
Querying of Data Streams for Spatial Information Management

Leif Harald Karlsen
leifhka@ifi.uio.no

University of Oslo

1 / 1

Overview

1. Data Streams
2. Data Stream Management Systems and Continuous Queries
3. Spatial Data Streams
4. Two use cases
5. Spatial Information Management

2 / 1

Data Streams

� A data stream is a (possibly infinite)
sequence of timestamped tuples

� Lots of data produced as streams

� Sensor values
� Stock prices
� User activity
� GPS coordinates for moving objects

� Ordered by their timestamp
� Explicit: part of data
� Implicit: added when entering stream

� At time t, tuples with timestamp t′
� reflect the past if t after t′
� reflect the (unseen) future if t before t′,
� and reflect the present if t = t′

...
(t01, 12:00:00)

(t02, 12:00:02)

(t03, 12:00:03)

(t04, 12:00:06)

(t05, 12:00:07)

(t06, 12:00:10)

(t07, 12:00:12)

(t08, 12:00:15)

(t09, 12:00:17)

(t10, 12:00:18)
...

t = 12:00:07

present

past

future

3 / 1

Data Streams

� A data stream is a (possibly infinite)
sequence of timestamped tuples

� Lots of data produced as streams

� Sensor values
� Stock prices
� User activity
� GPS coordinates for moving objects

� Ordered by their timestamp
� Explicit: part of data
� Implicit: added when entering stream

� At time t, tuples with timestamp t′
� reflect the past if t after t′
� reflect the (unseen) future if t before t′,
� and reflect the present if t = t′

...
(t01, 12:00:00)

(t02, 12:00:02)

(t03, 12:00:03)

(t04, 12:00:06)

(t05, 12:00:07)

(t06, 12:00:10)

(t07, 12:00:12)

(t08, 12:00:15)

(t09, 12:00:17)

(t10, 12:00:18)
...

t = 12:00:07

present

past

future

3 / 1

Data Streams

� A data stream is a (possibly infinite)
sequence of timestamped tuples

� Lots of data produced as streams

� Sensor values
� Stock prices
� User activity
� GPS coordinates for moving objects

� Ordered by their timestamp
� Explicit: part of data
� Implicit: added when entering stream

� At time t, tuples with timestamp t′
� reflect the past if t after t′
� reflect the (unseen) future if t before t′,
� and reflect the present if t = t′

...
(t01, 12:00:00)

(t02, 12:00:02)

(t03, 12:00:03)

(t04, 12:00:06)

(t05, 12:00:07)

(t06, 12:00:10)

(t07, 12:00:12)

(t08, 12:00:15)

(t09, 12:00:17)

(t10, 12:00:18)
...

t = 12:00:07

present

past

future

3 / 1

Data Streams

� A data stream is a (possibly infinite)
sequence of timestamped tuples

� Lots of data produced as streams
� Sensor values

� Stock prices
� User activity
� GPS coordinates for moving objects

� Ordered by their timestamp
� Explicit: part of data
� Implicit: added when entering stream

� At time t, tuples with timestamp t′
� reflect the past if t after t′
� reflect the (unseen) future if t before t′,
� and reflect the present if t = t′

...
(t01, 12:00:00)

(t02, 12:00:02)

(t03, 12:00:03)

(t04, 12:00:06)

(t05, 12:00:07)

(t06, 12:00:10)

(t07, 12:00:12)

(t08, 12:00:15)

(t09, 12:00:17)

(t10, 12:00:18)
...

t = 12:00:07

present

past

future

3 / 1

Data Streams

� A data stream is a (possibly infinite)
sequence of timestamped tuples

� Lots of data produced as streams
� Sensor values
� Stock prices

� User activity
� GPS coordinates for moving objects

� Ordered by their timestamp
� Explicit: part of data
� Implicit: added when entering stream

� At time t, tuples with timestamp t′
� reflect the past if t after t′
� reflect the (unseen) future if t before t′,
� and reflect the present if t = t′

...
(t01, 12:00:00)

(t02, 12:00:02)

(t03, 12:00:03)

(t04, 12:00:06)

(t05, 12:00:07)

(t06, 12:00:10)

(t07, 12:00:12)

(t08, 12:00:15)

(t09, 12:00:17)

(t10, 12:00:18)
...

t = 12:00:07

present

past

future

3 / 1

Data Streams

� A data stream is a (possibly infinite)
sequence of timestamped tuples

� Lots of data produced as streams
� Sensor values
� Stock prices
� User activity

� GPS coordinates for moving objects
� Ordered by their timestamp

� Explicit: part of data
� Implicit: added when entering stream

� At time t, tuples with timestamp t′
� reflect the past if t after t′
� reflect the (unseen) future if t before t′,
� and reflect the present if t = t′

