
RISC-V: The Free and Open RISC Instruction Set Architecture
A R J A N B I N K | N O V E M B E R 1 2 0 1 9

▪ Silicon Labs

▪ Oslo office (former Energy Micro)

▪ Introduction to the RISC-V Instruction Set Architecture (ISA)

▪ Base ISA

▪ Standard extensions

▪ RISC-V cores

▪ Commercial & Open Source

▪ OpenHW

▪ PULP’s RI5CY CPU (ETH Zurich)

▪ Custom extensions

▪ Summer internship @ Silabs Norway

▪ RISC-V Compliance

▪ RI5CY bus interfaces

Content

2

▪ Global mixed-signal semiconductor company

▪ Founded in 1996; public since 2000 (NASDAQ: SLAB)

▪ ~1,500 employees and 16 R&D locations worldwide

▪ Track record of innovation & differentiation

▪ 20 year pioneer in mixed-signal and RF technologies

▪ Fabless model. 7B+ devices shipped & 1,700+ patents

Company background

EFM32 Gecko microcontroller (MCU) – Energy Micro - 2010

Peripheral Reflex System

SecuritySerial Interfaces

Clock ManagementCPU and Memory

I/O Ports Timers and Triggers Analog Modules

Energy Management

High Freq

Crystal Osc

High Freq

RC Osc

Flash

Program

Memory

RAM
Memory

Low Freq

Crystal Osc

Low Freq

RC Osc

Debug

Interface
DMA

Voltage

Regulator
Voltage

Comparator

Power-on

Reset

Brown-out

Detector

32-bit Bus

USART UART

Low Energy

UART
I2C

External

Bus

Interface

General
Purpose

I/O

External
Interrupt

Pin
Reset

ADC DAC

LCD
Controller

Analog
Comparator

AES

Watchdog

Oscillator

Timer/

Counter

Peripheral
Reflex System

Low Energy

Timer

Real Time

Counter

Pulse

Counter
Watchdog

ARM Cortex-M3 processor
Memory

Protection

Unit

Auxiliary

RC Osc

A track record of multiple industry first,
transforming or disrupting large markets

20 Years of Connectivity

Founded HQ R&D Size Nasdaq
1996 Austin,

Texas, USA
16 global
locations

1500 people SLAB

PC Modem
Breakthrough
soft modem

Crystal Oscillators
Ultra-low jitter XOs and
VCXOs

Aero Transceivers
Dominated GSM
cellular market

FM/AM Tuners
1st CMOS tuner for CE &
automotive

TV Tuners
Market leader
since 2011

ZigBee SoCs
Mesh networking
market leader

Thread Protocol
Founding member of
Thread Group

Pearl/Jade Gecko
Next-gen EFM32 MCUs
with HW cryptography

RF Synthesizers
1st RF CMOS
device in any
phone

High-performance
Clock Generator
Disruptive DSPLL®
architecture

8-bit MCUs
High-performance 8051
core and analog
peripherals

EZRadio® Transceiver
Sub-GHz short-range
wireless

EFM32 MCUs
Energy-friendly 32-bit
Gecko technology

Simplicity Studio
1st integrated MCU &
RF development
environment

Wireless Modules
Bluetooth, Wi-Fi and
ZigBee modules and
protocol stacks

Wireless Gecko
Multiprotocol,
multiband SoC portfolio

1996 2016

EFR32MG21 Series 2 Multiprotocol Wireless SoC - 2019

▪ Multiple systems with multiple cores

▪ Host

▪ ARM Cortex-M33

▪ Memories (Flash + RAMs)

▪ Analog + digital peripherals

▪ Secure Element

▪ Hardware Cryptographic Acceleration

▪ AES (128/192/256), SHA-1, SHA-2 (SHA-
224/SHA256), ECC (256-bit), ECDSA (256-bit)
and ECDH (p192, p256), HMAC, J-PAKE

▪ True Random Number Generator (TRNG)

▪ Secure Boot

▪ Secure Debug / Debug Access Control

▪ Unique ID

▪ Radio

▪ Zigbee, Thread and Bluetooth mesh

6

Introduction to the RISC-V Instruction Set Architecture

RISC-V and RISC-V foundation

▪ RISC-V foundation

▪ Governs the RISC-V open standard

▪ Founded in 2015

▪ More than 275 members

▪ Non-profit corporation controlled by its members

▪ Directs the future development

▪ Drives the adoption of the RISC-V ISA

▪ Board of Directors with representatives from

▪ Bluespec, Inc.

