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▪ Global mixed-signal semiconductor company

▪ Founded in 1996; public since 2000 (NASDAQ: SLAB)

▪ ~1,500 employees and 16 R&D locations worldwide

▪ Track record of innovation & differentiation 

▪ 20 year pioneer in mixed-signal and RF technologies

▪ Fabless model. 7B+ devices shipped & 1,700+ patents

Company background



EFM32 Gecko microcontroller (MCU) – Energy Micro - 2010
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A track record of multiple industry first, 
transforming or disrupting large markets 

20 Years of Connectivity

Founded HQ R&D Size Nasdaq
1996 Austin, 

Texas, USA 
16 global 
locations

1500 people SLAB 

PC Modem 
Breakthrough 
soft modem

Crystal Oscillators
Ultra-low jitter XOs and 
VCXOs

Aero Transceivers
Dominated GSM
cellular market

FM/AM Tuners
1st CMOS tuner for CE &
automotive

TV Tuners
Market leader 
since 2011

ZigBee SoCs
Mesh networking 
market leader

Thread Protocol
Founding member of 
Thread Group

Pearl/Jade Gecko
Next-gen EFM32 MCUs 
with HW cryptography

RF Synthesizers
1st RF CMOS 
device in any 
phone

High-performance
Clock Generator
Disruptive DSPLL®
architecture

8-bit MCUs
High-performance 8051 
core and analog
peripherals

EZRadio® Transceiver
Sub-GHz short-range 
wireless

EFM32 MCUs
Energy-friendly 32-bit
Gecko technology

Simplicity Studio
1st integrated MCU &
RF development
environment

Wireless Modules 
Bluetooth, Wi-Fi and
ZigBee modules and 
protocol stacks

Wireless Gecko 
Multiprotocol, 
multiband SoC portfolio

1996 2016



EFR32MG21 Series 2 Multiprotocol Wireless SoC - 2019

▪ Multiple systems with multiple cores

▪ Host

▪ ARM Cortex-M33

▪ Memories (Flash + RAMs)

▪ Analog + digital peripherals

▪ Secure Element

▪ Hardware Cryptographic Acceleration

▪ AES (128/192/256), SHA-1, SHA-2 (SHA-
224/SHA256), ECC (256-bit), ECDSA (256-bit) 
and ECDH (p192, p256), HMAC, J-PAKE

▪ True Random Number Generator (TRNG)

▪ Secure Boot

▪ Secure Debug / Debug Access Control

▪ Unique ID

▪ Radio

▪ Zigbee, Thread and Bluetooth mesh
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Introduction to the RISC-V Instruction Set Architecture



RISC-V and RISC-V foundation

▪ RISC-V foundation

▪ Governs the RISC-V open standard

▪ Founded in 2015

▪ More than 275 members 

▪ Non-profit corporation controlled by its members

▪ Directs the future development

▪ Drives the adoption of the RISC-V ISA

▪ Board of Directors with representatives from

▪ Bluespec, Inc. 

▪ Google

▪ Microsemi

▪ NVIDIA

▪ NXP

▪ University of California, Berkeley

▪ Western Digital

▪ RISC-V is an Instruction Set Architecture (ISA)

▪ Free and open ISA

▪ Partitioned into unprivileged spec, privileged spec, external debug spec

▪ https://riscv.org/specifications/

▪ https://riscv.org/specifications/privileged-isa/

▪ https://riscv.org/specifications/debug-specification/

▪ Defines 32, 64 and 128 bit ISA

▪ No implementation, just the ISA

▪ Born in academia and research in 2010

▪ Computer Science Division @ University of California, Berkeley

https://riscv.org/specifications/
https://riscv.org/specifications/privileged-isa/
https://riscv.org/specifications/debug-specification/


RISC-V History
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Reference: Krste Asanovic
RISC-V Summit, Zurich, May 2019



What is Instruction Set Architecture (ISA)?