...
(t01, 12:00:00)

(t02, 12:00:02)

(t03, 12:00:03)

(t04, 12:00:06)

(t05, 12:00:07)

(t06, 12:00:10)

(t07, 12:00:12)

(t08, 12:00:15)

(t09, 12:00:17)

(t10, 12:00:18)
...

t = 12:00:07

present

past

future

3 / 1

Data Streams

� A data stream is a (possibly infinite)
sequence of timestamped tuples

� Lots of data produced as streams
� Sensor values
� Stock prices
� User activity
� GPS coordinates for moving objects

� Ordered by their timestamp
� Explicit: part of data
� Implicit: added when entering stream

� At time t, tuples with timestamp t′
� reflect the past if t after t′
� reflect the (unseen) future if t before t′,
� and reflect the present if t = t′

...
(t01, 12:00:00)

(t02, 12:00:02)

(t03, 12:00:03)

(t04, 12:00:06)

(t05, 12:00:07)

(t06, 12:00:10)

(t07, 12:00:12)

(t08, 12:00:15)

(t09, 12:00:17)

(t10, 12:00:18)
...

t = 12:00:07

present

past

future

3 / 1

Data Streams

� A data stream is a (possibly infinite)
sequence of timestamped tuples

� Lots of data produced as streams
� Sensor values
� Stock prices
� User activity
� GPS coordinates for moving objects

� Ordered by their timestamp
� Explicit: part of data
� Implicit: added when entering stream

� At time t, tuples with timestamp t′
� reflect the past if t after t′
� reflect the (unseen) future if t before t′,
� and reflect the present if t = t′

...
(t01, 12:00:00)

(t02, 12:00:02)

(t03, 12:00:03)

(t04, 12:00:06)

(t05, 12:00:07)

(t06, 12:00:10)

(t07, 12:00:12)

(t08, 12:00:15)

(t09, 12:00:17)

(t10, 12:00:18)
...

t = 12:00:07

present

past

future

3 / 1

Data Streams

� A data stream is a (possibly infinite)
sequence of timestamped tuples

� Lots of data produced as streams
� Sensor values
� Stock prices
� User activity
� GPS coordinates for moving objects

� Ordered by their timestamp
� Explicit: part of data
� Implicit: added when entering stream

� At time t

, tuples with timestamp t′
� reflect the past if t after t′
� reflect the (unseen) future if t before t′,
� and reflect the present if t = t′

...
(t01, 12:00:00)

(t02, 12:00:02)

(t03, 12:00:03)

(t04, 12:00:06)

(t05, 12:00:07)

(t06, 12:00:10)

(t07, 12:00:12)

(t08, 12:00:15)

(t09, 12:00:17)

(t10, 12:00:18)
...

t = 12:00:07

present

past

future

3 / 1

Data Streams

� A data stream is a (possibly infinite)
sequence of timestamped tuples

� Lots of data produced as streams
� Sensor values
� Stock prices
� User activity
� GPS coordinates for moving objects

� Ordered by their timestamp
� Explicit: part of data
� Implicit: added when entering stream

� At time t

, tuples with timestamp t′
� reflect the past if t after t′
� reflect the (unseen) future if t before t′,
� and reflect the present if t = t′

...
(t01, 12:00:00)

(t02, 12:00:02)

(t03, 12:00:03)

(t04, 12:00:06)

(t05, 12:00:07)

(t06, 12:00:10)

(t07, 12:00:12)

(t08, 12:00:15)

(t09, 12:00:17)

(t10, 12:00:18)
...

t = 12:00:07

present

past

future

3 / 1

Data Streams

� A data stream is a (possibly infinite)
sequence of timestamped tuples

� Lots of data produced as streams
� Sensor values
� Stock prices
� User activity
� GPS coordinates for moving objects

� Ordered by their timestamp
� Explicit: part of data
� Implicit: added when entering stream

� At time t, tuples with timestamp t′
� reflect the past if t after t′

� reflect the (unseen) future if t before t′,
� and reflect the present if t = t′

...
(t01, 12:00:00)

(t02, 12:00:02)

(t03, 12:00:03)

(t04, 12:00:06)

(t05, 12:00:07)

(t06, 12:00:10)

(t07, 12:00:12)

(t08, 12:00:15)

(t09, 12:00:17)

(t10, 12:00:18)
...

t = 12:00:07

present

past

future

3 / 1

Data Streams

� A data stream is a (possibly infinite)
sequence of timestamped tuples

� Lots of data produced as streams
� Sensor values
� Stock prices
� User activity
� GPS coordinates for moving objects

� Ordered by their timestamp
� Explicit: part of data
� Implicit: added when entering stream

