 instructions in 2015, 3 more expansions since then

RISC-V Base ISA

= Four base ISAs

RV32I (integer registers are 32-bit, 32-bit address space)

RV32E (reduced version of RV32l with only 16 integer GP registers)
RV64I (integer registers are 64-bit, flat 64-bit address space)
RV128I (integer registers are 128-bit, flat 128-bit address space)
(RV64E not defined, but considered)

= 32 general purpose (GP) registers

= X0 always reads as 0

Only 16 for RV32E

= (32 floating point registers (optional, not part of Base))

= https://riscv.org/specifications/

Register | ABI Name | Description Saver
x0 zero Hard-wired zero
x1 ra Return address Caller
x2 sp Stack pointer Callee
x3 gp Global pointer
x4 tp Thread pointer —
x5-7 t0-2 Temporaries Caller
x8 s0/fp Saved register/frame pointer Callee
x9 s1 Saved register Callee
x10 11 | a0 1 Function arguments/return values | Caller
x12-17 | a2-7 Function arguments Caller
x18 27 | s2 11 Saved registers Callee
x28 31 [t3 6 Temporaries Caller
07 ft0 7 FP temporaries Caller
f8 9 fs0 1 FP saved registers Callee
£10-11 | fa0-1 P arguments/return values Caller
£12 17 | fa2 7 FP arguments Caller
£18 27 | fs2 11 FP saved registers Callee
£28-31 | ft8-11 FP temporaries Caller

https://riscv.org/specifications/

RISC-V [SA

15

= Types of instructions

= R-Type: Register-register operations (add rd, rs1, rs2)

S| 25 24 7 18 15 14 12 11 76 0
| funet7 | rs2 | rsl | funct3 | rd | opcode |
T D] 3 i) T
(000000 arc? arcl ADD/SLT/SLTU dest op
(OO0 src arel AND/OR/XOR dest op
(0000 arc arcl SLL/SRL dest op
(100000 arc arcl SUBSRA dest oF

= |-Type: Short immediate/loads (addi rd, rs1, imm; Iw rd, imm(rs1))
= S-Type: Stores (swrs1, imm(rs2))
= B/SB-Type: Conditional Branches (beq rs1, rs2, imm)

a1 30 2324 2018 1514 12 11 B 7 & 0
[imm[12] | imm[10:5] | rs2 | rsl | functd | imm[4:1] | imm[11] | opeode |
] 5 3 4 1 T
offset|12|10:5) src2 srcl BEQ/BNE offset[11]4:1) BRANCH
offset[12]10:5] se? srel BLI[U] offset[11]4:1] BRANCH
offset[19]10:5] 2 srel BGE[U] offset[11]4:1] BRANCH

= U/UJ-Type: Long immediate (lui rd, imm; auipc rd, imm; jal rd, imm)

) 12 11 7 6 0
| imm|31:12) | rd | opeode |
20 5 T
U-immediate[31:12| dest LT

U-immediate|31:12| dest AUTPC

Name Field Comments
(Field Size) 7 bits 5 bits 5 bits 3 bits 5 bits 7 bits
R-type funct? | rs2 rsi funct3 rd opcode Arithmetic instruction format
|-type immediate[11:0] rsi funct3 rd opcode Loads & immediate arithmetic
S-type immed[11:5] rs2 rsi funct3 immed[4:0] opcode Stores
SB-type immed[12,10:5] rs2 rsi funct3 |immed[4:1,11] opcode Conditional branch format
UJ-type immediate[20,10:1,11,19:12] rd opcode Unconditional jump format
U-type immediate[31:12] rd opcode Upper immediate format

1. Immediate addressing

|immediate| rs1 |funct3| rd | op ‘

Addressing Modes

2. Register addressing

‘funct7| rs2 | rs1 |funct3| rd | op ‘ Registers
| Register
3. Base addressing
|immediate| rs1 \funct3| rd | op | Memory
| Register | @— [[Byte] Halfword Word Doubleword
[
4. PC-relative addressing
’ imm |rs2 I rs1 Ifunct3|imm| op | Memory

\ PC Word

— 10

RISC-V ISA (cont.)