▪ A contract between the SW and HW

▪ SW in this case is the compiler/assembler/operating system

▪ HW in this case is the micro-architecture

▪ Number of pipeline stages, branch prediction

▪ Speculative, out-of-order execution, Super-scaler (static, dynamic)

▪ Micro-architecture PPA are influenced by the choice of ISA

▪ Simplicity of instruction decode

▪ Pipeline stall scenarios

▪ Early days ISA’s were often focused on code-size

▪ Variable length instructions

▪ Arithmetic operands from register and memory

▪ Often were called Complex Instruction Sets

▪ These HW/SW contracts led to complex HW design

▪ Performance (no. of cycles to complete a program) was poor

▪ Difficult instruction decoding

▪ Too many pipeline stalls

X86 Addressing modes
and instruction encoding



Why a new instruction set?

▪ Proprietary ISA’s have a slew of problems

▪ Intel ISA has too much backward compatibility baggage

▪ ARMv7 ISA (2005) also has imperfections

▪ Some corrected on ARMv8 (64bit, 2015)

▪ Proprietary ISA’s suffocate micro-architecture 
innovations

▪ One needs an expensive ARM architecture license to do 
its own micro-architecture

▪ Also, there is no path to add new/specialized 
instructions to ISA or low-latency interrupts

▪ New and open-source ISA’s solve both of these 
problems

▪ Clean Slate → It can rectify the previous ISA mistakes

▪ Community designed → Leads to a better ISA
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Hallmarks of a good ISA

▪ Agnostic to processor micro-architecture

▪ Pipeline length, branch prediction, speculative out-of-order, …

▪ No delayed branching or delay loading

▪ MIPS, 5-stage pipeline

▪ No conditional execution 

▪ ARM, OOO unfriendly (register renaming issues)

▪ Should consider the processor implementation complexity 
and performance into account

▪ Load/Store approach

▪ load/store instructions are separate from ALU instructions

▪ Fixed instruction length

▪ Fixed position for register addresses

▪ Register access start as soon as the instruction is fetched

▪ Modular not incremental

▪ Intel is the prime example of incremental → 80 instructions in 
1978 to 1338 in 2014

▪ The RISC-V Base ISA is frozen and will never change → runs a 
full stack software

▪ All RISC-V processors run the Base ISA

▪ RISC-V supports optional ISA extensions (modules)  or 
specialized applications

▪ SIMD, Vector, Bit Manipulation, Privileged, Fast Interrupt, even Security!

▪ Suitable for both low-cost and high-performance 
processors

▪ RISC-V supports both 32 GP registers and 16 GP registers 
architecture (embedded)

▪ Reduced number of gates → Lower cost, active power and leakage

▪ It also supports 16-bit opcodes (compressed)

▪ Reduced Code size → reduce Flash capacity → reduced cost 

12



Lessons learned from the ARM ISA mistakes

▪ ARMv8 (2015) has made progress:

▪ It does have a zero registers (not  true for ARMv8-M)

▪ It now carries 32 GP registers (16 for ARMv8-M)

▪ PC is not a GP any more  (not  true for ARMv8-M)

▪ No multiple load/store (not  true for ARMv8-M)

▪ No conditional execution (not true for ARMv8-M)

▪ But, it still has issues

▪ No fixed location source/destination in instructions

▪ Conditional move instructions

▪ Complex addressing modes

▪ 64bit ARM cores can not switch to Thumb-2 ISA

▪ Thumb-2 ISA only works with 32bit addresses

▪ Still not modular

▪ 1000 instructions in 2015, 3 more expansions since then

▪ ARMv7 (2005) ISA problems:

▪ No hard-wired zero register

▪ Reduces the number of instructions significantly

▪ Examples: nop → addi x0, x0, 0

▪ PC as a general purpose register

▪ Complicates hardware branch prediction

▪ 16 GP registers instead of 32

▪ Causing issues for compiler/linker (too many push and 
pops onto stack)

▪ HW trouble-maker instructions

▪ Load multiple, Conditional execution, e.g.