▪ Google

▪ Microsemi

▪ NVIDIA

▪ NXP

▪ University of California, Berkeley

▪ Western Digital

▪ RISC-V is an Instruction Set Architecture (ISA)

▪ Free and open ISA

▪ Partitioned into unprivileged spec, privileged spec, external debug spec

▪ https://riscv.org/specifications/

▪ https://riscv.org/specifications/privileged-isa/

▪ https://riscv.org/specifications/debug-specification/

▪ Defines 32, 64 and 128 bit ISA

▪ No implementation, just the ISA

▪ Born in academia and research in 2010

▪ Computer Science Division @ University of California, Berkeley

https://riscv.org/specifications/
https://riscv.org/specifications/privileged-isa/
https://riscv.org/specifications/debug-specification/

RISC-V History

9

Reference: Krste Asanovic
RISC-V Summit, Zurich, May 2019

What is Instruction Set Architecture (ISA)?

▪ A contract between the SW and HW

▪ SW in this case is the compiler/assembler/operating system

▪ HW in this case is the micro-architecture

▪ Number of pipeline stages, branch prediction

▪ Speculative, out-of-order execution, Super-scaler (static, dynamic)

▪ Micro-architecture PPA are influenced by the choice of ISA

▪ Simplicity of instruction decode

▪ Pipeline stall scenarios

▪ Early days ISA’s were often focused on code-size

▪ Variable length instructions

▪ Arithmetic operands from register and memory

▪ Often were called Complex Instruction Sets

▪ These HW/SW contracts led to complex HW design

▪ Performance (no. of cycles to complete a program) was poor

▪ Difficult instruction decoding

▪ Too many pipeline stalls

X86 Addressing modes
and instruction encoding

Why a new instruction set?

▪ Proprietary ISA’s have a slew of problems

▪ Intel ISA has too much backward compatibility baggage

▪ ARMv7 ISA (2005) also has imperfections

▪ Some corrected on ARMv8 (64bit, 2015)

▪ Proprietary ISA’s suffocate micro-architecture
innovations

▪ One needs an expensive ARM architecture license to do
its own micro-architecture

▪ Also, there is no path to add new/specialized
instructions to ISA or low-latency interrupts

▪ New and open-source ISA’s solve both of these
problems

▪ Clean Slate → It can rectify the previous ISA mistakes

▪ Community designed → Leads to a better ISA
0

200

400

600

800

1000

1200

1400

1600

1978 1981 1982 1986 1994 1998 2001 2002 2004 2006 2008 2010 2014

Number of x86 Instructions over years

Hallmarks of a good ISA

▪ Agnostic to processor micro-architecture

▪ Pipeline length, branch prediction, speculative out-of-order, …

▪ No delayed branching or delay loading

▪ MIPS, 5-stage pipeline

▪ No conditional execution

▪ ARM, OOO unfriendly (register renaming issues)

▪ Should consider the processor implementation complexity
and performance into account

▪ Load/Store approach

▪ load/store instructions are separate from ALU instructions

▪ Fixed instruction length

▪ Fixed position for register addresses

▪ Register access start as soon as the instruction is fetched

▪ Modular not incremental

▪ Intel is the prime example of incremental → 80 instructions in
1978 to 1338 in 2014

▪ The RISC-V Base ISA is frozen and will never change → runs a
full stack software

▪ All RISC-V processors run the Base ISA

▪ RISC-V supports optional ISA extensions (modules) or
specialized applications

▪ SIMD, Vector, Bit Manipulation, Privileged, Fast Interrupt, even Security!

