
IN2060 H2021

1/22

Information

Question Question title Marks Question type

Informasjon Information or
resources

Digital representation

Question Question title Marks Question type

1 Digital representation 1 2 Multiple Choice

2 Digital representation 2 3 Multiple Choice

3 Bit resolution 1 Numeric Entry

Combinational logic

Question Question title Marks Question type

4 Boolean circuits to functions 2 Multiple Choice

5 Boolean algebra 3 Multiple Choice

Sequential logic

Question Question title Marks Question type

6 Combinational and sequential logic 2 Multiple
Response

7 Sekvensielle kretser 12 Inline Choice

HDL

Question Question title Marks Question type

8 HDL 14 Inline Choice



IN2060 H2021

2/22

Digital building blocks

Question Question title Marks Question type

9 Shifter 2 Multiple Choice

10 Look up table 2 Multiple Choice

Computer Architecture

Question Question title Marks Question type

11 Computer architecture 2 Multiple Choice

12 Procedure Call Standard convention 4 Multiple
Response

13 Translate to Assembler 6 Inline Choice

14 Branch Target Adress 2 Multiple Choice

15 Machine code 6 Inline Choice

Mikroarkitektur

Question Question title Marks Question type

16 The difference between architecture
and microarchitecture 2 Multiple Choice

17 Microarchitecture performance 2 Multiple Choice

18 Microarchitecture amount of clock
cycles 3 Numeric Entry

19 Pipeline 8 Inline Choice

20 Pipeline control signals 2 Multiple Choice

Minnesystemer

Question Question title Marks Question type

IN2060 H2021

3/22

21 Cache 1 6 Numeric Entry

22 Cache 2 8 Numeric Entry

23 Virtual memory 6 Numeric Entry

 Informasjon
Written examination
IN2060 - Digital Design and Computer Architecture
Autumn 2021
Duration: 4 hours; December 3. 15:00 to December 3. 19:00
Permitted aids: None

It is important that you read this front page before you start.

General information:

Your answer should reflect your own independent work and should be a result of your own
learning and work effort.
If you want to withdraw from the exam, press the hamburger menu at the top right of Inspera
and select "Withdraw".

Collaboration during the exam:
It is not allowed to collaborate or communicate with others during the exam. Cooperation and
communication will be considered as attempted cheating.

About the exercises
The exam consist of different types of exercises; some in which numbers shall be entered and
different types of multiple choice exercises. Some exercises may have attachments necessary for
solving each task.
Make sure you have read and answered all parts of each exercise, and use the scrollbars to
check both tasks and information in the attachments. Attachments can be enlarged using the
attachment menu line.
Multiple choice exercises using radio buttons can be changed but not turned off once an alternative
is chosen. Exercises having more than one correct answer will allow as many checked boxes as
there are correct answers. It is not possible to check more boxes than there are correct answers.

About score in this exam
It is possible to achieve a total of 100 points. The points obtainable for each exercise is listed in the
overview page to allow each student to manage their time usage. There is no deduction of points
for wrong answers.

Good luck!

IN2060 H2021

4/22

1 Digital representation 1
Digital representation
Convert the decimal number (36) into a 8 bit binary number.
Select one alternative:

10

None of the alternatives are correct.

00100110

00100100

00110110

00110101

Maximum marks: 2

2 Digital representation 2
Digital representation
Convert the decimal number (-26) into an 8 bit binary number on 2’s complement form.
Select one alternative:

10

11101010

Ingen av alternativene er korrekte.

11100110

01100111

00100110

Maximum marks: 3

IN2060 H2021

5/22

3 Bit resolution
What is the minimum number of bits needed to be able to express 500 different colors/hues in one

variable? : .(9)

Maximum marks: 1

4 Boolean circuits to functions
Which logical function F reflects the port implementation below?

Select one alternative:

F = (AB)'(B+C)

None of the alternatives are correct.