� At time t, tuples with timestamp t′
� reflect the past if t after t′

� reflect the (unseen) future if t before t′,
� and reflect the present if t = t′

...
(t01, 12:00:00)

(t02, 12:00:02)

(t03, 12:00:03)

(t04, 12:00:06)

(t05, 12:00:07)

(t06, 12:00:10)

(t07, 12:00:12)

(t08, 12:00:15)

(t09, 12:00:17)

(t10, 12:00:18)
...

t = 12:00:07

present

past

future

3 / 1

Data Streams

� A data stream is a (possibly infinite)
sequence of timestamped tuples

� Lots of data produced as streams
� Sensor values
� Stock prices
� User activity
� GPS coordinates for moving objects

� Ordered by their timestamp
� Explicit: part of data
� Implicit: added when entering stream

� At time t, tuples with timestamp t′
� reflect the past if t after t′
� reflect the (unseen) future if t before t′,

� and reflect the present if t = t′

...
(t01, 12:00:00)

(t02, 12:00:02)

(t03, 12:00:03)

(t04, 12:00:06)

(t05, 12:00:07)

(t06, 12:00:10)

(t07, 12:00:12)

(t08, 12:00:15)

(t09, 12:00:17)

(t10, 12:00:18)
...

t = 12:00:07

present

past

future

3 / 1

Data Streams

� A data stream is a (possibly infinite)
sequence of timestamped tuples

� Lots of data produced as streams
� Sensor values
� Stock prices
� User activity
� GPS coordinates for moving objects

� Ordered by their timestamp
� Explicit: part of data
� Implicit: added when entering stream

� At time t, tuples with timestamp t′
� reflect the past if t after t′
� reflect the (unseen) future if t before t′,

� and reflect the present if t = t′

...
(t01, 12:00:00)

(t02, 12:00:02)

(t03, 12:00:03)

(t04, 12:00:06)

(t05, 12:00:07)

(t06, 12:00:10)

(t07, 12:00:12)

(t08, 12:00:15)

(t09, 12:00:17)

(t10, 12:00:18)
...

t = 12:00:07

present

past

future

3 / 1

Data Streams

� A data stream is a (possibly infinite)
sequence of timestamped tuples

� Lots of data produced as streams
� Sensor values
� Stock prices
� User activity
� GPS coordinates for moving objects

� Ordered by their timestamp
� Explicit: part of data
� Implicit: added when entering stream

� At time t, tuples with timestamp t′
� reflect the past if t after t′
� reflect the (unseen) future if t before t′,
� and reflect the present if t = t′

...
(t01, 12:00:00)

(t02, 12:00:02)

(t03, 12:00:03)

(t04, 12:00:06)

(t05, 12:00:07)

(t06, 12:00:10)

(t07, 12:00:12)

(t08, 12:00:15)

(t09, 12:00:17)

(t10, 12:00:18)
...

t = 12:00:07

present

past

future

3 / 1

Data Streams

� A data stream is a (possibly infinite)
sequence of timestamped tuples

� Lots of data produced as streams
� Sensor values
� Stock prices
� User activity
� GPS coordinates for moving objects

� Ordered by their timestamp
� Explicit: part of data
� Implicit: added when entering stream

� At time t, tuples with timestamp t′
� reflect the past if t after t′
� reflect the (unseen) future if t before t′,
� and reflect the present if t = t′

...
(t01, 12:00:00)

(t02, 12:00:02)

(t03, 12:00:03)

(t04, 12:00:06)

(t05, 12:00:07)

(t06, 12:00:10)

(t07, 12:00:12)

(t08, 12:00:15)

(t09, 12:00:17)

(t10, 12:00:18)
...

t = 12:00:07

present

past

future

3 / 1

Data Streams vs. Static Data

� With static data, normally use
store-then-query approach

� All data always available to each query
� Data streams updated continuously,
� at high speed, and
� are normally unbounded (always growing),
� thus, impossible to store the entire stream
� or compute answers depending on all tuples
� Data needs to be processed in real-time
� Two main ways of doing this: synopses or
windows

...
(t01, 12:00:00)

(t02, 12:00:02)

(t03, 12:00:03)

(t04, 12:00:06)

(t05, 12:00:07)

(t06, 12:00:10)

(t07, 12:00:12)

(t08, 12:00:15)

(t09, 12:00:17)

(t10, 12:00:18)
...

4 / 1

Data Streams vs. Static Data

� With static data, normally use
store-then-query approach

� All data always available to each query

� Data streams updated continuously,
� at high speed, and
� are normally unbounded (always growing),
� thus, impossible to store the entire stream
� or compute answers depending on all tuples
� Data needs to be processed in real-time
� Two main ways of doing this: synopses or
windows

...
(t01, 12:00:00)

(t02, 12:00:02)

(t03, 12:00:03)

(t04, 12:00:06)

(t05, 12:00:07)

(t06, 12:00:10)

(t07, 12:00:12)

(t08, 12:00:15)

(t09, 12:00:17)

(t10, 12:00:18)
...

