Oblig 3

IN2080

April 22, 2021

Hand-in and deadline

Hand in a single PDF file in Devilry. The deadline is May 11, at 23:59.

We recommend $\mathbb{IAT}_{E}X$, but all major text editors allows exporting to PDF. You can get help with $\mathbb{IAT}_{E}X$ at the group sessions. You can also download the $\mathbb{IAT}_{E}X$ source (.tex) for this assignment at the assignments page.

Definitions

A *literal* is a formula on the form x or \overline{x} , where x is a variable. A formula φ is on *Conjunctive Normal Form* (CNF) if

$$\varphi = \left(l_1^1 \vee \cdots \vee l_{k_1}^1\right) \wedge \cdots \wedge \left(l_1^n \vee \cdots \vee l_{k_n}^n\right),$$

where l_i^j is the *i*-th literal of the *j*-th clause, and k_m is the number of literals in the *m*-th clause. A formula φ is on *Disjunctive Normal Form* (DNF) if

$$\varphi = \left(l_1^1 \wedge \cdots \wedge l_{k_1}^1\right) \vee \cdots \vee \left(l_1^n \wedge \cdots \wedge l_{k_n}^n\right).$$

We define the following languages:

 $CNFSAT = \{\varphi \mid \varphi \text{ is on CNF, and } \varphi \text{ is satisfiable} \}$ $DNFSAT = \{\varphi \mid \varphi \text{ is on DNF, and } \varphi \text{ is satisfiable} \}$ $CNFUNSAT = \{\varphi \mid \varphi \text{ is on CNF, and } \varphi \text{ is unsatisfiable} \}$ $DNFUNSAT = \{\varphi \mid \varphi \text{ is on DNF, and } \varphi \text{ is unsatisfiable} \}$ $CNFTAUT = \{\varphi \mid \varphi \text{ is on CNF, and } \varphi \text{ is a tautology} \}$ $DNFTAUT = \{\varphi \mid \varphi \text{ is on DNF, and } \varphi \text{ is a tautology} \}$

The complexity class coNP consists of complements of languages in NP. More formally, $coNP = \{\overline{A} \mid A \in NP\}$.

A language A is coNP-complete if

- i) $A \in coNP$
- ii) For every language $B \in \text{coNP}, B \leq_p A$.

You may use, without proof, that SAT and 3SAT are NP-complete.

Problem 1

At least one of the above languages is in $\mathsf{P}.$ Identify them, and prove that they are in $\mathsf{P}.$

Problem 2

At least one of the above languages is NP-complete. Identify them, and prove that they are NP-complete.

Problem 3

- a) Show that for all languages A and B, $A \leq_p B$ implies $\overline{A} \leq_p \overline{B}$.
- b) Show that a language A is NP-complete if and only if \overline{A} is coNP-complete.
- c) At least one of the above languages is coNP-complete. Identify them, and, using what you have shown in 3a) and 3b), prove that they are coNP-complete.