▪ LDMIAEQ SP!, {R4-R7, PC}

▪ 32bit ISA and Thumb2 (16/32bit) separate ISA’s

▪ Need to branch to odd byte addresses to switch mode

13



RISC-V Base ISA

▪ Four base ISAs

▪ RV32I (integer registers are 32-bit, 32-bit address space)

▪ RV32E (reduced version of RV32I with only 16 integer GP registers)

▪ RV64I (integer registers are 64-bit, flat 64-bit address space)

▪ RV128I (integer registers are 128-bit, flat 128-bit address space)

▪ (RV64E not defined, but considered)

▪ 32 general purpose (GP) registers

▪ X0 always reads as 0

▪ Only 16 for RV32E

▪ (32 floating point registers (optional, not part of Base))

▪ https://riscv.org/specifications/

https://riscv.org/specifications/


RISC-V ISA
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▪ Types of instructions

▪ R-Type: Register-register operations ( add rd, rs1, rs2 )

▪ I-Type: Short immediate/loads ( addi rd, rs1, imm; lw rd, imm(rs1) )

▪ S-Type: Stores ( sw rs1, imm(rs2) )

▪ B/SB-Type: Conditional Branches ( beq rs1, rs2, imm )

▪ U/UJ-Type: Long immediate ( lui rd, imm; auipc rd, imm; jal rd, imm)

Addressing Modes



RISC-V ISA (cont.)

▪ Procedure Call and Return

▪ PC-relative Short jump (+-4kiB or +-1MiB) call

▪ jal x1, 100

▪ x1 = PC +4 (return address); go to PC + 100 (procedure address)

▪ PC-relative long-jump call

▪ auipc x5, 0x12345

▪ x5 = PC + 0x12345000

▪ jalr x1, 100(x5)

▪ x1 = PC+4 (return address); go to x5 + 100 (procedure address)

▪ Absolute address long-jump calls

▪ lui x5, 0x12345

▪ x5 = 0x12345000

▪ jalr x1, 100(x5)

▪ x1 = PC +4; go to x5 + 100

▪ PC-relative return

▪ jalr x0, 0(x1)

▪ x0 = PC+4 (no change); go to x1 + 0 (return address)

16



RISC-V (optional) Standard Extensions

Extension Description

M* Integer Multiplication and Division

A Atomic Instructions

Zicsr Control and Status Register Instructions

F Single-Precision Floating-Point

D Double-Precision Floating-Point

Q Quad-Precision Floating-Point

L Decimal Floating-Point

C Compressed Instructions

Zifencei Instruction-Fetch Fence

Extension Description

B Bit Manipulation

J Dynamically Translated Languages

T Transactional Memory

P Packed-SIMD Instructions (DSP)

V Vector Operations

N User-Level Interrupts

Zam Misaligned Atomics

Ztso Total Store Ordering

Zfinx Floating-point using integer register file

▪ RISC-V implementations mention supported extensions, e.g. RV32IMC (RV32I base + Multiply/divide + Compressed)

▪ RV32G is abbreviation for RV32IMAFDZicsr_Zifencei

▪ RV64G is abbreviation for RV64IMAFDZicsr_Zifencei

▪ Smallest core would support only RV32E (but RV32EC would typically be cheaper at system level)
* Extensions in bold are ratified (status in June 2019)



Standard and non-standard extensions

▪ 30-bit encoding spaces

▪ 3 available when not using compressed ISA

▪ 25-bit encoding spaces - major opcodes

▪ Reserved: Aimed at future standard extensions

▪ Custom-[0|1]: Will be avoided by future standard extensions 

▪ Custom-[2|3]/rv128: Reserved for future use by RV128

▪ 22-bit encoding spaces - minor opcodes (funct3)

▪ Several major opcodes have non-used minor opcodes

▪ RISC-V provides basis for specialized ISA extensions 

▪ Base ISA always needs to be supported

▪ If so, it is a ‘RISC-V’

▪ Plenty of room for (custom) extensions

▪ E.g. RV32I ISA uses < 1/8 of 32-bit encoding space

▪ Portions of encoding space are guaranteed to be left open by standard 
extensions 

▪ Standard extension

▪ Generally useful and designed to not conflict with any other 
standard extension

▪ E.g. MAFDQLCBTPV

▪ Non-standard extension

▪ May be highly specialized and may conflict with other standard 
or non-standard extensions

