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Overview

Data Streams
Data Stream Management Systems and Continuous Queries

Spatial Data Streams
Two use cases
Spatial Information Management
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Data Streams

# A data stream is a (possibly infinite)
sequence of timestamped tuples
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Data Streams

# A data stream is a (possibly infinite)
sequence of timestamped tuples
¢ Lots of data produced as streams
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Data Streams

# A data stream is a (possibly infinite)
sequence of timestamped tuples
¢ Lots of data produced as streams
+ Sensor values
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# A data stream is a (possibly infinite)
sequence of timestamped tuples
¢ Lots of data produced as streams

¢ Sensor values
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Data Streams

# A data stream is a (possibly infinite)
sequence of timestamped tuples
¢ Lots of data produced as streams

¢ Sensor values
+ Stock prices
¢ User activity
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Data Streams

# A data stream is a (possibly infinite)
sequence of timestamped tuples
¢ Lots of data produced as streams

+ Sensor values

+ Stock prices

¢ User activity

¢ GPS coordinates for moving objects
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Data Streams

# A data stream is a (possibly infinite)
sequence of timestamped tuples
¢ Lots of data produced as streams

+ Sensor values

+ Stock prices

¢ User activity

¢ GPS coordinates for moving objects

¢ Ordered by their timestamp

¢ Explicit: part of data
¢ Implicit: added when entering stream
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Data Streams

# A data stream is a (possibly infinite)
sequence of timestamped tuples
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+ Stock prices

¢ User activity
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¢ Ordered by their timestamp
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Data Streams

# A data stream is a (possibly infinite)
sequence of timestamped tuples

¢ Lots of data produced as streams

+ Sensor values

+ Stock prices

¢ User activity

¢ GPS coordinates for moving objects
¢ Ordered by their timestamp

¢ Explicit: part of data
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Data Streams vs. Static Data

+ With static data, normally use
store-then-query approach
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Data Streams vs. Static Data

+ With static data, normally use
store-then-query approach

¢ All data always available to each query

¢ Data streams updated continuously,

+ at high speed, and

+ are normally unbounded (always growing),
+ thus, impossible to store the entire stream
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Data Streams vs. Static Data

*

¢
L 4
L 4

With static data, normally use
store-then-query approach

All data always available to each query

Data streams updated continuously,

at high speed, and

are normally unbounded (always growing),
thus, impossible to store the entire stream
or compute answers depending on all tuples
Data needs to be processed in real-time

Two main ways of doing this: synopses or
windows

(t01,

12:

00:

00)

(t02,

12:

00:

02)

(t03,

12:

00:

03)

(t04,

12:

00:

06)

(t05,

12:

00:

07)

(t06,

12:

00:

10)

(t07,

12:

00:

12)

(t08,

12:

00:

15)

(t09,

12:

00:

17)

(t10,

12:

00:

18)

4/1



Synopses

+ A synopsis is an aggregate or summary of all
data seen until now
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Synopses

+ A synopsis is an aggregate or summary of all
data seen until now

¢ Is a form of compression of the data

+ For instance, keeping track of the total
maximum, minimum, average, sum, etc.
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Synopses

+ A synopsis is an aggregate or summary of all
data seen until now

¢ Is a form of compression of the data

+ For instance, keeping track of the total
maximum, minimum, average, sum, etc.

+ Updated for every new tuple seen
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Synopses

+ A synopsis is an aggregate or summary of all
data seen until now

¢ Is a form of compression of the data
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maximum, minimum, average, sum, etc.
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Windows

¢ A window is a finite part of the data seen so
far
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Windows

¢ A window is a finite part of the data seen so
far

+ Updated for every window
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Windows

¢ A window is a finite part of the data seen so
far

+ Updated for every window
+ Can have sliding or tumbling windows
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Windows

¢ A window is a finite part of the data seen so
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Windows

¢ A window is a finite part of the data seen so
far

+ Updated for every window

+ Can have sliding or tumbling windows
¢ Selection can be based on

¢ number of tuples,
¢ timestamp,
¢ or general predicate
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Windows

¢ A window is a finite part of the data seen so
far

+ Updated for every window

+ Can have sliding or tumbling windows
¢ Selection can be based on

¢ number of tuples,
¢ timestamp,
¢ or general predicate
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¢ To extract information from streams, we can either use