▪ Suitable for both low-cost and high-performance
processors

▪ RISC-V supports both 32 GP registers and 16 GP registers
architecture (embedded)

▪ Reduced number of gates → Lower cost, active power and leakage

▪ It also supports 16-bit opcodes (compressed)

▪ Reduced Code size → reduce Flash capacity → reduced cost

12

Lessons learned from the ARM ISA mistakes

▪ ARMv8 (2015) has made progress:

▪ It does have a zero registers (not true for ARMv8-M)

▪ It now carries 32 GP registers (16 for ARMv8-M)

▪ PC is not a GP any more (not true for ARMv8-M)

▪ No multiple load/store (not true for ARMv8-M)

▪ No conditional execution (not true for ARMv8-M)

▪ But, it still has issues

▪ No fixed location source/destination in instructions

▪ Conditional move instructions

▪ Complex addressing modes

▪ 64bit ARM cores can not switch to Thumb-2 ISA

▪ Thumb-2 ISA only works with 32bit addresses

▪ Still not modular

▪ 1000 instructions in 2015, 3 more expansions since then

▪ ARMv7 (2005) ISA problems:

▪ No hard-wired zero register

▪ Reduces the number of instructions significantly

▪ Examples: nop → addi x0, x0, 0

▪ PC as a general purpose register

▪ Complicates hardware branch prediction

▪ 16 GP registers instead of 32

▪ Causing issues for compiler/linker (too many push and
pops onto stack)

▪ HW trouble-maker instructions

▪ Load multiple, Conditional execution, e.g.

▪ LDMIAEQ SP!, {R4-R7, PC}

▪ 32bit ISA and Thumb2 (16/32bit) separate ISA’s

▪ Need to branch to odd byte addresses to switch mode

13

RISC-V Base ISA

▪ Four base ISAs

▪ RV32I (integer registers are 32-bit, 32-bit address space)

▪ RV32E (reduced version of RV32I with only 16 integer GP registers)

▪ RV64I (integer registers are 64-bit, flat 64-bit address space)

▪ RV128I (integer registers are 128-bit, flat 128-bit address space)

▪ (RV64E not defined, but considered)

▪ 32 general purpose (GP) registers

▪ X0 always reads as 0

▪ Only 16 for RV32E

▪ (32 floating point registers (optional, not part of Base))

▪ https://riscv.org/specifications/

https://riscv.org/specifications/

RISC-V ISA

15

▪ Types of instructions

▪ R-Type: Register-register operations (add rd, rs1, rs2)

▪ I-Type: Short immediate/loads (addi rd, rs1, imm; lw rd, imm(rs1))

▪ S-Type: Stores (sw rs1, imm(rs2))

▪ B/SB-Type: Conditional Branches (beq rs1, rs2, imm)

▪ U/UJ-Type: Long immediate (lui rd, imm; auipc rd, imm; jal rd, imm)

Addressing Modes

RISC-V ISA (cont.)

▪ Procedure Call and Return

▪ PC-relative Short jump (+-4kiB or +-1MiB) call

▪ jal x1, 100

▪ x1 = PC +4 (return address); go to PC + 100 (procedure address)

▪ PC-relative long-jump call

▪ auipc x5, 0x12345

▪ x5 = PC + 0x12345000

▪ jalr x1, 100(x5)

▪ x1 = PC+4 (return address); go to x5 + 100 (procedure address)

▪ Absolute address long-jump calls

▪ lui x5, 0x12345

▪ x5 = 0x12345000

▪ jalr x1, 100(x5)

▪ x1 = PC +4; go to x5 + 100

▪ PC-relative return

▪ jalr x0, 0(x1)

▪ x0 = PC+4 (no change); go to x1 + 0 (return address)

16

RISC-V (optional) Standard Extensions

Extension Description

M* Integer Multiplication and Division

A Atomic Instructions

Zicsr Control and Status Register Instructions

F Single-Precision Floating-Point

D Double-Precision Floating-Point

Q Quad-Precision Floating-Point

L Decimal Floating-Point

C Compressed Instructions

Zifencei Instruction-Fetch Fence

Extension Description

B Bit Manipulation

J Dynamically Translated Languages

T Transactional Memory

P Packed-SIMD Instructions (DSP)

V Vector Operations

N User-Level Interrupts

Zam Misaligned Atomics

Ztso Total Store Ordering

Zfinx Floating-point using integer register file

▪ RISC-V implementations mention supported extensions, e.g. RV32IMC (RV32I base + Multiply/divide + Compressed)

▪ RV32G is abbreviation for RV32IMAFDZicsr_Zifencei

▪ RV64G is abbreviation for RV64IMAFDZicsr_Zifencei

▪ Smallest core would support only RV32E (but RV32EC would typically be cheaper at system level)
* Extensions in bold are ratified (status in June 2019)