16

= Procedure Call and Return

= PC-relative Short jump (+-4kiB or +-1MiB) call
= jal x1, 100
= x1=PC+4 (return address); go to PC + 100 (procedure address)
= PC-relative long-jump call
" quipc x5, 0x12345
= x5=PC+0x12345000
= jalr x1, 100(x5)
= x1=PC+4 (return address); go to x5 + 100 (procedure address)
= Absolute address long-jump calls
= ui x5, 0x12345
= x5=0x12345000
= jalr x1, 100(x5)
= x1=PC+4;gotox5+100
= PC-relative return
= jalr x0, 0(x1)

= X0 = PC+4 (no change); go to x1 + O (return address)

RV32I Base Instruction Set

imm[31:12] d 0110111

imm[31:12] d 0010111
mm[20[10:1[11[19:12] d 1101111

imm[11:0] rs1 000 d 1100111
imm|12|10:5 rs2 sl 000 imm|4:1|11 1100011
imm|12|10:5 rs2 sl 001 imm|4:1|11 1100011
imm|12|10:5 rs2 sl 100 imm|4:1|11 1100011
imm|12|10:5 rs2 sl 101 imm|4:1|11 1100011
imm|12|10:5 rs2 sl 110 imm|4:1|11 1100011
imm[12[10:5 rs2 sl 111 imm[4:1|11 1100011
imm|[11:0 sl 000 d 0000011
imm|[11:0 sl 001 d 0000011
imm|[11:0 sl 010 d 0000011
imm|[11:0 sl 100 d 0000011
imm|[11:0 sl 101 d 0000011
imm|11:5 rs2 sl 000 imm|4:0 0100011
imm|11:5 rs2 sl 001 imm|4:0 0100011
imm|11:5 rs2 sl 010 imm|4:0 0100011
imm|[11:0 sl 000 d 0010011
imm|[11:0 sl 010 d 0010011
imm|11:0 sl 011 rd 0010011
imm|[11:0 sl 100 d 0010011
imm|[11:0 sl 110 d 0010011
imm|11:0 sl 111 rd 0010011
0000000 shamt sl 001 d 0010011
0000000 shamt sl 101 d 0010011
0100000 shamt sl 101 d 0010011
0000000 s2 sl 000 d 0110011
0100000 s2 sl 000 d 0110011
0000000 s2 sl 001 d 0110011
0000000 s2 sl 010 d 0110011
0000000 s2 sl 011 rd 0110011
0000000 s2 sl 100 d 0110011
0000000 s2 sl 101 d 0110011
0100000 s2 sl 101 d 0110011
0000000 s2 sl 110 d 0110011
0000000 s2 sl 111 d 0110011
0000 pred succ 00000 000 00000 0001111
0000 0000 0000 00000 001 00000 0001111
000000000000 00000 000 00000 1110011
000000000001 00000 000 00000 1110011

[E=s sl 001 rd 1110011

ST sl 010 rd 1110011

[E=s sl 011 rd 1110011

[E=s Zimm 101 rd 1110011

[E=s Zimm 110 rd 1110011

[E=s Zimm 111 rd 1110011

FENCE
FENCE.I
ECALL
EBREAK
CSREW
CSRRS
CSRRC
CSRRWI
CSRRSI
CSRRCI

RISC-V (optional) Standard Extensions

C T S [T

Integer Multiplication and Division B Bit Manipulation
A Atomic Instructions J Dynamically Translated Languages
Zicsr Control and Status Register Instructions T Transactional Memory
F Single-Precision Floating-Point P Packed-SIMD Instructions (DSP)
D Double-Precision Floating-Point Vv Vector Operations
Q Quad-Precision Floating-Point N User-Level Interrupts
L Decimal Floating-Point Zam Misaligned Atomics
Compressed Instructions Ztso Total Store Ordering
Zifencei Instruction-Fetch Fence Zfinx Floating-point using integer register file

RISC-V implementations mention supported extensions, e.g. RV32IMC (RV32l base + Multiply/divide + Compressed)

RV32G is abbreviation for RV32IMAFDZicsr_Zifencei

RV64G is abbreviation for RV64IMAFDZicsr_Zifencei

Smallest core would support only RV32E (but RV32EC would typically be cheaper at system level)

* Extensions in bold are ratified (status in June 2019)

Standard and non-standard extensions

= RISC-V provides basis for specialized ISA extensions
= Base ISA always needs to be supported
= |fso,itisa ‘RISC-V’
= Plenty of room for (custom) extensions
= E.g. RV32|ISA uses < 1/8 of 32-bit encoding space

= Portions of encoding space are guaranteed to be left open by standard
extensions

= Standard extension

= Generally useful and designed to not conflict with any other
standard extension