F = A'B'(B+C)

F = AB+(B'+C')

F = AB'+(B+C)

Maximum marks: 2

IN2060 H2021

6/22

5 Boolean algebra
Find the minimal expression for F.

F = AB + B(A'+ AC)
Select one alternative:

F = AB

F = B

F = (A+B)C

F = A + BC

F = AC+B

Maximum marks: 3

IN2060 H2021

7/22

6 Combinational and sequential logic
Which two statements about combinational and sequential logic are correct?

Select two alternatives:

The output of sequential logic is only a result of current inputs.

Sequential logic contains bistable elements.

Sequential logic can contain combinational logic.

Synchronous sequential logic does not depend on a clock signal.

Combinational logic can remember previous output values.

It is not possible to give a unique description of a combinational circuit with a table

Maximum marks: 2

IN2060 H2021

8/22

7 Sekvensielle kretser
Each of the three circuits below are fed the clock signal clk and the input signal s. Assume that the
outputs a, b, c and d have the start value 0. Which of the signals below (u1 to u6) belong to the
different outputs? Note that two extra signals have been given. You do not need to pay attention to
gate delay. Study the circuits carefully and notice the difference between latches and flip
flops in the illustration.

Output a corresponds to (u1, u2, u3, u4, u5, u6)

Output b corresponds to (u1, u2, u3, u4, u5, u6)

Output c corresponds to (u1, u2, u3, u4, u5, u6)

Output d corresponds to (u1, u2, u3, u4, u5, u6)

Select alternative

Select alternative

Select alternative

Select alternative

Maximum marks: 12

IN2060 H2021

9/22

8 HDL
I pdf'en (til venstre) er det fem forskjellige VHDL moduler (en per side).
I denne oppgaven skal du fullføre setningene slik at påstandene blir gyldige.

Hints:
"Combinational" translates to "kombinatorisk" in Norwegian.
RTL code style means "Register transfer level", and does describe register usage.

Circuit 1 describes a/an (full adder, simulation module, prefix adder, half

adder, carry lookahead adder, ripple carry adder, peltier adder, test_bench, flow adder) which is

purely (direct, sequential, indirect, recursive, combinational , orthogonal) and it

is written using (RTL, fluent, structural, dataflow, pinned, gated,

behavioral)code style.

Circuit 2 describes a/an (recursive, orthogonal, direct, sequential , indirect,

combinational) circuit and it is written using (fluent, structural, dataflow,

gated, pinned, behavioral, RTL) code style.

In circuit 3, the component "fulladder" does implement a fulladder, using a and b as input, c for
carry in and y for carry out.

Circuit 3 describes a/an (testbench, simulation module, peltier adder,

full adder, half adder, prefix adder, carry lookahead adder, flow adder , ripple carry adder) circuit

which is written using (pinned, gated, RTL (Register transfer
level), behavioral, fluent, structural, dataflow) code style.

Circuit 4 describes a/an (carry lookahead adder, ripple carry adder,

prefix adder, simulation module, testbench) circuit which is written using

(gated, RTL, structural, behavioral, pinned, fluent) code style.

Circuit 5 describes a/an (simulation module, digestion module, prefix

adder, testbench, harvesting module, ripple carry adder, carry lookahead adder) which is written
using (gated, structural, fluent, behavioral, pinned, RTL) code style.

There are three named components, "fulladder_3", "component_5A" and "compenent_5B", which
can be among the other modules (renaming required). Which modules may correspond to the
components?

Fulladder 3 should be (circuit 1, circuit 2, circuit 3, circuit 4, circuit 5, none of
the above).

Component 5A should be (circuit 1, circuit 2, circuit 3, circuit 4, circuit 5,
none of the above).

Select alternative

Select alternative

Select alternative

Select alternative

Select alternative

Select alternative

Select alternative

Select alternative

Select alternative

Select alternative

Select alternative

Select alternative

Select alternative

IN2060 H2021

10/22

Component 5B should be (circuit 1, circuit 2, circuit 3, circuit 4, circuit 5,
none of the above).