4 / 1

Data Streams vs. Static Data

� With static data, normally use
store-then-query approach

� All data always available to each query
� Data streams updated continuously,

� at high speed, and
� are normally unbounded (always growing),
� thus, impossible to store the entire stream
� or compute answers depending on all tuples
� Data needs to be processed in real-time
� Two main ways of doing this: synopses or
windows

...
(t01, 12:00:00)

(t02, 12:00:02)

(t03, 12:00:03)

(t04, 12:00:06)

(t05, 12:00:07)

(t06, 12:00:10)

(t07, 12:00:12)

(t08, 12:00:15)

(t09, 12:00:17)

(t10, 12:00:18)
...

4 / 1

Data Streams vs. Static Data

� With static data, normally use
store-then-query approach

� All data always available to each query
� Data streams updated continuously,
� at high speed, and

� are normally unbounded (always growing),
� thus, impossible to store the entire stream
� or compute answers depending on all tuples
� Data needs to be processed in real-time
� Two main ways of doing this: synopses or
windows

...
(t01, 12:00:00)

(t02, 12:00:02)

(t03, 12:00:03)

(t04, 12:00:06)

(t05, 12:00:07)

(t06, 12:00:10)

(t07, 12:00:12)

(t08, 12:00:15)

(t09, 12:00:17)

(t10, 12:00:18)
...

4 / 1

Data Streams vs. Static Data

� With static data, normally use
store-then-query approach

� All data always available to each query
� Data streams updated continuously,
� at high speed, and
� are normally unbounded (always growing),

� thus, impossible to store the entire stream
� or compute answers depending on all tuples
� Data needs to be processed in real-time
� Two main ways of doing this: synopses or
windows

...
(t01, 12:00:00)

(t02, 12:00:02)

(t03, 12:00:03)

(t04, 12:00:06)

(t05, 12:00:07)

(t06, 12:00:10)

(t07, 12:00:12)

(t08, 12:00:15)

(t09, 12:00:17)

(t10, 12:00:18)
...

4 / 1

Data Streams vs. Static Data

� With static data, normally use
store-then-query approach

� All data always available to each query
� Data streams updated continuously,
� at high speed, and
� are normally unbounded (always growing),
� thus, impossible to store the entire stream

� or compute answers depending on all tuples
� Data needs to be processed in real-time
� Two main ways of doing this: synopses or
windows

...
(t01, 12:00:00)

(t02, 12:00:02)

(t03, 12:00:03)

(t04, 12:00:06)

(t05, 12:00:07)

(t06, 12:00:10)

(t07, 12:00:12)

(t08, 12:00:15)

(t09, 12:00:17)

(t10, 12:00:18)
...

4 / 1

Data Streams vs. Static Data

� With static data, normally use
store-then-query approach

� All data always available to each query
� Data streams updated continuously,
� at high speed, and
� are normally unbounded (always growing),
� thus, impossible to store the entire stream
� or compute answers depending on all tuples

� Data needs to be processed in real-time
� Two main ways of doing this: synopses or
windows

...
(t01, 12:00:00)

(t02, 12:00:02)

(t03, 12:00:03)

(t04, 12:00:06)

(t05, 12:00:07)

(t06, 12:00:10)

(t07, 12:00:12)

(t08, 12:00:15)

(t09, 12:00:17)

(t10, 12:00:18)
...

4 / 1

Data Streams vs. Static Data

� With static data, normally use
store-then-query approach

� All data always available to each query
� Data streams updated continuously,
� at high speed, and
� are normally unbounded (always growing),
� thus, impossible to store the entire stream
� or compute answers depending on all tuples
� Data needs to be processed in real-time

� Two main ways of doing this: synopses or
windows

...
(t01, 12:00:00)

(t02, 12:00:02)

(t03, 12:00:03)

(t04, 12:00:06)

(t05, 12:00:07)

(t06, 12:00:10)

(t07, 12:00:12)

(t08, 12:00:15)

(t09, 12:00:17)

(t10, 12:00:18)
...

4 / 1

Data Streams vs. Static Data

� With static data, normally use
store-then-query approach

� All data always available to each query
� Data streams updated continuously,
� at high speed, and
� are normally unbounded (always growing),
� thus, impossible to store the entire stream
� or compute answers depending on all tuples
� Data needs to be processed in real-time
� Two main ways of doing this: synopses or
windows

...
(t01, 12:00:00)

(t02, 12:00:02)

(t03, 12:00:03)

(t04, 12:00:06)

(t05, 12:00:07)

(t06, 12:00:10)

(t07, 12:00:12)

(t08, 12:00:15)

(t09, 12:00:17)

(t10, 12:00:18)
...