= E.g. MAFDQLCBTPV

= Non-standard extension

= May be highly specialized and may conflict with other standard
or non-standard extensions

= Might eventually be promoted to standard extension

= 30-bit encoding spaces

= 3 available when not using compressed ISA

= 25-bit encoding spaces - major opcodes

= Reserved: Aimed at future standard extensions

= Custom-[0|1]: Will be avoided by future standard extensions

= Custom-[2]3]/rv128: Reserved for future use by RV128

inst

4:2

inst

6:5

000

no1

010

011

100

101

110

00| LOAD LOAD-FP | custom-0 | MISC-MEM | OP-IMM | AUIPC | OP-IMM-32
01| STORE |STORE-FP | custom-1 AMO oP LUI OP-32

10| MADD MSUB NMSUB | NMADD OP-FP | reserved | custom-2/rv128
11 | BRANCH JALR reserved JAL SYSTEM | reserved | customn-3/7rvl128

Available when not using >32-bit encoding

Reserved for RV64 (available in RV32)

Available when not using F (floating point extension)

Available when not using A (atomics extension)

= 22-bit encoding spaces - minor opcodes (funct3)

= Several major opcodes have non-used minor opcodes

RISC-V Cores

RISC-V cores (https://github.com/riscv/riscv-cores-list

Name

rocket

freedom

Berkeley Out-
of-Order
Machine
(BOOM)

ORCA

RISCY

Ibex (formerly
Zero-riscy)

Ariane

Riscy
Processors

RiscyOO
Lizard
Minerva
OPenV/mrisev

VexRiscv

Roa Logic
RV12

SCR1

Hummingbird
E200

Shakti

ReanV/

Supplier

SiFive, UCB Bar

SiFive

Esperanto, UCB
Bar

VectorBlox
ETH Zurich,

Universita di

Bologna

lowRISC

ETH Zurich,
Universita di
Bologna

MIT CSAIL CSG

MIT CSAIL CSG
Cornell CSL BRG
LambdaConcept
OnChipUls

SpinalHDL

Roa Logic

Syntacore

Bob Hu

IIT Madras

Lucas Castro

Links

GitHub

GitHub

GitHub

GitHub

GitHub

GitHub

Website,GitHub

Website,GitHub

GitHub
GitHub
GitHub
GitHub

GitHub

GitHub

GitHub

GitHub

Website,GitLab

GitHub

Priv.

1.11-
draft

1.11-
draft

1.11-
draft

1.11-
draft

1.

1

User spec

2.3-draft

2.3-draft

2.3-draft

RV32IM

RV32IMC

RV32I[M]C/RV3IZEMIC

RVG4GC

RVGAIMAED
RVE4IM
RV321
RV321(2)

RV32I[M][C]

2.1

2.2, RV32I/E[MC]

2.2, RV32IMAC

2.2, RVB4IMAFDC

Primary
Language

Chisel

Chisel

Chisel

VHDL

SystemVerilog

System\Verilog

System\Verilog

Bluespec

Bluespec
PyMTL
nMigen
Verilog

SpinalHDL

SystemVerilog

System\Verilog

Verilog

Bluespec

VHDL

License

BSD

BSD

BSD

BSD

Solderpad
Hardware
License v.
0.51

Apache 2.0

Solderpad
Hardware
License v.
0.51

MIT

MIT
BSD
BSD
MIT
MIT

Mon-
Commercial

License

Solderpad
Hardware
License v.
0.51

Apache 2.0

BSD

GPLv3

PicoRV32

MR1

SERV

SweRV EH1

Reve-R

Bk3

BkS

Bk7

DarkRISCV

RPU

RVO1

N22

N25F

D25F

A25

A25MP

NX25F

AXZSMP

Clifford Walf
Tom Verbeure
Olof Kindgren

‘Western Digital
Corporation

Gavin Stark

Codasip

Codasip

Codasip

Darklife

Domipheus
Labs

Stefano Tonello

Andes

Andes

Andes

Andes

Andes

Andes

Andes

Andes

GitHub
GitHub

GitHub

GitHub

GitHub

Website

Website

Website

GitHub

GitHub

OpenCares

Website

Website

Website

Website

Website

Website

Website

Website

1.10

1.10

1.10

1.10

111

111

111

111

1.1

1.1

1.1

1.1

RV32I/EIMC]
RV321

RW321

RV32IMC

RV32IMAC

RV32EMC /
RVA2IM[FIC

RV32IM[FIC /
RVBAIM[FIC

RVB4IMA[F][DIIC]

maost of RV321

RV321

2.1, RV32IM

RV32IMAC/EMAC +
Andes V5/V5e ext.