Standard and non-standard extensions

▪ 30-bit encoding spaces

▪ 3 available when not using compressed ISA

▪ 25-bit encoding spaces - major opcodes

▪ Reserved: Aimed at future standard extensions

▪ Custom-[0|1]: Will be avoided by future standard extensions

▪ Custom-[2|3]/rv128: Reserved for future use by RV128

▪ 22-bit encoding spaces - minor opcodes (funct3)

▪ Several major opcodes have non-used minor opcodes

▪ RISC-V provides basis for specialized ISA extensions

▪ Base ISA always needs to be supported

▪ If so, it is a ‘RISC-V’

▪ Plenty of room for (custom) extensions

▪ E.g. RV32I ISA uses < 1/8 of 32-bit encoding space

▪ Portions of encoding space are guaranteed to be left open by standard
extensions

▪ Standard extension

▪ Generally useful and designed to not conflict with any other
standard extension

▪ E.g. MAFDQLCBTPV

▪ Non-standard extension

▪ May be highly specialized and may conflict with other standard
or non-standard extensions

▪ Might eventually be promoted to standard extension

Available when not using >32-bit encoding

Reserved for RV64 (available in RV32)

Available when not using F (floating point extension)

Available when not using A (atomics extension)

RISC-V Cores

RISC-V cores (https://github.com/riscv/riscv-cores-list)

▪ Many RISC-V cores

▪ Various ISA extensions

▪ Various microarchitectures

▪ Various languages

▪ Various licenses

▪ Also SoCs

▪ SiFive

▪ FE310, U540

▪ NXP

▪ Vega

▪ GreenWaves Technologies

▪ GAP8

▪ Microchip

▪ PolarFire SoC

https://github.com/riscv/riscv-cores-list

OpenHW (www.openhwgroup.org) and CORE-V

▪ CORE-V family of open-source cores

▪ Hosted by OpenHW not-for-profit organization

▪ Focus on high quality open-source HW development

▪ In line with industry best practices

▪ Based on RISC-V cores developed by ETH Zurich

▪ RI5CY

▪ https://github.com/pulp-platform/riscv

▪ 32-bit 4-stage in-order RISC-V CPU core

▪ RV32IM[F]CXpulp

▪ M-mode, U-mode

▪ Ariane

▪ https://github.com/pulp-platform/ariane

▪ 64-bit 6-stage single-issue in-order RISC-V CPU core

▪ RV64IMAFDCN (+X)

▪ M-mode, S-mode, U-mode (Linux-capable)

http://www.openhwgroup.org/
https://github.com/pulp-platform/riscv
https://github.com/pulp-platform/ariane

PULP 32-bit RISC-V cores

PULP and RISC-V*

▪ PULP (Parallel Ultra Low Power) is a project
whose goal is to design an open-source energy
efficient programmable platform for the Internet
Of Things (IoT) applications

▪ Integrated System laboratory, ETH, Zurich,
Switzerland

▪ Energy Efficient Embedded Systems Laboratory,
University Of Bologna, Bologna, Italy

▪ Complete systems based on

▪ Single-core micro-controllers (PULPissimo, PULPino)

▪ Multi-core IoT Processors (OpenPULP)

▪ Multi-cluster heterogeneous accelerators (Hero)

▪ Efficient implementations of RISC-V cores

▪ 32 bit 4-stage core RI5CY

▪ 64 bit 6-stage Ariane

▪ 32-bit 2-stage Ibex (formerly Zero-riscy)

* Based on material from Integrated System laboratory, ETH, Zurich, Switzerland

RI5CY - Overview

▪ RI5CY in industry

▪ Product announced by GreenWaves Technology:

▪ GAP8 - IoT Application Processor

▪ TSCM55 PULP-based chip

▪ https://greenwaves-technologies.com/en/gap8-product/

▪ Google is evaluating RISCY on Pixel Visual Core

▪ VALTRIX Systems for verification effort

▪ http://valtrix.in/programming/running-sting-on-pulpino

▪ https://www.youtube.com/watch?v=m7aAUlHoV2E&feature=youtu.be

▪ NXP RV32M1-VEGA

▪ https://github.com/open-isa-org/open-
isa.org/tree/master/Reference%20Manual%20and%20Data%20Sheet