Select alternative

Maximum marks: 14

IN2060 H2021

11/22

9 Shifter

The circuit above shifts or rotates a 3 bit signal 1 step depending on the select signal (S).
Which VHDL-function is implemented for the different S inputs?
Hint: L = logical, A = Arithmetic for shift operations. S = Shift, RO = Rotate, L = Left, R= Right

S = 00 selects
Select one alternative:

S = 01 selects
Select one alternative:

S= 10 selects
Select one alternative:

SRA SLA ROL ROR SLL SRL

SRL SLA ROR SRA ROL SLL

ROR SRL ROL SRA SLA SLL

IN2060 H2021

12/22

S= 11 selects
Select one alternative:

SRL ROR SRA ROL SLA SLL

Maximum marks: 2

10 Look up table
Which of these lookup tables represent a half adder?
Select one alternative:

Maximum marks: 2

IN2060 H2021

13/22

11 Computer architecture
What is the correct statement about computer architecture below?
Select one alternative:

The architecture defines all the instructions that a processor should support.

None of the statements are correct.

ARM is a processor type of CISC.

Well-designed machine code can generally run on multiple architectures.

ARM supports many complex instructions.

Maximum marks: 2

IN2060 H2021

14/22

12 Procedure Call Standard convention
Based on the Procedure Call Standard convention for ARM, and the assembler code below,
which register values must the function F1 remember to temporarily save on the stack?

F1:
 PUSH { ??? }
 ADD R3, R0, R1
 ADD R4, R2, R3
 SUB R5, R2, R3
 ORR R0, R5, R4
 POP { ??? }
 MOV PC, LR

Select two alternatives:

PC

R2

R5

R4

R0

LR

R3

R1

Maximum marks: 4

IN2060 H2021

15/22

13 Translate to Assembler
We want to translate the following program to ARM assembler. You can assume that 'a' is in 'R0'
and 'i' is in 'R1'. Select the correct instructions below.

if (a < i)
 a = a + i;
else
 a = a – i;

(ADD R0, R0, R1 , CMP R0, #1 , CMP R0, R1 , BLT L1)

(LSL R0, R1, R0, ADDVS R0, R1, R0, SUB R0, R1, R0, ADDMI R0, R0,

R1)

(SUBNE R0, R0, R1, SUBPL R0, R0, R1, SUBGE R0, R0, #1 , SUBLT

RO, RO, #1)

Select alternative

Select alternative

Select alternative

Maximum marks: 6

IN2060 H2021

16/22

14 Branch Target Adress
Given the section of the ARM assembler code below, what numerical value must the imm24 field
of the machine code of the Branch instruction (BLT) have?

0x8000 BLT LABEL
0x8004 ADD R0, R1, R2
0x8008 ADD R1, R0, #9
0x800C SUB R0, R0, R1
0x8010 ORR R2, R1, R3
0x8014 LABEL SUB RO, R2, R3
0x8018 ADD R3, R3, #23

Select one alternative:

18

None of the values are correct

3

2

6

Maximum marks: 2

15 Machine code
Decode the following ARM instruction (machine code) as described in the course book, and
select the options that form the corresponding assembler instruction.

(AND, ADD, ADDS, ANDEQ) (R0, R3, R1, R2)

(R1, R3, R2, R0) (R2, #2, R1, R0)

Select alternative Select alternative

Select alternative Select alternative

Maximum marks: 6

IN2060 H2021

17/22

16 The difference between architecture and microarchitecture
Which statement is correct about architecture and microarchitecture?
Select one alternative:

It is mainly the architecture that determines whether a CPU gets high performance or not.

None of the statements are correct.

The architecture describes the minimum number of pipeline stages that the processor
must have.

The microarchitecture can choose which instructions it wants to support.