RV32GC + Andes V5
ext.

RV32GCP + Andes V5
ext.

RW32GCP + SV32 +
Andes V5 ext.

RV32GCP + SV32 +
Andes V5 ext. + Multi-
core

RVB4GC + Andes V3
ext.

RVEAGCP + SV39/48
+ Andes V5 ext.

RWBAGCP + SV39/48
+ Andes V5 ext. +
Multi-core

Verilog
SpinalHDL

Verilog

SystemVerilog

CDL

Verilog

Verilog

Verilog

Verilog

VHDL

VHDL

Verilog

Verilog

Verilog

Verilog

Verilog

Verilog

Verilog

Verilog

ISC
Unlicense

1SC

Apache 2.0

Apache 2.0

Codasip
EULA

Codasip
EULA

Codasip
EULA

BSD

Apache 2.0

LPGL

Andes
FreeStart
IPEA

Andes
Commercial
License

Andes
Commercial
License

Andes
Commercial

License

Andes
Commercial
License

Andes
Commercial
License

Andes
Commercial
License

Andes
Commercial
License

= Many RISC-V cores
= Various ISA extensions
= Various microarchitectures
= Various languages

= Various licenses

= Also SoCs

= SiFive
= FE310, U540

= NXP
= Vega

= GreenWaves Technologies
= GAPS

-

Microchip

= PolarFire SoC

https://github.com/riscv/riscv-cores-list

OpenHW (www.openhwgroup.org) and CORE-V

= CORE-V family of open-source cores

= Hosted by OpenHW not-for-profit organization

= Focus on high quality open-source HW development

/AlEEndER
ilEEEEER

-

® |In line with industry best practices
= Based on RISC-V cores developed by ETH Zurich

qm”

= RISCY
= https://github.com/pulp-platform/riscv
= 32-bit 4-stage in-order RISC-V CPU core
= RV32IM[F]CXpulp

* M-mode, U-mode

| 11| 14

“UNEEEEENY
T,

0
0
0
1
O
u

\

“‘UEEEEEEEEEN
.

N

= Ariane
= https://github.com/pulp-platform/ariane
= 64-bit 6-stage single-issue in-order RISC-V CPU core
= RV64IMAFDCN (+X)

= M-mode, S-mode, U-mode (Linux-capable)

http://www.openhwgroup.org/
https://github.com/pulp-platform/riscv
https://github.com/pulp-platform/ariane

PULP 32-bit RISC-V cores

PULP and RISC-V®

Interconnect

Logarithmic interconnect

RISCY Ibex || Ariane

32b 32b 64b

(ex Zero/micro

Platforms

interconnect

interconnect

Multi-cluster

5]
©
-
c
o
o
]
©
=2
=

interconnect

single Core [{5] |} Muiti-core
« PULPino * Fulmine E
« PULPissimo « Mr. Wolf * Hero

NOT— S HPC 2

Accelerators

HWCE Neurostream HWCrypt PULPO
(convolution) (ML) (crypto) (1%t order opt)

* Based on material from Integrated System laboratory, ETH, Zurich, Switzerland

= PULP (Parallel Ultra Low Power) is a project
whose goal is to design an open-source energy
efficient programmable platform for the Internet
Of Things (loT) applications

® |ntegrated System laboratory, ETH, Zurich,
Switzerland

= Energy Efficient Embedded Systems Laboratory,
University Of Bologna, Bologna, Italy
= Complete systems based on
= Single-core micro-controllers (PULPissimo, PULPino)
= Multi-core loT Processors (OpenPULP)

= Multi-cluster heterogeneous accelerators (Hero)

= Efficient implementations of RISC-V cores
= 32 bit 4-stage core RI5CY
= 64 bit 6-stage Ariane

= 32-bit 2-stage lbex (formerly Zero-riscy)

RISCY - Overview

= RISCY

https://github.com/pulp-platform/riscv

32-bit 4-stage in-order RISC-V CPU core

RV32IM[F]C[Zfinx]Xpulp

~70 Kgates + 30 Kgates for FPU
3.19 Coremark/MHz

M-mode, U-mode

Debug Spec 0.13 compliant

Implemented in SystemVerilog

= Xpulp custom extensions

Automatic increment load/store
Zero-overhead hardware-loop
Bit-manipulation

Enhanced signal processing
Packed-SIMD

= RI5CY in industry

= Product announced by GreenWaves Technology:

= GAPS8 - |oT Application Processor
= TSCMS55 PULP-based chip

= https://greenwaves-technologies.com/en/gap8-product/

= Google is evaluating RISCY on Pixel Visual Core
= VALTRIX Systems for verification effort

= http://valtrix.in/programming/running-sting-on-pulpino

= https://www.youtube.com/watch?v=m7aAUlHoV2E&feature=youtu.be

= NXP RV32M1-VEGA

= https://github.com/open-isa-org/open-
isa.org/tree/master/Reference%20Manual%20and%20Data%20Sheet

https://greenwaves-technologies.com/en/gap8-product/
http://valtrix.in/programming/running-sting-on-pulpino
https://www.youtube.com/watch?v=m7aAUlHoV2E&feature=youtu.be
https://github.com/open-isa-org/open-isa.org/tree/master/Reference%20Manual%20and%20Data%20Sheet
https://github.com/pulp-platform/riscv

RISCY - Main configuration

(RISC-V core

addr o

rdata

|$M_]

Controller

123~

”

9]
EX

wdata o —
_[:I addr o i 5
Bl rdata i -
OrA " CSR rpc> c
> 0OpB A y 8
a
OpA ALU A E‘
OphB RDC> -
DIV -
opC o
- S
7o muLT | EX <
P \WE 0
Losc MAC 0
—
C=0ph
fom ool |||
C-0pC

Prefetchea el | [o EX
Buffer Decoder c|we
b =M
PC ; 2
] i
¥ hwloop | 5| | ['F| b o8 — o)
£ controlz— & [P| T¢ e R
T, o DIA bl EX
I= S TP | WB
m§ ¢ Debug Unit | 1 ﬁ
29T A :
A [/ :

= Main parameters
= FPU: Floating Point Unit (single precision) (based on IEEE 754-2008)

25

= Zfinx: Re-use X registers instead of separate 32 register FP register file

PULP_SECURE

= PMP configuration: Physical Memory Protection

= User mode

= Pipeline
= Fetch

= 4 word prefetch buffer

= Align and decompress instructions

Compressed Instruction

Regular Instruction

= Decode

= Execute / load / store

= Writeback

Instr. X

Instr. X

0x0

O0x4

0x8

oxC

31

Insir. 0
Instr. 2 | Instr. 1
Instr. 3 | Instr. 2
Instr. 4 | Instr. 3

* Based on material from Integrated System laboratory, ETH, Zurich, Switzerland

RISCY — Pipeline effects’

= No delay slot in RISC-V

= Jumps done in the ID stage (loose one cycle)

= Next instruction already fetching and probably ready in IF stage

= Combined branches (no set flag instruction)
= Branch decision computed with branching instructions
= Branch decision computed in EX stage

= Taken branches loose two cycles
= Branch only available late in pipeline

= Not taken branches do not loose cycles

* Based on material from Integrated System laboratory, ETH, Zurich, Switzerland

= Jumps
PC IF ID EX
A to Imem -
A+4 to Imem X from Imem[A]
J to Imem _ JumptoJ
J+4 to Imem K from Imem[J] Bubble add
= Branches
PC IF ID EX
A to Imem -
A+4 to Imem X from Imem[A]
A+8 to Imem Y from Imem[A+4] Xis Branch
B to Imem Bubble Bubble Jump to B

RISCY extensions - Post-increment load and reg-reg mode load”

31 20 19 15 14 12 11 T 6 0
imm][11:0] | sl funct3 | rd | opcode |
12 5 3 5 7
offset[11:0] base width dest LOAD

Add opcode: “0001011” LOAD WITH POST INCREMENT

T 11:0 TSl 000 rd | oooooil | LB
Tmm|11:0 Ts1 001 rd 0000011 | LH
imm|11:0) 010 rd 0000011 | IW
imm[11:0 15l 100 rd 0000011 | LBU
Tmm|11:0 sl 01 rd 0000011 | LHU

Add funct3: “111” REG-REG

* Based on material from Integrated System laboratory, ETH, Zurich, Switzerland

= Post-increment load (similar for store)
= Greenfield Extension

= New major opcode
= 0001011 LOAD with POST INCREMENT
" p.Jdwrd,imm12(rs1!)