# Libraries for programming languages (e.g. Apache Fink, Apache Kafka)
+ Data Stream Management Systems (DSMS) (e.g. PipelineDB, TelegraphCQ,
Aurora/Borealis)

+ Benefits of using DSMS:
+ Similar benefits as DBMS (separate data from code, tailored for data
management, etc.)
Declarative query languages
Many DSMS based on RDBMS, giving mature foundation
Combine continuous and static data in one query
Easy to store interesting parts of stream as traditional relations
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PipelineDB

¢ We will use PipelineDB, extension to PostgreSQL

¢ Approach similar to many other DSMS

¢ Tuples tagged and ordered by arrival time

¢ These treat data streams similarly as traditional relations

+ But, distinguishes between the following four types of relations:

# Static relations (Traditional relation)
¢ Streams

# Continuous transforms

¢ Continuous views
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Streams

+ Data streams come from foreign source

¢ Continuous transforms can alter
streams

¢ Resulting stream accessed with
output_of ('temps')

+ No tuples stored for either

+ Must be read by continuous views

¢ Push based

CREATE FOREIGN TABLE sensors (
sid int,
temp float,
wind float,
humidity float
)
SERVER pipelinedb;

CREATE VIEW temps
WITH (action=transform) AS
SELECT sid,

(temp - 32)/1.8 AS tempC
FROM sensors
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Continuous views

Sometimes called time-varying relation
Finite relations, but varies with time

Views constructed as queries over streams
or over transforms (using output_of)
Materialized
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CREATE VIEW hightemps AS
SELECT sid, tempC

FROM output_of ('temps')
WHERE tempC > 50

10/1



Continuous views

Sometimes called time-varying relation
Finite relations, but varies with time

Views constructed as queries over streams
or over transforms (using output_of)
Materialized

Can do synopsis or window-based

CREATE VIEW strongwind AS
SELECT sid, humidity, temp
FROM sensors

WHERE wind > 40

CREATE VIEW hightemps AS
SELECT sid, tempC

FROM output_of ('temps')
WHERE tempC > 50
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Stream Queries: Synopses

¢ A synopsis is made by
aggregation
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Stream Queries: Synopses

¢ A synopsis is made by
aggregation

¢ Can use any common SQL
aggregate

¢+ Computed incrementally

¢ Result is a (materialized)
view with typically few rows
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Stream Queries: Synopses

output_of ('temps"')

CREATE VIEW tempagg AS

SELECT
.. sid,
* A synops.ls is made by in(tempC) AS ma,
aggregatlon max (tempC) AS mx,
avg (tempC) AS ag
¢ Canuse any common SQL FROM output_of ('temps')
aggregate GROUP BY sid

¢+ Computed incrementally

¢ Result is a (materialized)
view with typically few rows

/1



Stream Queries: Synopses

¢ A synopsis is made by
aggregation

¢ Can use any common SQL
aggregate

¢+ Computed incrementally

¢ Result is a (materialized)
view with typically few rows

output_of ('temps"')

o,

11,

12:00:00)

1,

14,

12:00:02)

13,

12:00:03)

| @,

14,

12:00:06)

CREATE VIEW tempagg AS
SELECT

sid,

min(tempC) AS mn,

max (tempC) AS mx,

avg(tempC) AS ag
FROM output_of ('temps')
GROUP BY sid

tempagg (t=12:00:06)
sid | mn | mx ag
0|11 ] 11 | 11.0
1|13 | 14 | 13.5
2|14 | 14 | 14.0

/1



Stream Queries: Synopses

¢ A synopsis is made by
aggregation

¢ Can use any common SQL
aggregate

¢+ Computed incrementally

¢ Result is a (materialized)
view with typically few rows

output_of ('temps"')

] (0, 19, 12:00:07)

CREATE VIEW tempagg AS
SELECT

sid,

min(tempC) AS mn,

max (tempC) AS mx,

avg(tempC) AS ag
FROM output_of ('temps')
GROUP BY sid

tempagg (t=12:00:07)
sid | mn | mx ag
0] 11 ] 19 | 15.0
1|13 | 14 | 13.5
2|14 | 14 | 14.0

/1



Stream Queries: Synopses

¢ A synopsis is made by
aggregation

¢ Can use any common SQL
aggregate

¢+ Computed incrementally

¢ Result is a (materialized)
view with typically few rows

output_of ('temps"')