▪ RISCY

▪ https://github.com/pulp-platform/riscv

▪ 32-bit 4-stage in-order RISC-V CPU core

▪ RV32IM[F]C[Zfinx]Xpulp

▪ ~70 Kgates + 30 Kgates for FPU

▪ 3.19 Coremark/MHz

▪ M-mode, U-mode

▪ Debug Spec 0.13 compliant

▪ Implemented in SystemVerilog

▪ Xpulp custom extensions

▪ Automatic increment load/store

▪ Zero-overhead hardware-loop

▪ Bit-manipulation

▪ Enhanced signal processing

▪ Packed-SIMD

https://greenwaves-technologies.com/en/gap8-product/
http://valtrix.in/programming/running-sting-on-pulpino
https://www.youtube.com/watch?v=m7aAUlHoV2E&feature=youtu.be
https://github.com/open-isa-org/open-isa.org/tree/master/Reference%20Manual%20and%20Data%20Sheet
https://github.com/pulp-platform/riscv

RI5CY - Main configuration*

25

▪ Main parameters
▪ FPU: Floating Point Unit (single precision) (based on IEEE 754-2008)
▪ Zfinx: Re-use X registers instead of separate 32 register FP register file

▪ PULP_SECURE
▪ PMP configuration: Physical Memory Protection

▪ User mode

▪ Pipeline

▪ Fetch

▪ 4 word prefetch buffer

▪ Align and decompress instructions

▪ Decode

▪ Execute / load / store

▪ Writeback

* Based on material from Integrated System laboratory, ETH, Zurich, Switzerland

RI5CY – Pipeline effects*

▪ Jumps

▪ Branches

▪ No delay slot in RISC-V

▪ Jumps done in the ID stage (loose one cycle)

▪ Next instruction already fetching and probably ready in IF stage

▪ Combined branches (no set flag instruction)

▪ Branch decision computed with branching instructions

▪ Branch decision computed in EX stage

▪ Taken branches loose two cycles

▪ Branch only available late in pipeline

▪ Not taken branches do not loose cycles

PC IF ID EX

A to Imem - - -

A+4 to Imem X from Imem[A] - -

J to Imem Y from Imem[A+4] Jump to J -

J+4 to Imem K from Imem[J] Bubble add

PC IF ID EX

A to Imem - - -

A+4 to Imem X from Imem[A] - -

A+8 to Imem Y from Imem[A+4] X is Branch -

B to Imem Bubble Bubble Jump to B

* Based on material from Integrated System laboratory, ETH, Zurich, Switzerland

RI5CY extensions - Post-increment load and reg-reg mode load*

▪ Post-increment load (similar for store)

▪ Greenfield Extension

▪ New major opcode

▪ 0001011 LOAD with POST INCREMENT

▪ p.lw rd, imm12(rs1!)

▪ Load value in rs1, store the value from memory in rd, and increment rs1 by
imm12

▪ I-Type with funct3 to selected byte, half-word, word

▪ Reg-reg mode load (similar for store)

▪ Brownfield Extension

▪ Reuse LOAD opcode, encode in free func3 encoding

▪ p.lw rd, rs2(rs1)

▪ Load value in rs2+rs1, store the value from memory in rd

▪ funct3 to selected if standard load or R-type load

▪ If R-type, use funct7 to select to load byte, half-word, word

Add opcode: “0001011” LOAD WITH POST INCREMENT

Add funct3: “111” REG-REG

* Based on material from Integrated System laboratory, ETH, Zurich, Switzerland

RI5CY extensions - Bit manipulation*

▪ Original RISC-V Bit manipulation extension▪ RISC-V bit manipulation (B) not ratified yet

▪ PULP team developed their own extension

▪ Contributing to Bit Manipulation task group

▪ Will possibly align with B extension

▪ Bit Manipulation instructions

▪ Extract N bits starting from M from a word and extend (or not) with sign

▪ Insert N bits starting from M in a word

▪ Clear N bits starting from M in a word

▪ Set N bits starting from M in a word

▪ Find first bit set

▪ Find last bit set

▪ Count numbers of 1

▪ Rotate

mv x5, 0

mv x7, 0

mv x4, 32

Lstart:

andi x6, x8, 1

add x7, x7, x6

addi x4, x4, -1

srli x8, x8, 1

bne x4, x5, Lstart

p.cnt x7, x8

* Based on material from Integrated System laboratory, ETH, Zurich, Switzerland

RI5CY extensions – Hardware loops*

▪ Original RISC-V Hardware Loop extension▪ Hardware Loops / Zero Overhead Loops

▪ Remove branch overheads in for loops

▪ Smaller loops benefit more (up to factor 2)