= Load valueinrsl, store the value from memory in rd, and increment rs1 by
imm12

= |-Type with funct3 to selected byte, half-word, word

= Reg-reg mode load (similar for store)
= Brownfield Extension
= Reuse LOAD opcode, encode in free func3 encoding
= p.lwrd, rs2(rsl)
® Load value in rs2+rs1, store the value from memory in rd
= funct3 to selected if standard load or R-type load

= |f R-type, use funct7 to select to load byte, half-word, word

RISCY extensions - Bit manipulation”

= RISC-V bit manipulation (B) not ratified yet

= PULP team developed their own extension

Contributing to Bit Manipulation task group

Will possibly align with B extension

= Bit Manipulation instructions

Extract N bits starting from M from a word and extend (or not) with sign
Insert N bits starting from M in a word

Clear N bits starting from M in a word

Set N bits starting from M in a word

Find first bit set

Find last bit set

Count numbers of 1

Rotate

* Based on material from Integrated System laboratory, ETH, Zurich, Switzerland

= QOriginal RISC-V

mv x5, 0

mv x7,0

mv x4, 32
Lstart:
andi x6, x8, 1
add x7, x7, x6
addi x4, x4, -1
srli x8, x8, 1

bne x4, x5, Lstart

Bit manipulation extension

p.cnt x7, x8

RISCY extensions — Hardware loops

» Hardware Loops / Zero Overhead Loops = QOriginal RISC-V Hardware Loop extension
= Remove branch overheads in for loops :
= Smaller loops benefit more (up to factor 2) mv x5, 0 Ip'setupl 100, Lend
mv x4, 100 nop
= Loop needs to be set up beforehand and is defined by 3 CSRs Lstart: Lend: nop
= Start address: addi x4, x4, -1
* |p.startil, imm12 nop
= START_REGIL] = PC + 2*imm12 bne x4, x5, Lstart

= End address
= |p.endil,imm1l2
* END_REG[L] = PC + 2*imm12
= Counter
= |p.count{-,i}, L, {rs1,imm12}
= COUNT_REGI[L] =rs1/imm12
= Short-cut
= |p.setup{-,i}, L, {rs1,immc}, imm12

» START_REGIL] = PC + 4, END_REG[L] = PC + 2*imm12, COUNT_REG[L] = {rs1,immc}

= Two sets registers implemented to support nested loops
= |[=0orl

* Based on material from Integrated System laboratory, ETH, Zurich, Switzerland

RISCY Extensions - Putting it All Together”

Baseline

mv x5,
mv x4,
Lstart:
1b
1b
addi
addi
add
sb
addi
addi
bne

0
100

X2,
X3,
x10,
x11,
X2,
X2,
x4,
x12,
x4,

0(x10
0(x11

x10,
x11,
X3,

for (i = 0; 1 < 100; 1i++)
dli]

)
)
1
1

x2

0(x12)

x4,

x12,

x5,

-1
1
Lstart

ali] + b[i];

Auto-incr load/store

mv x5, 0
mv x4, 100
Lstart:
1b x2, 1(x10!)
1lb x3, 1(x11!)
addi x4, x4, -1
add x2, x3, x2
sb x2, 1(x12!)
bne x4, x5, Lstart

lp.setupi 100, Lend
1b x2, 1(x10!)
1b x3, 1(x11!)
add x2, x3, x2
Lend: sb x2, 1(x12!)

11 cycles/output

8 cycles/output

* Based on material from Integrated System laboratory, ETH, Zurich, Switzerland

5 cycles/output

Ilp.setupi 25, Lend
1w x2, 4(x10!)
lw x3, 4(x11!)
pv.add.b x2, x3, x2
Lend: sw x2, 4(x12!)