CREATE VIEW tempagg AS
SELECT

sid,

min(tempC) AS mn,

max (tempC) AS mx,

avg(tempC) AS ag
FROM output_of ('temps')
GROUP BY sid

tempagg (t=12:00:08)
sid | mn | mx ag
0|11 ] 19 | 15.0
1|13 | 14 | 13.5
2|14 | 14 | 14.0

/1



Stream Queries: Synopses

¢ A synopsis is made by
aggregation
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Stream Queries: Synopses

¢ A synopsis is made by
aggregation

¢ Can use any common SQL
aggregate

¢+ Computed incrementally

¢ Result is a (materialized)
view with typically few rows
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Stream Queries: Synopses

¢ A synopsis is made by
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¢ Can use any common SQL
aggregate

¢+ Computed incrementally

¢ Result is a (materialized)
view with typically few rows

output_of ('temps"')

CREATE VIEW tempagg AS
SELECT

sid,

min(tempC) AS mn,

max (tempC) AS mx,

avg(tempC) AS ag
FROM output_of ('temps')
GROUP BY sid

tempagg (t=12:00:11)
sid | mn | mx ag
0|11 ] 19 | 15.0
1|13 | 16 | 14.3
2|14 | 14 | 14.0

/1



Stream Queries: Synopses

¢ A synopsis is made by
aggregation

¢ Can use any common SQL
aggregate

¢+ Computed incrementally

¢ Result is a (materialized)
view with typically few rows
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Stream Queries: Windows

+ A window-query is
evaluated over windows
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Stream Queries: Windows

+ A window-query is
evaluated over windows

¢ Each window is treated as a
regular relation
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Stream Queries: Windows

+ A window-query is
evaluated over windows

¢ Each window is treated as a
regular relation

¢ Results updates whenever
window updates
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Stream Queries: Windows

+ A window-query is
evaluated over windows

¢ Each window is treated as a
regular relation

¢ Results updates whenever
window updates

¢ Computed incrementally
based on difference
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Stream Queries: Windows

output_of ('temps"')

CREATE VIEW tempagg
WITH (sw='6 seconds') AS

+ A window-query is sELECT
. sia,

evaluated over windows min(tempC) AS mn,

¢ Each window is treated as a max (tempC) AS mx,

. avg (tempC) AS ag
regular relation FROM output_of ('temps')

GROUP BY id
+ Results updates whenever Sl
window updates

¢ Computed incrementally
based on difference

12/1



Stream Queries: Windows

+ A window-query is
evaluated over windows

¢ Each window is treated as a
regular relation

¢ Results updates whenever
window updates

¢ Computed incrementally
based on difference

output_of ('temps"')

o,

11,

12:00:00)

(1,

14,

12:00:02)

(1,

13,

12:00:03)

(2,

14,

12:00:06)

CREATE VIEW tempagg
WITH (sw='6 seconds') AS

SELECT
sid,

min(tempC) AS mn,

max (tempC) AS mx,

avg (tempC) AS ag
FROM output_of ('temps')

GROUP BY sid

tempagg (t=12:00:06)

sid | mn | mx ag
0] 11| 11 | 11.0
1|13 | 14 | 13.5
2|14 | 14 | 14.0
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Stream Queries: Windows

+ A window-query is
evaluated over windows

¢ Each window is treated as a
regular relation

¢ Results updates whenever
window updates

¢ Computed incrementally
based on difference

output_of ('temps"')

14,

12:00:02)

13,

12:00:03)

14,

12:00:06) \

19,

12:00:07)

CREATE VIEW tempagg
WITH (sw='6 seconds') AS
SELECT

sid,

min(tempC) AS mn,

max (tempC) AS mx,

avg (tempC) AS ag
FROM output_of ('temps')
GROUP BY sid

tempagg (t=12:00:07)
sid | mn | mx ag
19 | 19 | 19.0
13 | 14 | 13.5
14 | 14 | 14.0

N = O
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Stream Queries: Windows

+ A window-query is
evaluated over windows

¢ Each window is treated as a
regular relation

¢ Results updates whenever
window updates

¢ Computed incrementally
based on difference

output_of ('temps"')

14,

12:00:02)

13,

12:00:03)

14,

12:00:06) \

19,

12:00:07)