4 / 1

Synopses

� A synopsis is an aggregate or summary of all
data seen until now

� Is a form of compression of the data
� For instance, keeping track of the total
maximum, minimum, average, sum, etc.

� Updated for every new tuple seen

...
(11, 12:00:00)

(14, 12:00:02)

(13, 12:00:03)

(14, 12:00:06)

(19, 12:00:07)

(16, 12:00:10)

(10, 12:00:12)

(11, 12:00:15)

(29, 12:00:17)

(21, 12:00:18)
...

5 / 1

Synopses

� A synopsis is an aggregate or summary of all
data seen until now

� Is a form of compression of the data

� For instance, keeping track of the total
maximum, minimum, average, sum, etc.

� Updated for every new tuple seen

...
(11, 12:00:00)

(14, 12:00:02)

(13, 12:00:03)

(14, 12:00:06)

(19, 12:00:07)

(16, 12:00:10)

(10, 12:00:12)

(11, 12:00:15)

(29, 12:00:17)

(21, 12:00:18)
...

5 / 1

Synopses

� A synopsis is an aggregate or summary of all
data seen until now

� Is a form of compression of the data
� For instance, keeping track of the total
maximum, minimum, average, sum, etc.

� Updated for every new tuple seen

...
(11, 12:00:00)

(14, 12:00:02)

(13, 12:00:03)

(14, 12:00:06)

(19, 12:00:07)

(16, 12:00:10)

(10, 12:00:12)

(11, 12:00:15)

(29, 12:00:17)

(21, 12:00:18)
...

5 / 1

Synopses

� A synopsis is an aggregate or summary of all
data seen until now

� Is a form of compression of the data
� For instance, keeping track of the total
maximum, minimum, average, sum, etc.

� Updated for every new tuple seen

...
(11, 12:00:00)

(14, 12:00:02)

(13, 12:00:03)

(14, 12:00:06)

(19, 12:00:07)

(16, 12:00:10)

(10, 12:00:12)

(11, 12:00:15)

(29, 12:00:17)

(21, 12:00:18)
...

5 / 1

Synopses

� A synopsis is an aggregate or summary of all
data seen until now

� Is a form of compression of the data
� For instance, keeping track of the total
maximum, minimum, average, sum, etc.

� Updated for every new tuple seen

...
(11, 12:00:00)

(14, 12:00:02)

(13, 12:00:03)

(14, 12:00:06)

(19, 12:00:07)

(16, 12:00:10)

(10, 12:00:12)

(11, 12:00:15)

(29, 12:00:17)

(21, 12:00:18)
...

t = 12:00:06

Max: 14
Min: 11
Avg: 13.0

5 / 1

Synopses

� A synopsis is an aggregate or summary of all
data seen until now

� Is a form of compression of the data
� For instance, keeping track of the total
maximum, minimum, average, sum, etc.

� Updated for every new tuple seen

...
(11, 12:00:00)

(14, 12:00:02)

(13, 12:00:03)

(14, 12:00:06)

(19, 12:00:07)

(16, 12:00:10)

(10, 12:00:12)

(11, 12:00:15)

(29, 12:00:17)

(21, 12:00:18)
...

t = 12:00:07

Max: 19
Min: 11
Avg: 14.2

5 / 1

Synopses

� A synopsis is an aggregate or summary of all
data seen until now

� Is a form of compression of the data
� For instance, keeping track of the total
maximum, minimum, average, sum, etc.

� Updated for every new tuple seen

...
(11, 12:00:00)

(14, 12:00:02)

(13, 12:00:03)

(14, 12:00:06)

(19, 12:00:07)

(16, 12:00:10)

(10, 12:00:12)

(11, 12:00:15)

(29, 12:00:17)

(21, 12:00:18)
...

t = 12:00:08

Max: 19
Min: 11
Avg: 14.2

5 / 1

Synopses

� A synopsis is an aggregate or summary of all
data seen until now

� Is a form of compression of the data
� For instance, keeping track of the total
maximum, minimum, average, sum, etc.

� Updated for every new tuple seen

...
(11, 12:00:00)

(14, 12:00:02)

(13, 12:00:03)

(14, 12:00:06)

(19, 12:00:07)

(16, 12:00:10)

(10, 12:00:12)

(11, 12:00:15)

(29, 12:00:17)

(21, 12:00:18)
...

t = 12:00:09

Max: 19
Min: 11
Avg: 14.2

5 / 1

Synopses

� A synopsis is an aggregate or summary of all
data seen until now

� Is a form of compression of the data
� For instance, keeping track of the total
maximum, minimum, average, sum, etc.