▪ Might eventually be promoted to standard extension

Available when not using >32-bit encoding

Reserved for RV64 (available in RV32)

Available when not using F (floating point extension)

Available when not using A (atomics extension)



RISC-V Cores



RISC-V cores (https://github.com/riscv/riscv-cores-list)

▪ Many RISC-V cores

▪ Various ISA extensions

▪ Various microarchitectures

▪ Various languages

▪ Various licenses

▪ Also SoCs

▪ SiFive

▪ FE310, U540

▪ NXP

▪ Vega

▪ GreenWaves Technologies

▪ GAP8

▪ Microchip

▪ PolarFire SoC

https://github.com/riscv/riscv-cores-list


OpenHW (www.openhwgroup.org) and CORE-V

▪ CORE-V family of open-source cores

▪ Hosted by OpenHW not-for-profit organization

▪ Focus on high quality open-source HW development

▪ In line with industry best practices

▪ Based on RISC-V cores developed by ETH Zurich

▪ RI5CY

▪ https://github.com/pulp-platform/riscv

▪ 32-bit 4-stage in-order RISC-V CPU core

▪ RV32IM[F]CXpulp

▪ M-mode, U-mode

▪ Ariane

▪ https://github.com/pulp-platform/ariane

▪ 64-bit 6-stage single-issue in-order RISC-V CPU core 

▪ RV64IMAFDCN (+X)

▪ M-mode, S-mode, U-mode (Linux-capable)

http://www.openhwgroup.org/
https://github.com/pulp-platform/riscv
https://github.com/pulp-platform/ariane


PULP 32-bit RISC-V cores



PULP and RISC-V*

▪ PULP (Parallel Ultra Low Power) is a project 
whose goal is to design an open-source energy 
efficient programmable platform for the Internet 
Of Things (IoT) applications

▪ Integrated System laboratory, ETH, Zurich, 
Switzerland

▪ Energy Efficient Embedded Systems Laboratory, 
University Of Bologna, Bologna, Italy

▪ Complete systems based on

▪ Single-core micro-controllers (PULPissimo, PULPino)

▪ Multi-core IoT Processors (OpenPULP)

▪ Multi-cluster heterogeneous accelerators (Hero)

▪ Efficient implementations of RISC-V cores

▪ 32 bit 4-stage core RI5CY

▪ 64 bit 6-stage Ariane

▪ 32-bit 2-stage Ibex (formerly Zero-riscy) 

* Based on material from Integrated System laboratory, ETH, Zurich, Switzerland



RI5CY - Overview

▪ RI5CY in industry

▪ Product announced by GreenWaves Technology:

▪ GAP8 - IoT Application Processor

▪ TSCM55 PULP-based chip

▪ https://greenwaves-technologies.com/en/gap8-product/

▪ Google is evaluating RISCY on Pixel Visual Core

▪ VALTRIX Systems for verification effort

▪ http://valtrix.in/programming/running-sting-on-pulpino

▪ https://www.youtube.com/watch?v=m7aAUlHoV2E&feature=youtu.be

▪ NXP RV32M1-VEGA

▪ https://github.com/open-isa-org/open-
isa.org/tree/master/Reference%20Manual%20and%20Data%20Sheet

▪ RISCY

▪ https://github.com/pulp-platform/riscv

▪ 32-bit 4-stage in-order RISC-V CPU core

▪ RV32IM[F]C[Zfinx]Xpulp

▪ ~70 Kgates + 30 Kgates for FPU

▪ 3.19 Coremark/MHz

▪ M-mode, U-mode 

▪ Debug Spec 0.13 compliant

▪ Implemented in SystemVerilog

▪ Xpulp custom extensions

▪ Automatic increment load/store

▪ Zero-overhead hardware-loop

▪ Bit-manipulation

▪ Enhanced signal processing

▪ Packed-SIMD

https://greenwaves-technologies.com/en/gap8-product/
http://valtrix.in/programming/running-sting-on-pulpino
https://www.youtube.com/watch?v=m7aAUlHoV2E&feature=youtu.be
https://github.com/open-isa-org/open-isa.org/tree/master/Reference%20Manual%20and%20Data%20Sheet
https://github.com/pulp-platform/riscv