CREATE VIEW tempagg
WITH (sw='6 seconds') AS
SELECT

sid,

min(tempC) AS mn,

max (tempC) AS mx,

avg (tempC) AS ag
FROM output_of ('temps')
GROUP BY sid

tempagg (t=12:00:08)
sid | mn | mx ag
19 | 19 | 19.0
13 | 14 | 13.5
14 | 14 | 14.0

N = O
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Stream Queries: Windows

+ A window-query is
evaluated over windows

¢ Each window is treated as a
regular relation

¢ Results updates whenever
window updates

¢ Computed incrementally
based on difference

output_of ('temps"')

[ (1, 13, 12:00:03) |
[ (2, 14, 12:00:06) |
[ 0, 19, 12:00:07) |

CREATE VIEW tempagg
WITH (sw='6 seconds') AS
SELECT

sid,

min(tempC) AS mn,

max (tempC) AS mx,

avg (tempC) AS ag
FROM output_of ('temps')
GROUP BY sid

tempagg (t=12:00:09)
sid | mn | mx ag
19 | 19 | 19.0
13 | 14 | 13.5
14 | 14 | 14.0

N = O
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Stream Queries: Windows

output_of ('temps"')

+ A window-query is
evaluated over windows

# Each window is treated as a | (2, 14, 12:00:06) |
regular relation | (0, 19, 12:00:07) |
+ Results updates whenever [ (1, 16, 12:00:10) |

window updates

¢ Computed incrementally
based on difference

CREATE VIEW tempagg
WITH (sw='6 seconds') AS
SELECT

sid,

min(tempC) AS mn,

max (tempC) AS mx,

avg (tempC) AS ag
FROM output_of ('temps')
GROUP BY sid

tempagg (t=12:00:10)
sid | mn | mx ag
19 | 19 | 19.0
16 | 16 | 16.0
14 | 14 | 14.0

N = O
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Stream Queries: Windows

output_of ('temps"')

+ A window-query is
evaluated over windows

# Each window is treated as a | (2, 14, 12:00:06) |
regular relation | (0, 19, 12:00:07) |
+ Results updates whenever [ (1, 16, 12:00:10) |

window updates

¢ Computed incrementally
based on difference

CREATE VIEW tempagg
WITH (sw='6 seconds') AS
SELECT

sid,

min(tempC) AS mn,

max (tempC) AS mx,

avg (tempC) AS ag
FROM output_of ('temps')
GROUP BY sid

tempagg (t=12:00:11)
sid | mn | mx ag
19 | 19 | 19.0
16 | 16 | 16.0
14 | 14 | 14.0

N = O
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Stream Queries: Windows

+ A window-query is
evaluated over windows

¢ Each window is treated as a
regular relation

¢ Results updates whenever
window updates

¢ Computed incrementally
based on difference

output_of ('temps"')

(2, 14,

12:00:06)

(0, 19,

12:00:07)

(1, 16,

12:00:10)

1, 17,

12:00:12)

|
|
|
|

CREATE VIEW tempagg

WITH (sw='6 seconds') AS

SELECT
sid,

min(tempC) AS mn,
max (tempC) AS mx,
avg (tempC) AS ag

FROM output_of ('temps')
GROUP BY sid

tempagg (t=12:00:12)

sid | mn | mx ag
0] 19 ] 19 | 19.0
1|16 | 17 | 16.5
2|14 | 14 | 14.0

12/1



Joins

+ Streams and continuous views can be joined
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Joins

+ Streams and continuous views can be joined
¢ both with other streams and continuous views
+ and with static relations

+ But, restrictions apply
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Spatial Streams and Views

¢ Streams or continuous views can either:
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Spatial Streams and Views

¢ Streams or continuous views can either:

¢ be joined with static spatial data,
# contain spatial data directly,
¢ or be interpreted as spatial objects

to become a spatial data stream or a continuous view

14/1



Spatial Queries over Streams

¢ Spatial streams and continuous views can be queried like any other stream or
view
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Spatial Queries over Streams

¢ Spatial streams and continuous views can be queried like any other stream or
view

+ Can filter, transform, and derive spatial data with spatial predicates and
functions

+ Can use spatial aggregates to form complex spatial objects from simpler
objects

+ PipelineDB supports all functions, predicate and aggregates from PostGIS

15/1



Use case 1: Storms

¢ Stream of weather data from sensors

sensors(sid, wind, temp, humid, time)

(0, 11, 10, 61, 12:00:00)