� Updated for every new tuple seen

...
(11, 12:00:00)

(14, 12:00:02)

(13, 12:00:03)

(14, 12:00:06)

(19, 12:00:07)

(16, 12:00:10)

(10, 12:00:12)

(11, 12:00:15)

(29, 12:00:17)

(21, 12:00:18)
...

t = 12:00:10

Max: 19
Min: 11
Avg: 14.5

5 / 1

Synopses

� A synopsis is an aggregate or summary of all
data seen until now

� Is a form of compression of the data
� For instance, keeping track of the total
maximum, minimum, average, sum, etc.

� Updated for every new tuple seen

...
(11, 12:00:00)

(14, 12:00:02)

(13, 12:00:03)

(14, 12:00:06)

(19, 12:00:07)

(16, 12:00:10)

(10, 12:00:12)

(11, 12:00:15)

(29, 12:00:17)

(21, 12:00:18)
...

t = 12:00:11

Max: 19
Min: 11
Avg: 14.5

5 / 1

Synopses

� A synopsis is an aggregate or summary of all
data seen until now

� Is a form of compression of the data
� For instance, keeping track of the total
maximum, minimum, average, sum, etc.

� Updated for every new tuple seen

...
(11, 12:00:00)

(14, 12:00:02)

(13, 12:00:03)

(14, 12:00:06)

(19, 12:00:07)

(16, 12:00:10)

(10, 12:00:12)

(11, 12:00:15)

(29, 12:00:17)

(21, 12:00:18)
...

t = 12:00:12

Max: 19
Min: 10
Avg: 13.9

5 / 1

Windows

� A window is a finite part of the data seen so
far

� Updated for every window
� Can have sliding or tumbling windows
� Selection can be based on

� number of tuples,
� timestamp,
� or general predicate

...
(11, 12:00:00)

(14, 12:00:02)

(13, 12:00:03)

(14, 12:00:06)

(19, 12:00:07)

(16, 12:00:10)

(10, 12:00:12)

(11, 12:00:15)

(29, 12:00:17)

(21, 12:00:18)
...

Window: 6s

6 / 1

Windows

� A window is a finite part of the data seen so
far

� Updated for every window

� Can have sliding or tumbling windows
� Selection can be based on

� number of tuples,
� timestamp,
� or general predicate

...
(11, 12:00:00)

(14, 12:00:02)

(13, 12:00:03)

(14, 12:00:06)

(19, 12:00:07)

(16, 12:00:10)

(10, 12:00:12)

(11, 12:00:15)

(29, 12:00:17)

(21, 12:00:18)
...

Window: 6s

6 / 1

Windows

� A window is a finite part of the data seen so
far

� Updated for every window
� Can have sliding or tumbling windows

� Selection can be based on
� number of tuples,
� timestamp,
� or general predicate

...
(11, 12:00:00)

(14, 12:00:02)

(13, 12:00:03)

(14, 12:00:06)

(19, 12:00:07)

(16, 12:00:10)

(10, 12:00:12)

(11, 12:00:15)

(29, 12:00:17)

(21, 12:00:18)
...

Window: 6s

6 / 1

Windows

� A window is a finite part of the data seen so
far

� Updated for every window
� Can have sliding or tumbling windows
� Selection can be based on

� number of tuples,
� timestamp,
� or general predicate

...
(11, 12:00:00)

(14, 12:00:02)

(13, 12:00:03)

(14, 12:00:06)

(19, 12:00:07)

(16, 12:00:10)

(10, 12:00:12)

(11, 12:00:15)

(29, 12:00:17)

(21, 12:00:18)
...

Window: 6s

6 / 1

Windows

� A window is a finite part of the data seen so
far

� Updated for every window
� Can have sliding or tumbling windows
� Selection can be based on

� number of tuples,
� timestamp,
� or general predicate

...
(11, 12:00:00)

(14, 12:00:02)

(13, 12:00:03)

(14, 12:00:06)

(19, 12:00:07)

(16, 12:00:10)

(10, 12:00:12)

(11, 12:00:15)

(29, 12:00:17)

(21, 12:00:18)
...

Window: 6s
t = 12:00:06

Max: 14
Min: 11
Avg: 13.0

6 / 1

Windows

� A window is a finite part of the data seen so
far

� Updated for every window
� Can have sliding or tumbling windows
� Selection can be based on

� number of tuples,
� timestamp,
� or general predicate

...
(11, 12:00:00)

(14, 12:00:02)

(13, 12:00:03)

(14, 12:00:06)

(19, 12:00:07)

(16, 12:00:10)

(10, 12:00:12)

(11, 12:00:15)

(29, 12:00:17)

(21, 12:00:18)
...