You are free to choose your own microarchitecture solution when implementing an
architecture.

Maximum marks: 2

17 Microarchitecture performance
Which statement is correct about microarchitecture and performance?
Select one alternative:

Pipeline microarchitectures will typically have a higher MIPS performance than Single-
cycle.

Single-cycle design typically provides microarchitectures with high clock speeds.

Multicycle design typically provides microarchitectures with very high IPC.

Single-cycle design typically provides solutions with efficient utilization of hardware.

The CPI of a pipeline architecture is uniquely defined by the number of pipeline steps.

Maximum marks: 2

IN2060 H2021

18/22

18 Microarchitecture amount of clock cycles
Given the following assembler code

MOV R1, #1
MOV R2, #3
ADD R0, R1, R2
SUB R1, R1, R2
CMP R0, R1

How many clock cycles will the following microarchitecture designs use to run the above code?

A Single-cycle design as described in the course book: .

A Multicycle design where you can assume a fixed CPI of 4 for all instruction types

.

A 5-stage Pipeline design with a hazard unit as described in the course book .

(5)

(20)

(9)

Maximum marks: 3

IN2060 H2021

19/22

19 Pipeline
Given the following ARM assembler program:

ORR R0, R1, R2
STR R6, [R1, #20]
ADD R7, R1, R2
AND R6, R6, R0
SUB R4, R7, R5

What kind of pipeline sequence will the code above give? Assume a 5-step pipeline processor as
illustrated above (similar to the course book), but without any kind of hazard handling. Here we
write to the register file in the first half of the clock period, and read in the second half of the clock
period. Select the options below that are correct for the pipeline sequence.

What kind of register activity do we have in the following clock cycles?

In cycle 3 (reads from and writes to the register,

writes to the register, reads from the register, no register activity)
In cycle 4 (reads from the register, writes to the
register, reads from and writes to the register, no register activity)
In cycle 5 (reads from and writes to the register, no

register activity, reads from the register, writes to the register)
In cycle 6 (reads from and writes to the register, no

register activity, reads from the register, writes to the register)

What kind of hazard do we have in the following clock cycles?

In cycle 3 (control hazard, no hazard, data hazard)

In cycle 4 (data hazard, control hazard, no hazard)

Select alternative

Select alternative

Select alternative

Select alternative

Select alternative

Select alternative

IN2060 H2021

20/22

In cycle 5 (control hazard, data hazard, no hazard)

In cycle 6 (data hazard, control hazard, no hazard)

Select alternative

Select alternative

Maximum marks: 8

20 Pipeline control signals
How do we ensure that the control signals of a Pipeline microarchitecture are correct?

Select one alternative:

We use the pipeline buffers to delay the control signals so that they follow the instructions.

We use Data Forward which ensures that the data flow follows the control signals.

We use MUXs that ensure that the control signals are routed to the correct part of the
instruction.

We use a state machine that ensures that each step of the instructions receives the
correct control signals.

We use an extend module that ensures that the control signals are extended correctly.

Maximum marks: 2

IN2060 H2021

21/22

21 Cache 1
We compare two processors systems with different cache setups. Other than the cache, the
systems perform equally.

System A has an average hit rate of 85% when reading from the cache, while system B has an
average hit rate of 93% when reading from cache.

For both systems, a cache hit result in an access time of 1 clock cycle, while reading from main
memory has an average access time of 100 clock cycles. We assume a 100% hit rate in main
memory.

For all answers in this exercise, up to three digits precision may be required.

a) What is the average access time (in clock cycles) for system A?

b) What is the average access time (in clock cycles) for system B?

For a given task, system A uses 90% of the time on memory access, the remaining time is used
on calculations.

c) What is the proportion of time usage for B compared to A for the given task?