RI5CY - Main configuration*

25

▪ Main parameters
▪ FPU: Floating Point Unit (single precision) (based on IEEE 754-2008)
▪ Zfinx: Re-use X registers instead of separate 32 register FP register file

▪ PULP_SECURE
▪ PMP configuration: Physical Memory Protection

▪ User mode

▪ Pipeline

▪ Fetch

▪ 4 word prefetch buffer

▪ Align and decompress instructions

▪ Decode

▪ Execute / load / store

▪ Writeback

* Based on material from Integrated System laboratory, ETH, Zurich, Switzerland



RI5CY – Pipeline effects*

▪ Jumps

▪ Branches

▪ No delay slot in RISC-V

▪ Jumps done in the ID stage (loose one cycle)

▪ Next instruction already fetching and probably ready in IF stage

▪ Combined branches (no set flag instruction)

▪ Branch decision computed with branching instructions

▪ Branch decision computed in EX stage

▪ Taken branches loose two cycles

▪ Branch only available late in pipeline

▪ Not taken branches do not loose cycles

PC IF ID EX

A to Imem - - -

A+4 to Imem X from Imem[A] - -

J to Imem Y from Imem[A+4] Jump to J -

J+4 to Imem K from Imem[J] Bubble add

PC IF ID EX

A to Imem - - -

A+4 to Imem X from Imem[A] - -

A+8 to Imem Y from Imem[A+4] X is Branch -

B to Imem Bubble Bubble Jump to B

* Based on material from Integrated System laboratory, ETH, Zurich, Switzerland



RI5CY extensions - Post-increment load and reg-reg mode load*

▪ Post-increment load (similar for store)

▪ Greenfield Extension

▪ New major opcode

▪ 0001011 LOAD with POST INCREMENT 

▪ p.lw rd, imm12(rs1!) 

▪ Load value in rs1, store the value from memory in rd, and increment rs1 by 
imm12

▪ I-Type with funct3 to selected byte, half-word, word

▪ Reg-reg mode load (similar for store)

▪ Brownfield Extension

▪ Reuse LOAD opcode, encode in free func3 encoding 

▪ p.lw rd, rs2(rs1) 

▪ Load value in rs2+rs1, store the value from memory in rd

▪ funct3 to selected if standard load or R-type load

▪ If R-type, use funct7 to select to load byte, half-word, word

Add opcode: “0001011” LOAD WITH POST INCREMENT

Add funct3: “111” REG-REG

* Based on material from Integrated System laboratory, ETH, Zurich, Switzerland



RI5CY extensions - Bit manipulation*

▪ Original RISC-V Bit manipulation extension▪ RISC-V bit manipulation (B) not ratified yet

▪ PULP team developed their own extension

▪ Contributing to Bit Manipulation task group

▪ Will possibly align with B extension

▪ Bit Manipulation instructions

▪ Extract N bits starting from M from a word and extend (or not) with sign

▪ Insert N bits starting from M in a word

▪ Clear N bits starting from M in a word

▪ Set N bits starting from M in a word

▪ Find first bit set

▪ Find last bit set

▪ Count numbers of 1

▪ Rotate

mv   x5, 0

mv   x7, 0

mv   x4, 32

Lstart: 

andi x6, x8, 1

add x7, x7, x6

addi x4, x4, -1

srli x8, x8, 1

bne x4, x5, Lstart

p.cnt x7, x8

* Based on material from Integrated System laboratory, ETH, Zurich, Switzerland



RI5CY extensions – Hardware loops*

▪ Original RISC-V Hardware Loop extension▪ Hardware Loops / Zero Overhead Loops

▪ Remove branch overheads in for loops

▪ Smaller loops benefit more (up to factor 2)

▪ Loop needs to be set up beforehand and is defined by 3 CSRs

▪ Start address: 