(1, 4, 12, 82, 12:00:02)

[ (4, 13, 14, 74, 12:00:03) |

[ (22, 2, 19, 53, 12:00:06)

[ (8, 19, 21, 60, 12:00:07) |
|
|

[ (7, 6, 11, 63, 12:00:10)
[ (17, 2, 18, 59, 12:00:12)
(9, 11, 11, 71, 12:00:15)
(24, 29, 13, 84, 12:00:17)
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Use case 1: Storms

¢ Stream of weather data from sensors

+ Each sensor has a (static) location
associated with it sensors(sid, wind, temp, humid, time)
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Use case 1: Storms

¢ Stream of weather data from sensors

+ Each sensor has a (static) location

associated with it . . . . .
+ Join the stream with static table to get
location of wind speeds: . . ) ] )

CREATE VIEW wind_loc

WITH (action=transform) AS

SELECT sid, l.location, s.wind
FROM sensors AS s, sensor_loc AS 1
WHERE s.sid = 1l.sid
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Use case 1: Storms

¢ Stream of weather data from sensors

+ Each sensor has a (static) location
associated with it

+ Join the stream with static table to get
location of wind speeds:

CREATE VIEW wind_loc

WITH (action=transform) AS

SELECT sid, l.location, s.wind
FROM sensors AS s, sensor_loc AS 1
WHERE s.sid = 1l.sid

¢ Use average over sliding window to get . . . . .
current picture

CREATE VIEW wind_avg
WITH (sw='1 minute') AS ° ° ° ¢ °
SELECT 1l.location AS loc,

avg(s.wind) AS wind
FROM output_of ('obs_loc')
GROUP BY sid
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Use case 1: Storms

¢ Stream of weather data from sensors

+ Each sensor has a (static) location
associated with it

N . . wind_avg
+ Join the stream with static table to get Tocation wind
location of wind speeds: Point(11,59) | 11
CREATE VIEW wind_loc Point (12,60) 4.
WITH (action=transform) AS Point (13,59) 13.
SELECT sid, l.location, s.wind Point (10,61) 2.
FROM sensors AS s, sensor_loc AS 1 Point (12,59) 19

WHERE s.sid = 1.sid Point (11,61) 6.

Point (13,60) 2.
Point (10,58) 11.
Point(11,60) | 29.

¢ Use average over sliding window to get
current picture

CREATE VIEW wind_avg

WITH (sw='1l minute') AS

SELECT 1l.location AS loc,
avg(s.wind) AS wind

FROM output_of ('obs_loc')

GROUP BY sid

© 00N~ NO - O
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Use case 1. Detecting storms

+ Might now have multiple sensors forming a . . . . .
storm (wind > 25)
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Use case 1. Detecting storms

+ Might now have multiple sensors forming a . . . . .
storm (wind > 25)
L] 2.5.1 [ ] L] [ ]
2.6'9 2.9 7 L] L] L]
CREATE VIEW storm AS
SELECT loc
FROM wind_avg 27 .1 25.2

WHERE wind > 25 °
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Use case 1. Detecting storms

+ Might now have multiple sensors forming a . . . . .
storm (wind > 25)
¢ However, a storm has a spatial extent . . . . .
L ] 2.5. 1 [ ] L] [ ]
2.6'9 2.9 7 L ] L] [ ]
CREATE VIEW storm AS
SELECT 1loc
FROM wind_avg 27 .1 25.2
WHERE wind > 25 ° o hd ° °
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Use case 1. Detecting storms

+ Might now have multiple sensors forming a . . . . .
storm (wind > 25)
¢ However, a storm has a spatial extent . . . . .
¢ Let the storm equal convex hull of locations
of sensors observing storm 25.1
2.6'9 2.9 7 L ] L] L]
CREATE VIEW storm AS
SELECT 1loc
FROM wind_avg 27 .1 25.92

WHERE wind > 25 . . . ° °
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WHERE wind > 25
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Use case 1. Detecting storms

+ Might now have multiple sensors forming a . . . . .
storm (wind > 25)
¢ However, a storm has a spatial extent . . . . .
¢ Let the storm equal convex hull of locations
of sensors observing storm 25.3  25.1 . .
0.7

CREATE VIEW storm AS

SELECT ST_ConvexHull(loc) AS extent
FROM wind_avg 7.1

WHERE wind > 25 ° ° © ©

17/1



Use case 1. Complication — Multiple storms

¢ Can have more than one storm

25.3 25.1 . . .