State the answer as a percentage: %

(15,8 - 16)

(7,9 - 8)

(54 - 56)

Maximum marks: 6

IN2060 H2021

22/22

22 Cache 2
Consider a direct mapped cache with a capacity of 2KB data. Each word is 4 byte and the block
size is 4 words. Each byte is addressable.
Note: in a) and b) the answer is an integer value. For c) and d), up to three digit precision
may be required.

a) How many sets are there in this cache?

We read the following sequence of addresses once:
0x010, 0x014, 0x01C, 0x020, 0x08C, 0x424, 0x42C, 0xC2C

b) How many of these eight read operations will result in a cache-miss?

We reboot the system (cache cleared), then read the same address-sequence as in b) exactly
10 times.

c) What will be the hit rate for this operation?

We change the cache to a two-way set associative cache with the same (2kB) data capacity, but
with a block size of 2 words.
d) What will be the new hit rate if we do the same read operation as in c), using the new cache?

(128)

(5)

(0,710 - 0,720)

(0,91 - 0,92)

Maximum marks: 8

23 Virtual memory
Consider a virtual memory system that can address a total of 2 bytes.
You have unlimited hard drive space, but are limited to 32 MB of physical memory. Assume that
virtual and physical pages are 4KB in size.

All answers in this exercise are integer values.

How many bits is the physical address?

How many bits are the virtual page numbers?

How many bits are the physical page numbers?

32

(25)

(20)

(13)

Maximum marks: 6

Question 13
Attached

Data-processing instructions

Name Description Operation

ADD Rd, Rn, Src2 Add (+) Rd = Rn + Src2
SUB Rd, Rn, Src2 Subtract (-) Rd = Rn - Src2
AND Rd, Rn, Src2 Bitwise AND (&) Rd = Rn & Src2
ORR Rd, Rn, Src2 Bitwise OR (|) Rd = Rn | Src2
EOR Rd, Rn, Src2 Bitwise Exclusive OR (ˆ) Rd = Rn ˆ Src2
BIC Rd, Rn, Src2 Bitwise Clear Rd = Rn & ~Src2
MVN Rd, Rn, Src2 Bitwise NOT (~) Rd = ~Rn
LSL Rd, Rn, Src2 Logical Shift Left (<<) Rd = Rn << Src2
LSR Rd, Rn, Src2 Logical Shift Right (>>) Rd = Rn >> Src2
MOV Rd, Src2 Move (=) Rd = Src2
CMP Rd, Src2 Compare Set flags (see below) based on Rd - Src2

Remember that we can also set condition flags by appending an S to the end of
our Data-processing instructions.

Name Description

ADDS Rd, Rn, Src2 Add (as above) and set condition flags

SUBS Rd, Rn, Src2 Subtract (as above) and set condition flags

ANDS Rd, Rn, Src2 Bitwise AND (as above) and set condition flags

Multiply instructions

Name Description Operation

MUL Rd, Rn, Rm Multiply (*) Rd = Rn * Rm
MULS Rd, Rn, Rm Multiply (*) and set condition flags Rd = Rn * Rm
MLA Rd, Rn, Rm, Ra Multiply and Accumulate Rd = (Rn * Rm) + Ra

Memory instructions

Name Description Operation

STR Rd, [Rn, ± Src2] Store Register Mem[Adr] = Rd
LDR Rd, [Rn, ± Src2] Load Register Rd = Mem[Adr]

1

Branch instructions

Name Description Operation

B label Branch PC = (PC + 8) +
imm24 << 2

BL label Branch and Link LR = (PC + 8) - 4;
PC = (PC + 8) +
im24 << 2

BX Rd Branch and eXchange Branch to address

pointed to in Rd (used

for return)