▪ lp.starti L, imm12

▪ START_REG[L] = PC + 2*imm12

▪ End address

▪ lp.endi L, imm12

▪ END_REG[L] = PC + 2*imm12

▪ Counter

▪ lp.count{-,i}, L, {rs1,imm12}

▪ COUNT_REG[L] = rs1/imm12

▪ Short-cut

▪ lp.setup{-,i}, L, {rs1,immc}, imm12

▪ START_REG[L] = PC + 4, END_REG[L] = PC + 2*imm12, COUNT_REG[L] = {rs1,immc}

▪ Two sets registers implemented to support nested loops

▪ L=0 or 1

mv   x5, 0

mv   x4, 100

Lstart: 

addi x4, x4, -1

nop

bne x4, x5, Lstart

lp.setupi 100, Lend

nop

Lend: nop

* Based on material from Integrated System laboratory, ETH, Zurich, Switzerland



RI5CY Extensions - Putting it All Together*

for (i = 0; i < 100; i++) 

d[i] = a[i] + b[i];

mv   x5, 0

mv   x4, 100

Lstart: 

lb x2, 0(x10)

lb x3, 0(x11)

addi x10,x10, 1

addi x11,x11, 1

add   x2, x3, x2

sb x2, 0(x12)

addi x4, x4, -1

addi x12,x12, 1

bne x4, x5, Lstart

Baseline

11 cycles/output

mv   x5, 0

mv   x4, 100

Lstart: 

lb x2, 1(x10!)

lb x3, 1(x11!)

addi x4, x4, -1

add  x2, x3, x2

sb   x2, 1(x12!)

bne x4, x5, Lstart

Auto-incr load/store

8 cycles/output

lp.setupi 100, Lend

lb x2, 1(x10!)

lb x3, 1(x11!)

add  x2, x3, x2

Lend:  sb x2, 1(x12!)

HW Loop

5 cycles/output

lp.setupi 25, Lend

lw x2, 4(x10!)

lw x3, 4(x11!)

pv.add.b x2, x3, x2

Lend: sw x2, 4(x12!)

Packed-SIMD

1,25 cycles/output

* Based on material from Integrated System laboratory, ETH, Zurich, Switzerland



RISC-V summer internship – Compliance & Bus interfaces 



ANALOG AND 
DIGITAL DESIGN

VALIDATION HARDWARE TOOLSSOFTWARE



RISC-V summer internship

▪ Summer internship in Silabs Norway

▪ Analog

▪ Digital

▪ Validation (test and characterization)

▪ Software

▪ Hardware Tools

▪ 6-8 weeks

▪ RI5CY related tasks

▪ Addition of signature checks to RISC-V Compliance test cases

▪ Addition of the C and M tests from RISC-V Compliance test suite

▪ RTL design related to interfacing between RI5CY’s proprietary bus 
interface and AMBA (AHB/AXI)

▪ Formal verification of RI5CY’s bus interface protocol

33



▪ Goal

▪ Check whether a processor meets the open RISC-V standards or not

▪ Assurance that the specification has been interpreted correctly

▪ No substitute for design verification

▪ Check all important aspects of the specification, 

▪ but no details as for example

▪ all possible values of instruction operands 

▪ all combinations of possible registers

▪ bypasses, interlocks, etc.

▪ Detailed compliance test

▪ RISC-V assembler code that is executed on the processor

▪ Assembler code is (partially) self checking

▪ Provides results in a defined memory area (the signature)

▪ Signature to be checked against the reference signature from a RISC-V golden model

RISC-V Compliance Suite (https://github.com/riscv/riscv-compliance)

34

https://github.com/riscv/riscv-compliance


RISC-V Compliance Suite – ADDI Example
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Internship tasks (1/2)

▪ Capabilities

▪ C coding

▪ RISC-V assembly coding

▪ Makefile / compiler / assembler setup

▪ Digital simulation 

▪ System Verilog testbench design

36

▪ Addition of signature checks

▪ Addition of the C and M tests

▪ RV32I

▪ 55 focused tests

▪ no coverage of FENCE, SCALL, SBREAK, pseudo and CSR instructions

▪ RV32IM

▪ 7 focused tests

▪ RV32IMC

▪ 24 focused tests



RI5CY bus interfaces
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▪ Separate instruction / data interfaces