1,25 cycles/output

RISC-V summer internship — Compliance & Bus interfaces

ANALOG AND
DIGITAL DESIGN

SOFTWARE HARDWARE TOOLS

SILICON LABS

EFM32
Giant Gecko 11

int main(void)

_{

int count = @;

I3

Chip errata */ *ie
CHIP_Init();

I3

setup SysTick Timer for 1 ms®™
if (sysTick Config(CMu_ClockFre -

| Y-
I*

Initialize LED driver
BSP_LedsInit();

* 7 B=

1

Infinite blink loop */
while (1)

count++;

BSP_LedsSet (count);
Delay(25@);

RISC-V summer internship

= Summer internship in Silabs Norway
= Analog
= Digital
= Validation (test and characterization)
= Software

= Hardware Tools
= 6-8 weeks

= RI5CY related tasks
= Addition of signature checks to RISC-V Compliance test cases
= Addition of the C and M tests from RISC-V Compliance test suite

= RTL design related to interfacing between RI5CY’s proprietary bus
interface and AMBA (AHB/AXI)

= Formal verification of RI5CY’s bus interface protocol

33

RISC-V Compliance Suite (https://github.com/riscv/riscv-compliance)

= Goal
= Check whether a processor meets the open RISC-V standards or not

= Assurance that the specification has been interpreted correctly

= No substitute for design verification
= Check all important aspects of the specification,
= but no details as for example
= all possible values of instruction operands

= all combinations of possible registers

= bypasses, interlocks, etc.

= Detailed compliance test
= RISC-V assembler code that is executed on the processor

= Assembler code is (partially) self checking

= Provides results in a defined memory area (the signature)

= Signature to be checked against the reference signature from a RISC-V golden model

34

https://github.com/riscv/riscv-compliance

RISC-V Compliance Suite — ADDI Example

35

Branch: master v+ riscv-compliance / riscv-test-suite /

.E AaronKel and eroom1966 Update |-MISALIGN_JMP-01.5 to reflect ratified CSR

i rv32i Update |-MISALIGN_JMP-01.5 to reflect ratified CSR
B rv32im updated Infrastructure macros to support non-volatile registers
B rv32imc updated Infrastructure macros to support non-volatile registers

Branch: master ~ | riscv-compliance / riscv-test-suite / rv32i / src /

iE AaronKel and eroom1966 Update I-MISALIGN_JMP-01.5S to reflect ratified CSR

[£) I-ADD-01.S Fixed issue of asserting on register t0
[£) I-ADDI-01.5 Fixed issue of asserting on register t0
[£) I-AND-01.5 updated rv32i tests to support all registers (x31) with assertions
[£) IFANDI-01.S updated rv32i tests to support all registers (x31) with assertions
[£) IFAUIPC-01.5 updated rv32i tests to support all registers (x31) with assertions
E) I-BEQ-01.S Fixed issue of asserting on register t0
[£) I-BGE-01.5 Fixed issue of asserting on register t0
[£) I-BGEU-01.S Fixed issue of asserting on register t0

Addresses for test data and results
x1, test A3 data
x2, test A3 res

la
la

Load testdata

Tw

Test
addi
addi
addi
addi
addi

Store
Sw
sw
Sw
sSw
Sw

=1

x13,

x14,
x15,
x16,
x17,
x18,

a(x1)

x13, 1

x13, OX7FF

%13, OXFFFFFFFF
x13, ©

x13, BXFFFFF800

results

x13,
x14,
x15,
X16,
x17,
x18,

a(x2)
4(x2)
8(x2)
12(x2)
16(x2)
20(x2)

RVTEST I0 ASSERT GPR_EQ(x2,
RVTEST IO ASSERT GPR_EQ(x2,
RVTEST IO ASSERT GPR_EQ(x2,
RVTEST IO ASSERT GPR_EQ(x2,
RVTEST IO ASSERT GPR_EQ(x2,
RVTEST IO ASSERT GPR EQ(x2,

x13,
x14,
x15,
X16,
x17,
x18,

OXFFFFFFFF)
0x00000000)
0x000007FE)
@XFFFFFFFE)
OXFFFFFFFF)
OXFFFFF7FF)

Internship tasks (1/2)