Condition flags

Flag Name Description

N Negative Instruction result is negative

Z Zero Instruction result is zero

C Carry Instruction caused a carry out

V oVerflow Instruction caused an overflow

Condition mnemonics

Mnemonic Name CondEx

EQ Equal Z
NE Not Equal !Z
CS/HS Carry set / unsigned higher or same C
CC/LO Carry clear / unsigned lower !C
MI Minus / negative N
PL Plus / Positive or zero !N
VS Overflow V
VC No overflow !V
HI Unsigned higher !Z AND C
LS Unsigned lower or same Z OR !C
GE Signed greater than or equal !N XOR !V
LT Signed less than N XOR V
GT Signed greater than !Z AND (!N XOR !V)
LE Signed less than or equal Z OR (N XOR V)

2

Question 14
Attached

Data-processing instructions

Name Description Operation

ADD Rd, Rn, Src2 Add (+) Rd = Rn + Src2
SUB Rd, Rn, Src2 Subtract (-) Rd = Rn - Src2
AND Rd, Rn, Src2 Bitwise AND (&) Rd = Rn & Src2
ORR Rd, Rn, Src2 Bitwise OR (|) Rd = Rn | Src2
EOR Rd, Rn, Src2 Bitwise Exclusive OR (ˆ) Rd = Rn ˆ Src2
BIC Rd, Rn, Src2 Bitwise Clear Rd = Rn & ~Src2
MVN Rd, Rn, Src2 Bitwise NOT (~) Rd = ~Rn
LSL Rd, Rn, Src2 Logical Shift Left (<<) Rd = Rn << Src2
LSR Rd, Rn, Src2 Logical Shift Right (>>) Rd = Rn >> Src2
MOV Rd, Src2 Move (=) Rd = Src2
CMP Rd, Src2 Compare Set flags (see below) based on Rd - Src2

Remember that we can also set condition flags by appending an S to the end of
our Data-processing instructions.

Name Description

ADDS Rd, Rn, Src2 Add (as above) and set condition flags

SUBS Rd, Rn, Src2 Subtract (as above) and set condition flags

ANDS Rd, Rn, Src2 Bitwise AND (as above) and set condition flags

Multiply instructions

Name Description Operation

MUL Rd, Rn, Rm Multiply (*) Rd = Rn * Rm
MULS Rd, Rn, Rm Multiply (*) and set condition flags Rd = Rn * Rm
MLA Rd, Rn, Rm, Ra Multiply and Accumulate Rd = (Rn * Rm) + Ra

Memory instructions

Name Description Operation

STR Rd, [Rn, ± Src2] Store Register Mem[Adr] = Rd
LDR Rd, [Rn, ± Src2] Load Register Rd = Mem[Adr]

1

Branch instructions

Name Description Operation

B label Branch PC = (PC + 8) +
imm24 << 2

BL label Branch and Link LR = (PC + 8) - 4;
PC = (PC + 8) +
im24 << 2

BX Rd Branch and eXchange Branch to address

pointed to in Rd (used

for return)

Condition flags

Flag Name Description

N Negative Instruction result is negative

Z Zero Instruction result is zero

C Carry Instruction caused a carry out

V oVerflow Instruction caused an overflow

Condition mnemonics

Mnemonic Name CondEx

EQ Equal Z
NE Not Equal !Z
CS/HS Carry set / unsigned higher or same C
CC/LO Carry clear / unsigned lower !C
MI Minus / negative N
PL Plus / Positive or zero !N
VS Overflow V
VC No overflow !V
HI Unsigned higher !Z AND C
LS Unsigned lower or same Z OR !C
GE Signed greater than or equal !N XOR !V
LT Signed less than N XOR V
GT Signed greater than !Z AND (!N XOR !V)
LE Signed less than or equal Z OR (N XOR V)

2

Question 15
Attached

Maskinkodevedlegg

Betingetkjøring mnemonics

Kode Mnemonic Navn
0000 EQ Likhet
0001 NE Ulikhet
0010 CS/HS Set Carry
0011 CC/LO Fjern Carry
0100 MI Minus / negativt tall
0101 PL Plus / positivt eller null
0110 VS Overflyt / set overflyt (Overflow)
0111 VC Ikke overflyt / fjern overflyt (Overflow)
1000 HI Høyere - positive heltall (Unsigned higher)
1001 LS Lavere - positive heltall (Unsigned lower)
1010 GE Større eller lik - heltall (Signed greater than or equal)
1011 LT Mindre - heltall (Signed less than)
1100 GT Større - heltall (Signed greater than)
1101 LE Mindre eller lik - heltall (Signed less than or equal)
1110 AL Ubetinget - alltid utfør