▪ Loop needs to be set up beforehand and is defined by 3 CSRs

▪ Start address:

▪ lp.starti L, imm12

▪ START_REG[L] = PC + 2*imm12

▪ End address

▪ lp.endi L, imm12

▪ END_REG[L] = PC + 2*imm12

▪ Counter

▪ lp.count{-,i}, L, {rs1,imm12}

▪ COUNT_REG[L] = rs1/imm12

▪ Short-cut

▪ lp.setup{-,i}, L, {rs1,immc}, imm12

▪ START_REG[L] = PC + 4, END_REG[L] = PC + 2*imm12, COUNT_REG[L] = {rs1,immc}

▪ Two sets registers implemented to support nested loops

▪ L=0 or 1

mv x5, 0

mv x4, 100

Lstart:

addi x4, x4, -1

nop

bne x4, x5, Lstart

lp.setupi 100, Lend

nop

Lend: nop

* Based on material from Integrated System laboratory, ETH, Zurich, Switzerland

RI5CY Extensions - Putting it All Together*

for (i = 0; i < 100; i++)

d[i] = a[i] + b[i];

mv x5, 0

mv x4, 100

Lstart:

lb x2, 0(x10)

lb x3, 0(x11)

addi x10,x10, 1

addi x11,x11, 1

add x2, x3, x2

sb x2, 0(x12)

addi x4, x4, -1

addi x12,x12, 1

bne x4, x5, Lstart

Baseline

11 cycles/output

mv x5, 0

mv x4, 100

Lstart:

lb x2, 1(x10!)

lb x3, 1(x11!)

addi x4, x4, -1

add x2, x3, x2

sb x2, 1(x12!)

bne x4, x5, Lstart

Auto-incr load/store

8 cycles/output

lp.setupi 100, Lend

lb x2, 1(x10!)

lb x3, 1(x11!)

add x2, x3, x2

Lend: sb x2, 1(x12!)

HW Loop

5 cycles/output

lp.setupi 25, Lend

lw x2, 4(x10!)

lw x3, 4(x11!)

pv.add.b x2, x3, x2

Lend: sw x2, 4(x12!)

Packed-SIMD

1,25 cycles/output

* Based on material from Integrated System laboratory, ETH, Zurich, Switzerland

RISC-V summer internship – Compliance & Bus interfaces

ANALOG AND
DIGITAL DESIGN

VALIDATION HARDWARE TOOLSSOFTWARE

RISC-V summer internship

▪ Summer internship in Silabs Norway

▪ Analog

▪ Digital

▪ Validation (test and characterization)

▪ Software

▪ Hardware Tools

▪ 6-8 weeks

▪ RI5CY related tasks

▪ Addition of signature checks to RISC-V Compliance test cases

▪ Addition of the C and M tests from RISC-V Compliance test suite

▪ RTL design related to interfacing between RI5CY’s proprietary bus
interface and AMBA (AHB/AXI)

▪ Formal verification of RI5CY’s bus interface protocol

33

▪ Goal

▪ Check whether a processor meets the open RISC-V standards or not

▪ Assurance that the specification has been interpreted correctly

▪ No substitute for design verification

▪ Check all important aspects of the specification,

▪ but no details as for example

▪ all possible values of instruction operands

▪ all combinations of possible registers

▪ bypasses, interlocks, etc.

▪ Detailed compliance test

▪ RISC-V assembler code that is executed on the processor

▪ Assembler code is (partially) self checking

▪ Provides results in a defined memory area (the signature)

▪ Signature to be checked against the reference signature from a RISC-V golden model

RISC-V Compliance Suite (https://github.com/riscv/riscv-compliance)

34

https://github.com/riscv/riscv-compliance

RISC-V Compliance Suite – ADDI Example

35

Internship tasks (1/2)

▪ Capabilities

▪ C coding

▪ RISC-V assembly coding

▪ Makefile / compiler / assembler setup

▪ Digital simulation

▪ System Verilog testbench design

36

▪ Addition of signature checks

▪ Addition of the C and M tests

▪ RV32I

▪ 55 focused tests

▪ no coverage of FENCE, SCALL, SBREAK, pseudo and CSR instructions

▪ RV32IM

▪ 7 focused tests

▪ RV32IMC

▪ 24 focused tests

RI5CY bus interfaces

37

▪ Separate instruction / data interfaces

▪ 32-bit wide

▪ Proprietary protocol (not AMBA compliant)