CREATE VIEW storm AS

SELECT ST_ConvexHull(loc) AS extent
FROM wind_avg 9.7
WHERE wind > 25
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[ ] [ ] [ ] 2I5 6 2.5 9
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Use case 1. Complication — Multiple storms

+ Can have more than one storm
# Current approach fails
+ Use clustering to group close points together

CREATE VIEW storms AS
SELECT ST_ConvexHull(c.cl) AS extent
FROM (
SELECT
unnest (ST_ClusterWithin(loc, 10000)) AS cl
FROM wind_avg
WHERE wind > 25
) AS ¢
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Use case 1. Complication — Multiple storms

¢ Can have more than one storm
# Current approach fails
+ Use clustering to group close points together

CREATE VIEW storms AS
SELECT ST_ConvexHull(c.cl) AS extent
FROM (
SELECT
unnest (ST_ClusterWithin(loc, 10000)) AS cl
FROM wind_avg
WHERE wind > 25
) AS ¢

25.3

25.1

9.7

. 26.3
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Use case 1: Creating a storm warning system

¢ Can now use the storms as spatial objects
without thinking of sensors . . .
25.3  25.1 . .
9.7 | . .
L] 7' 1 L] L] L]
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Use case 1: Creating a storm warning system

¢ Can now use the storms as spatial objects
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+ For example, make a storm warning system

¢ Given a table sensitive(name, extent) Of
storm sensitive objects

+ Want to give warning if storm distance
< 20000

dist=2300

=1500

19/1



Use case 1: Creating a storm warning system

¢ Can now use the storms as spatial objects
without thinking of sensors

+ For example, make a storm warning system

¢ Given a table sensitive(name, extent) Of
storm sensitive objects

+ Want to give warning if storm distance
< 20000

CREATE VIEW warnings AS
SELECT
sen.name,
min (ST_Distance(sen.extent, sto.extent)) AS dist
FROM storms AS sto, sensitive AS sen
GROUP BY sen.name
HAVING dist < 20000

dist=2300

=1500
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Use case 1: Pipeline

CREATE VIEW wind_loc
WITH (action=transform) AS
—gp- SELECT sid, l.location, s.wind

— - FROM sensors AS s, sensor_loc AS 1
WHERE s.sid = 1l.sid

CREATE VIEW wind_avg

WITH (sw='1l minute') AS

SELECT 1l.location AS loc,
avg(s.wind) AS wind

FROM output_of ('obs_loc')

GROUP BY sid

Static
data CREATE VIEW storms AS
SELECT ST_ConvexHull(c.cl) AS extent
FROM (
SELECT

unnest (ST_ClusterWithin(loc, 10000)) AS cl
FROM wind_avg

WHERE wind > 25
) AS ¢

CREATE VIEW warnings AS
SELECT
sen.name,
min(ST_Distance(sen.extent, sto.extent)) AS diSt mmmmm—lp-
FROM storms AS sto, sensitive AS sen
GROUP BY sen.name
HAVING dist < 20000 20/1

Y




Use case 2: Traffic

¢ Stream of vehicle locations based on GPS,
as strings
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Use case 2: Traffic

¢ Stream of vehicle locations based on GPS,
as strings
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Use case 2: Traffic

¢ Stream of vehicle locations based on GPS,
as strings

+ Use query to parse location to spatial entities
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Use case 2: Traffic

¢ Stream of vehicle locations based on GPS,
as strings

+ Use query to parse location to spatial entities

CREATE VIEW vlocations
WITH (action=transform) AS
SELECT
CAST(raw[0] AS integer) AS vid,
CAST(raw[1] AS datetime) AS gps_time,
ST_MakePoint (CAST (raw[2] AS double),
CAST(raw[3] AS double)) AS loc
FROM (SELECT regexp_split_to_array(data, ' ')
FROM gps_stream) AS t(raw)
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Use case 2: Traffic

¢ Stream of vehicle locations based on GPS,
as strings

+ Use query to parse location to spatial entities

CREATE VIEW vlocations
WITH (action=transform) AS
SELECT
CAST(raw[0] AS integer) AS vid,
CAST(raw[1] AS datetime) AS gps_time,
ST_MakePoint (CAST (raw[2] AS double),
CAST (raw[3] AS double)) AS 1loc
FROM (SELECT regexp_split_to_array(data, ' ')
FROM gps_stream) AS t(raw)
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Use case 2: Traffic