= Addition of signature checks

= Addition of the C and M tests
= RV32I

= 55 focused tests

= no coverage of FENCE, SCALL, SBREAK, pseudo and CSR instructions
= RV32IM

= 7 focused tests
= RV32IMC

= 24 focused tests

36

= Capabilities
= Ccoding

RISC-V assembly coding

Makefile / compiler / assembler setup

Digital simulation

System Verilog testbench design

RISCY bus interfaces

[Instruction Interfacej [Data Interface j
rdata addr addr wdata rdata
= Data interface examples
[[FamN [] ok L 1L 1
Prefetch ‘ UG) LSU data_addr_o Address
Decoder data_wdata_o
Buffer — I ! ALU data_req o E— \
an L) data_gnt_i A Basic transfer
o CSR Ex data_rvalid_i A\
;g ™ EX A WB data_rdata i
L Fan a ata we o W)
GPR } MULT — (tiiatta be_o
| [L
»}- ?ﬂf] dk Ll L
1+ — \’ﬁ data_addr_o S . O —
—— Optional FPU data_wdata_o
= — ’ | S S— Back-to-back
ata_gnt i —
data rmalid i o\ transfer
: : : ata_rdata i DN Y w O
" Separate instruction / data interfaces e
. . data_be_o (—_BEl__ X BE2
= 32-bit wide t
= Proprietary protocol (not AMBA compliant) e s e
: . . data_wdata_o NN o L
= Provide address (write data, write enable, byte enable) data req o __J \
: : data_gnt_i / \ Slow response
= Set request high and wait for grant data_rvalid_i — P
. . . _ data rdata i transfer
= Wait for end of data phase (rvalid with optional read data) F i -
ata_be o = S —

37

How about conversion to AMBA protocols? (1/2)

= Non-aligned transfers = Grant is not allowed before corresponding request
= Allowed in RISC-V

= Load/store of word to non-word-aligned address

Request from master (RI5CY) to slave (e.g. memory, bus system)

Grant from slave to master
= Load/store of half-word to non-halfword-aligned address

Cannot tie grant (or valid) high for simple slaves
= Trap allowed

Slave must look at request to generate a grant
= RI5CY handles non-aligned transfers in hardware

= 11 x1, 0x87654321

= sw x1, 7(x0)

* Long combinational path
= from master (via request) to slave,

= and back from slave to master (via grant)

32 bits = or extra cycle(s) latency when breaking such paths with flip-flops
—————— Address DATA_BE[3:0] = Combinational paths between RVALID_| and REQ_O
T e
Ox271§ 6 > *1 oxa 4'b1000 (1 transfer)
° ;Ox8/;§0x6§§0x4§ 0x8 4'v0111 (2™ transfer)

= Some byte lane combinations do not have an AMBA AHB equivalent
= 4’'b1110,4’b0111, 4’b0110

How about conversion to AMBA protocols? (2/2)

Illegal AHB transfer (for ‘ideal AHB conversion’)

= Stability of addr_o, wdata_o, we_o, be o oLk 5 - . 2 i & . 4 . >
= Should not change until request is granted
REQ_O / \
= RI5CY does not keep address phase info stable for non-granted request
ADDR_O X X addro X addrl X

= On instruction interface

= By design (https://github.com/pulp-platform/riscv/issues/128) GNT_| / \
= On data interface

RDATA_| X rdata0 X
= Bug (https://github.com/pulp-platform/riscv/issues/124) (actually request is withdrawn)
= Complicates conversion to AHB/AXI RVALID_| / \
= AMBA-AHB requirement
= “When the HTRANS type changes to NSEQ the master must keep its address
constant, until HREADY is HIGH” FTRANS DLE X NSEQ _ XIDLE XDl
= Such bus protocol properties can easily be checked formally MADDR Aadd_)X_addrl X
= Write (System Verilog) assertions for RI5CY bus protocol HRDATA X rdatal X

= Run formal verification on RI5CY + bus protocol assertions

HREADY / \

https://github.com/pulp-platform/riscv/issues/128
https://github.com/pulp-platform/riscv/issues/124

Internship tasks (2/2)

= RTL design related to interfacing between proprietary bus = Privilege promotion/demotion for load/store
interface and AMBA (AHB/AXI) = https://github.com/pulp-platform/riscv/issues/124

= Formal verification of RI5CY’s bus interface protocol

Address channel signal stability during non-granted REQ_O
= https://github.com/pulp-platform/riscv/issues/128

= Capabilities
= RTL design

= Processor architecture

Dependency between REQ_O and GNT _|I
= https://github.com/pulp-platform/riscv/issues/127

Combinational paths between RVALID | and REQ_O
= https://github.com/pulp-platform/riscv/issues/126

= Load/store unit

= Bus interfaces

= Digital simulation
= System Verilog assertions

= Formal verification

Application for 2020 Summer internships

= Debug = https://tinyurl.com/y6nzfbsg

40

https://github.com/pulp-platform/riscv/issues/124
https://github.com/pulp-platform/riscv/issues/128
https://github.com/pulp-platform/riscv/issues/127
https://github.com/pulp-platform/riscv/issues/126
https://tinyurl.com/y6nzfbsg

Thank youl!

SILABS.COM