Figure 1: Data processing instruction format

Figure 2: Memory processing instruction format

1

Figure 3: Branch instruction format

2

Question 18
Attached

Data-processing instructions

Name Description Operation

ADD Rd, Rn, Src2 Add (+) Rd = Rn + Src2
SUB Rd, Rn, Src2 Subtract (-) Rd = Rn - Src2
AND Rd, Rn, Src2 Bitwise AND (&) Rd = Rn & Src2
ORR Rd, Rn, Src2 Bitwise OR (|) Rd = Rn | Src2
EOR Rd, Rn, Src2 Bitwise Exclusive OR (ˆ) Rd = Rn ˆ Src2
BIC Rd, Rn, Src2 Bitwise Clear Rd = Rn & ~Src2
MVN Rd, Rn, Src2 Bitwise NOT (~) Rd = ~Rn
LSL Rd, Rn, Src2 Logical Shift Left (<<) Rd = Rn << Src2
LSR Rd, Rn, Src2 Logical Shift Right (>>) Rd = Rn >> Src2
MOV Rd, Src2 Move (=) Rd = Src2
CMP Rd, Src2 Compare Set flags (see below) based on Rd - Src2

Remember that we can also set condition flags by appending an S to the end of
our Data-processing instructions.

Name Description

ADDS Rd, Rn, Src2 Add (as above) and set condition flags

SUBS Rd, Rn, Src2 Subtract (as above) and set condition flags

ANDS Rd, Rn, Src2 Bitwise AND (as above) and set condition flags

Multiply instructions

Name Description Operation

MUL Rd, Rn, Rm Multiply (*) Rd = Rn * Rm
MULS Rd, Rn, Rm Multiply (*) and set condition flags Rd = Rn * Rm
MLA Rd, Rn, Rm, Ra Multiply and Accumulate Rd = (Rn * Rm) + Ra

Memory instructions

Name Description Operation

STR Rd, [Rn, ± Src2] Store Register Mem[Adr] = Rd
LDR Rd, [Rn, ± Src2] Load Register Rd = Mem[Adr]

1

Branch instructions

Name Description Operation

B label Branch PC = (PC + 8) +
imm24 << 2

BL label Branch and Link LR = (PC + 8) - 4;
PC = (PC + 8) +
im24 << 2

BX Rd Branch and eXchange Branch to address

pointed to in Rd (used

for return)

Condition flags

Flag Name Description

N Negative Instruction result is negative

Z Zero Instruction result is zero

C Carry Instruction caused a carry out

V oVerflow Instruction caused an overflow

Condition mnemonics

Mnemonic Name CondEx

EQ Equal Z
NE Not Equal !Z
CS/HS Carry set / unsigned higher or same C
CC/LO Carry clear / unsigned lower !C
MI Minus / negative N
PL Plus / Positive or zero !N
VS Overflow V
VC No overflow !V
HI Unsigned higher !Z AND C
LS Unsigned lower or same Z OR !C
GE Signed greater than or equal !N XOR !V
LT Signed less than N XOR V
GT Signed greater than !Z AND (!N XOR !V)
LE Signed less than or equal Z OR (N XOR V)