Window: 6s
t = 12:00:07

Max: 19
Min: 13
Avg: 15.0

6 / 1

Windows

� A window is a finite part of the data seen so
far

� Updated for every window
� Can have sliding or tumbling windows
� Selection can be based on

� number of tuples,
� timestamp,
� or general predicate

...
(11, 12:00:00)

(14, 12:00:02)

(13, 12:00:03)

(14, 12:00:06)

(19, 12:00:07)

(16, 12:00:10)

(10, 12:00:12)

(11, 12:00:15)

(29, 12:00:17)

(21, 12:00:18)
...

Window: 6s
t = 12:00:08

Max: 19
Min: 13
Avg: 15.0

6 / 1

Windows

� A window is a finite part of the data seen so
far

� Updated for every window
� Can have sliding or tumbling windows
� Selection can be based on

� number of tuples,
� timestamp,
� or general predicate

...
(11, 12:00:00)

(14, 12:00:02)

(13, 12:00:03)

(14, 12:00:06)

(19, 12:00:07)

(16, 12:00:10)

(10, 12:00:12)

(11, 12:00:15)

(29, 12:00:17)

(21, 12:00:18)
...

Window: 6s
t = 12:00:09

Max: 19
Min: 13
Avg: 15.3

6 / 1

Windows

� A window is a finite part of the data seen so
far

� Updated for every window
� Can have sliding or tumbling windows
� Selection can be based on

� number of tuples,
� timestamp,
� or general predicate

...
(11, 12:00:00)

(14, 12:00:02)

(13, 12:00:03)

(14, 12:00:06)

(19, 12:00:07)

(16, 12:00:10)

(10, 12:00:12)

(11, 12:00:15)

(29, 12:00:17)

(21, 12:00:18)
...

Window: 6s
t = 12:00:10

Max: 19
Min: 14
Avg: 16.3

6 / 1

Windows

� A window is a finite part of the data seen so
far

� Updated for every window
� Can have sliding or tumbling windows
� Selection can be based on

� number of tuples,
� timestamp,
� or general predicate

...
(11, 12:00:00)

(14, 12:00:02)

(13, 12:00:03)

(14, 12:00:06)

(19, 12:00:07)

(16, 12:00:10)

(10, 12:00:12)

(11, 12:00:15)

(29, 12:00:17)

(21, 12:00:18)
...

Window: 6s
t = 12:00:11

Max: 19
Min: 14
Avg: 16.3

6 / 1

Windows

� A window is a finite part of the data seen so
far

� Updated for every window
� Can have sliding or tumbling windows
� Selection can be based on

� number of tuples,
� timestamp,
� or general predicate

...
(11, 12:00:00)

(14, 12:00:02)

(13, 12:00:03)

(14, 12:00:06)

(19, 12:00:07)

(16, 12:00:10)

(10, 12:00:12)

(11, 12:00:15)

(29, 12:00:17)

(21, 12:00:18)
...

Window: 6s
t = 12:00:12

Max: 19
Min: 10
Avg: 14.8

6 / 1

Data Stream Management Systems

� To extract information from streams, we can either use

� Libraries for programming languages (e.g. Apache Fink, Apache Kafka)
� Data Stream Management Systems (DSMS) (e.g. PipelineDB, TelegraphCQ,
Aurora/Borealis)

� Benefits of using DSMS:
� Similar benefits as DBMS (separate data from code, tailored for data
management, etc.)

� Declarative query languages
� Many DSMS based on RDBMS, giving mature foundation
� Combine continuous and static data in one query
� Easy to store interesting parts of stream as traditional relations

7 / 1

Data Stream Management Systems

� To extract information from streams, we can either use
� Libraries for programming languages (e.g. Apache Fink, Apache Kafka)

� Data Stream Management Systems (DSMS) (e.g. PipelineDB, TelegraphCQ,
Aurora/Borealis)

� Benefits of using DSMS:
� Similar benefits as DBMS (separate data from code, tailored for data
management, etc.)

� Declarative query languages
� Many DSMS based on RDBMS, giving mature foundation
� Combine continuous and static data in one query
� Easy to store interesting parts of stream as traditional relations

7 / 1

Data Stream Management Systems

� To extract information from streams, we can either use
� Libraries for programming languages (e.g. Apache Fink, Apache Kafka)
� Data Stream Management Systems (DSMS) (e.g. PipelineDB, TelegraphCQ,
Aurora/Borealis)

� Benefits of using DSMS:
� Similar benefits as DBMS (separate data from code, tailored for data
management, etc.)