▪ 32-bit wide

▪ Proprietary protocol (not AMBA compliant)

▪ Provide address (write data, write enable, byte enable)

▪ Set request high and wait for grant

▪ Wait for end of data phase (rvalid with optional read data)

▪ Data interface examples

Basic transfer

Slow response
transfer

Back-to-back
transfer



How about conversion to AMBA protocols? (1/2)

▪ Non-aligned transfers

▪ Allowed in RISC-V

▪ Load/store of word to non-word-aligned address

▪ Load/store of half-word to non-halfword-aligned address

▪ Trap allowed

▪ RI5CY handles non-aligned transfers in hardware

▪ li x1, 0x87654321

▪ sw x1, 7(x0)

▪ Some byte lane combinations do not have an AMBA AHB equivalent

▪ 4’b1110, 4’b0111, 4’b0110

▪ Grant is not allowed before corresponding request

▪ Request from master (RI5CY) to slave (e.g. memory, bus system)

▪ Grant from slave to master

▪ Cannot tie grant (or valid) high for simple slaves

▪ Slave must look at request to generate a grant

▪ Long combinational path 

▪ from master (via request) to slave, 

▪ and back from slave to master (via grant)

▪ or extra cycle(s) latency when breaking such paths with flip-flops

▪ Combinational paths between RVALID_I and REQ_O
012

32 bits

0x0

0x4

0x8

Address
3

4567

89AB

0x87 0x65 0x43

0x21

DATA_BE[3:0]

4'b1000 (1st transfer)

4'b0111 (2nd transfer)



How about conversion to AMBA protocols? (2/2)

▪ Stability of addr_o, wdata_o, we_o, be_o

▪ Should not change until request is granted

▪ RI5CY does not keep address phase info stable for non-granted request

▪ On instruction interface 

▪ By design (https://github.com/pulp-platform/riscv/issues/128)

▪ On data interface 

▪ Bug (https://github.com/pulp-platform/riscv/issues/124) (actually request is withdrawn)

▪ Complicates conversion to AHB/AXI

▪ AMBA-AHB requirement

▪ “When the HTRANS type changes to NSEQ the master must keep its address 
constant, until HREADY is HIGH”

▪ Such bus protocol properties can easily be checked formally

▪ Write (System Verilog) assertions for RI5CY bus protocol

▪ Run formal verification on RI5CY + bus protocol assertions

 1  2  3  4  5 

Caddr0

IDLE IDLE IDLENSEQ

addr0

rdata0

rdata1

addr1

addr1

CLK

REQ_O

ADDR_O

GNT_I

RDATA_I

RVALID_I

HTRANS

HADDR

HRDATA

HREADY

Illegal AHB transfer (for ‘ideal AHB conversion’)

https://github.com/pulp-platform/riscv/issues/128
https://github.com/pulp-platform/riscv/issues/124


Internship tasks (2/2)

▪ Privilege promotion/demotion for load/store

▪ https://github.com/pulp-platform/riscv/issues/124

▪ Address channel signal stability during non-granted REQ_O

▪ https://github.com/pulp-platform/riscv/issues/128

▪ Dependency between REQ_O and GNT_I

▪ https://github.com/pulp-platform/riscv/issues/127

▪ Combinational paths between RVALID_I and REQ_O

▪ https://github.com/pulp-platform/riscv/issues/126

▪ Application for 2020 Summer internships

▪ https://tinyurl.com/y6nzfbsg
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▪ RTL design related to interfacing between proprietary bus 
interface and AMBA (AHB/AXI)

▪ Formal verification of RI5CY’s bus interface protocol

▪ Capabilities

▪ RTL design

▪ Processor architecture

▪ Load/store unit

▪ Bus interfaces

▪ Digital simulation

▪ System Verilog assertions

▪ Formal verification

▪ Debug

https://github.com/pulp-platform/riscv/issues/124
https://github.com/pulp-platform/riscv/issues/128
https://github.com/pulp-platform/riscv/issues/127
https://github.com/pulp-platform/riscv/issues/126
https://tinyurl.com/y6nzfbsg


S I L A B S . C O M

Thank you! 