2

Question 5
Attached

Theorems

Question 8
Attached

entity circuit_1 is
 port(
 a : in std_logic;
 b : in std_logic;
 c : in std_logic;
 x : out std_logic;
 y : out std_logic);
end entity;

architecture style_1 of circuit_1 is
begin
 x <=
 (a and b and c) or
 (a and not (b or c)) or
 (b and not (a or c)) or
 (c and not (a or b));

 y <=
 (a and b) or
 (a and c) or
 (b and c);
end architecture;

entity circuit_2 is
 port(
 reset : in std_logic;
 clk : in std_logic;
 a : in std_logic;
 b : in std_logic;
 c : in std_logic;
 x : out std_logic;
 y : out std_logic);
end entity;

architecture style_2 of circuit_2 is

begin
 process(clk) is
 begin
 if rising_edge(clk) then
 if reset then
 x <= '0';
 y <= '0';
 else
 x <=
 '1' when
 (a xor b xor c) = '1' else
 '0';
 y <=
 '1' when
 ((a and b) = '1') or
 ((a and c) = '1') or
 ((b and c) = '1') else
 '0';
 end if;
 end if;
 end process;
end architecture;

entity circuit_3 is
 port(
 a : in std_logic_vector(7 downto 0);
 b : in std_logic_vector(7 downto 0);
 c : in std_logic;
 x : out std_logic_vector(7 downto 0);
 y : out std_logic
);
end entity;

architecture style_3 of circuit_3 is
 component fulladder_3 is
 port(
 a : in std_logic;
 b : in std_logic;
 c : in std_logic;
 x : out std_logic;
 y : out std_logic
);
 end component;

 signal c_sig : std_logic_vector(7 downto 0);
 signal y_sig : std_logic_vector(7 downto 0);
begin
 INSTANTIATION: for i in 0 to 7 generate
 I_COMP: fulladder_3
 port map(
 a => a(i),
 b => b(i),
 c => c_sig(i),
 x => x(i),
 y => y_sig(i)
);
 end generate;

 y <= y_sig(7);
 c_sig <= y_sig(6 downto 0) & c;

end architecture;

entity circuit_4 is
 port(
 a : in integer;
 b : in integer;
 c : in std_logic;
 x : out std_logic_vector(7 downto 0);
 y : out std_logic
);
end entity;

architecture style_4 of circuit_4 is
begin
 process(all) is
 variable v: integer;
 begin
 v := (a + b + 1) when c else (a + b);
 x <= std_logic_vector(to_unsigned(v, 8));
 y <= '1' when v > 255 else '0';
 end process;
end architecture;

entity circuit_5 is
end entity;

architecture style_5 of circuit_5 is
 component component_5A is
 port(
 a : in integer;
 b : in integer;
 c : in std_logic;
 x : out std_logic_vector(7 downto 0);
 y : out std_logic
);
 end component;

 component component_5B is
 port(
 a : in std_logic_vector(7 downto 0);
 b : in std_logic_vector(7 downto 0);
 c : in std_logic;
 x : out std_logic_vector(7 downto 0);
 y : out std_logic
);
 end component;

 signal a, b : integer range 0 to 255 := 0;
 signal c : std_logic := '0';
 signal xA, xB : std_logic_vector(7 downto 0);
 signal yA, yB : std_logic;

begin
 SIM: component_5A
 port map(
 a => a,
 b => b,
 c => c,
 x => xA,
 y => yA
);

 DUT: component_5B
 port map(
 a => std_logic_vector(to_unsigned(a,8)),
 b => std_logic_vector(to_unsigned(b,8)),
 c => c,
 x => xB,
 y => yB
);

 STIMULI: process is
 begin
 wait for 20 ns;
 for i in 0 to 255 loop
 for j in 0 to 255 loop
 for k in 0 to 1 loop
 a <= i;
 b <= j;
 c <= '1' when k = 1 else '0';
 wait for 5 ns;
 assert (xA = xB) report ("Calculation error") severity failure;
 assert (yA = yB) report ("Carry error") severity failure;
 wait for 5 ns;
 end loop;
 end loop;
 end loop;
 report ("Finished OK!");
 std.env.stop;
 end process;
end architecture;