▪ Provide address (write data, write enable, byte enable)

▪ Set request high and wait for grant

▪ Wait for end of data phase (rvalid with optional read data)

▪ Data interface examples

Basic transfer

Slow response
transfer

Back-to-back
transfer

How about conversion to AMBA protocols? (1/2)

▪ Non-aligned transfers

▪ Allowed in RISC-V

▪ Load/store of word to non-word-aligned address

▪ Load/store of half-word to non-halfword-aligned address

▪ Trap allowed

▪ RI5CY handles non-aligned transfers in hardware

▪ li x1, 0x87654321

▪ sw x1, 7(x0)

▪ Some byte lane combinations do not have an AMBA AHB equivalent

▪ 4’b1110, 4’b0111, 4’b0110

▪ Grant is not allowed before corresponding request

▪ Request from master (RI5CY) to slave (e.g. memory, bus system)

▪ Grant from slave to master

▪ Cannot tie grant (or valid) high for simple slaves

▪ Slave must look at request to generate a grant

▪ Long combinational path

▪ from master (via request) to slave,

▪ and back from slave to master (via grant)

▪ or extra cycle(s) latency when breaking such paths with flip-flops

▪ Combinational paths between RVALID_I and REQ_O
012

32 bits

0x0

0x4

0x8

Address
3

4567

89AB

0x87 0x65 0x43

0x21

DATA_BE[3:0]

4'b1000 (1st transfer)

4'b0111 (2nd transfer)

How about conversion to AMBA protocols? (2/2)

▪ Stability of addr_o, wdata_o, we_o, be_o

▪ Should not change until request is granted

▪ RI5CY does not keep address phase info stable for non-granted request

▪ On instruction interface

▪ By design (https://github.com/pulp-platform/riscv/issues/128)

▪ On data interface

▪ Bug (https://github.com/pulp-platform/riscv/issues/124) (actually request is withdrawn)

▪ Complicates conversion to AHB/AXI

▪ AMBA-AHB requirement

▪ “When the HTRANS type changes to NSEQ the master must keep its address
constant, until HREADY is HIGH”

▪ Such bus protocol properties can easily be checked formally

▪ Write (System Verilog) assertions for RI5CY bus protocol

▪ Run formal verification on RI5CY + bus protocol assertions

 1 2 3 4 5

Caddr0

IDLE IDLE IDLENSEQ

addr0

rdata0

rdata1

addr1

addr1

CLK

REQ_O

ADDR_O

GNT_I

RDATA_I

RVALID_I

HTRANS

HADDR

HRDATA

HREADY

Illegal AHB transfer (for ‘ideal AHB conversion’)

https://github.com/pulp-platform/riscv/issues/128
https://github.com/pulp-platform/riscv/issues/124

Internship tasks (2/2)

▪ Privilege promotion/demotion for load/store

▪ https://github.com/pulp-platform/riscv/issues/124

▪ Address channel signal stability during non-granted REQ_O

▪ https://github.com/pulp-platform/riscv/issues/128

▪ Dependency between REQ_O and GNT_I

▪ https://github.com/pulp-platform/riscv/issues/127

▪ Combinational paths between RVALID_I and REQ_O

▪ https://github.com/pulp-platform/riscv/issues/126

▪ Application for 2020 Summer internships

▪ https://tinyurl.com/y6nzfbsg

40

▪ RTL design related to interfacing between proprietary bus
interface and AMBA (AHB/AXI)

▪ Formal verification of RI5CY’s bus interface protocol

▪ Capabilities

▪ RTL design

▪ Processor architecture

▪ Load/store unit

▪ Bus interfaces

▪ Digital simulation

▪ System Verilog assertions

▪ Formal verification

▪ Debug

https://github.com/pulp-platform/riscv/issues/124
https://github.com/pulp-platform/riscv/issues/128
https://github.com/pulp-platform/riscv/issues/127
https://github.com/pulp-platform/riscv/issues/126
https://tinyurl.com/y6nzfbsg

S I L A B S . C O M

Thank you!