¢ Stream of vehicle locations based on GPS,
as strings

+ Use query to parse location to spatial entities

¢ Could here also remove noise and other
preprocessing steps

CREATE VIEW vlocations
WITH (action=transform) AS
SELECT
CAST(raw[0] AS integer) AS vid,
CAST(raw[1] AS datetime) AS gps_time,
ST_MakePoint (CAST (raw[2] AS double),
CAST (raw[3] AS double)) AS 1loc
FROM (SELECT regexp_split_to_array(data, ' ')
FROM gps_stream) AS t(raw)
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Use case 2: Traffic analysis

CREATE VIEW paths WITH (sw='1l minute') AS

SELECT vid,
ST_MakeLine (loc ORDER BY gps_time) AS path,
min(gps_time) AS start,
max (gps_time) AS end,

FROM output_of ('vlocations')

GROUP BY vid
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22/1



Use case 2: Traffic analysis

CREATE VIEW paths WITH (sw='1l minute') AS

SELECT vid,
ST_MakeLine (loc ORDER BY gps_time) AS path,
min(gps_time) AS start,
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FROM vlocations

GROUP BY vid

CREATE VIEW jams AS
SELECT unnest (ST_ClusterIntersect(path))

FROM paths
WHERE ST_Length(path) /
seconds (end - start) < 2
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Use case 2: Traffic analysis

CREATE VIEW paths WITH (sw='1l minute') AS
SELECT vid,
ST_MakeLine (loc ORDER BY gps_time) AS path,
/ min(gps_time) AS start,
max (gps_time) AS end
FROM vlocations
GROUP BY vid

CREATE VIEW jams AS
SELECT unnest (ST_ClusterIntersect(path))

FROM paths
WHERE ST_Length(path) /
seconds(end - start) < 2

|
]
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Use case 2: Traffic analysis

/

CREATE VIEW jams AS

CREATE VIEW paths WITH (sw='1l minute') AS

SELECT vid,
ST_MakeLine (loc ORDER BY gps_time) AS path,
min(gps_time) AS start,
max (gps_time) AS end

FROM vlocations

GROUP BY vid

SELECT unnest (ST_ClusterIntersect(path))

FROM paths
WHERE ST_Length(path) /
seconds(end - start) < 2

|
]

CREATE VIEW speedings AS
SELECT p.vid, s.speed
FROM paths AS p, speedlimits AS s
WHERE ST_contains(s.extent, p.path) AND
ST_Length(p.path) /
seconds(p.end - p.start) > s.speed
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WHERE ST_Length(path) /
seconds(end - start) < 2
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WHERE ST_contains(s.extent, p.path) AND
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/
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CREATE VIEW paths WITH (sw='1l minute') AS

SELECT vid,
ST_MakeLine (loc ORDER BY gps_time) AS path,
min(gps_time) AS start,
max (gps_time) AS end

FROM vlocations

GROUP BY vid
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Spatial information management using continuous queries
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Summary

¢ Queries over data streams allow us to parse and build abstractions over the
raw data streams
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Summary

¢ Queries over data streams allow us to parse and build abstractions over the
raw data streams

+ Different applications can use different abstraction levels
+ Windows takes care of keeping data fresh and relevant
+ Can still store longer history of abstract objects (e.g. storms)
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More information:

+ Data Stream Management, Minos Garofalakis, Johannes Gehrke, Rajeev
Rastogi (Editors), Springer 2016

¢ docs.pipelinedb.org
¢ Spatio-Temporal Data Streams, Zdravko Gali¢, Springer 2016

Thank you for listening!
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docs.pipelinedb.org

Actual queries: single storm

CREATE VIEW storm

WITH (action=materialize, sw='30 seconds') AS
SELECT ST_ConvexHull(ST_Collect(loc)) AS location
FROM locations

WHERE wind > 20
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Actual queries: jams

CREATE VIEW jams AS
SELECT ST_LineMerge (ST_SnapToGrid(c.cluster, 0.0001))
FROM (SELECT unnest(ST_ClusterIntersect(path)) AS cluster

FROM paths

WHERE ST_Length(path) /
extract('epoch' from (end - start)::interval)
< 3 -- ft/s

) AS ¢
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