� Declarative query languages
� Many DSMS based on RDBMS, giving mature foundation
� Combine continuous and static data in one query
� Easy to store interesting parts of stream as traditional relations

7 / 1

Data Stream Management Systems

� To extract information from streams, we can either use
� Libraries for programming languages (e.g. Apache Fink, Apache Kafka)
� Data Stream Management Systems (DSMS) (e.g. PipelineDB, TelegraphCQ,
Aurora/Borealis)

� Benefits of using DSMS:

� Similar benefits as DBMS (separate data from code, tailored for data
management, etc.)

� Declarative query languages
� Many DSMS based on RDBMS, giving mature foundation
� Combine continuous and static data in one query
� Easy to store interesting parts of stream as traditional relations

7 / 1

Data Stream Management Systems

� To extract information from streams, we can either use
� Libraries for programming languages (e.g. Apache Fink, Apache Kafka)
� Data Stream Management Systems (DSMS) (e.g. PipelineDB, TelegraphCQ,
Aurora/Borealis)

� Benefits of using DSMS:
� Similar benefits as DBMS (separate data from code, tailored for data
management, etc.)

� Declarative query languages
� Many DSMS based on RDBMS, giving mature foundation
� Combine continuous and static data in one query
� Easy to store interesting parts of stream as traditional relations

7 / 1

Data Stream Management Systems

� To extract information from streams, we can either use
� Libraries for programming languages (e.g. Apache Fink, Apache Kafka)
� Data Stream Management Systems (DSMS) (e.g. PipelineDB, TelegraphCQ,
Aurora/Borealis)

� Benefits of using DSMS:
� Similar benefits as DBMS (separate data from code, tailored for data
management, etc.)

� Declarative query languages

� Many DSMS based on RDBMS, giving mature foundation
� Combine continuous and static data in one query
� Easy to store interesting parts of stream as traditional relations

7 / 1

Data Stream Management Systems

� To extract information from streams, we can either use
� Libraries for programming languages (e.g. Apache Fink, Apache Kafka)
� Data Stream Management Systems (DSMS) (e.g. PipelineDB, TelegraphCQ,
Aurora/Borealis)

� Benefits of using DSMS:
� Similar benefits as DBMS (separate data from code, tailored for data
management, etc.)

� Declarative query languages
� Many DSMS based on RDBMS, giving mature foundation

� Combine continuous and static data in one query
� Easy to store interesting parts of stream as traditional relations

7 / 1

Data Stream Management Systems

� To extract information from streams, we can either use
� Libraries for programming languages (e.g. Apache Fink, Apache Kafka)
� Data Stream Management Systems (DSMS) (e.g. PipelineDB, TelegraphCQ,
Aurora/Borealis)

� Benefits of using DSMS:
� Similar benefits as DBMS (separate data from code, tailored for data
management, etc.)

� Declarative query languages
� Many DSMS based on RDBMS, giving mature foundation
� Combine continuous and static data in one query

� Easy to store interesting parts of stream as traditional relations

7 / 1

Data Stream Management Systems

� To extract information from streams, we can either use
� Libraries for programming languages (e.g. Apache Fink, Apache Kafka)
� Data Stream Management Systems (DSMS) (e.g. PipelineDB, TelegraphCQ,
Aurora/Borealis)

� Benefits of using DSMS:
� Similar benefits as DBMS (separate data from code, tailored for data
management, etc.)

� Declarative query languages
� Many DSMS based on RDBMS, giving mature foundation
� Combine continuous and static data in one query
� Easy to store interesting parts of stream as traditional relations

7 / 1

PipelineDB

� We will use PipelineDB, extension to PostgreSQL

� Approach similar to many other DSMS
� Tuples tagged and ordered by arrival time
� These treat data streams similarly as traditional relations
� But, distinguishes between the following four types of relations:

� Static relations (Traditional relation)
� Streams
� Continuous transforms
� Continuous views

8 / 1

PipelineDB

� We will use PipelineDB, extension to PostgreSQL
� Approach similar to many other DSMS

� Tuples tagged and ordered by arrival time
� These treat data streams similarly as traditional relations
� But, distinguishes between the following four types of relations:

� Static relations (Traditional relation)
� Streams
� Continuous transforms
� Continuous views

8 / 1

PipelineDB

� We will use PipelineDB, extension to PostgreSQL
� Approach similar to many other DSMS
� Tuples tagged and ordered by arrival time

� These treat data streams similarly as traditional relations
� But, distinguishes between the following four types of relations:

� Static relations (Traditional relation)
� Streams
� Continuous transforms
� Continuous views

8 / 1

PipelineDB

� We will use PipelineDB, extension to PostgreSQL
� Approach similar to many other DSMS
� Tuples tagged and ordered by arrival time
� These treat data streams similarly as traditional relations

� But, distinguishes between the following four types of relations:
� Static relations (Traditional relation)
� Streams
� Continuous transforms
� Continuous views

8 / 1

PipelineDB

� We will use PipelineDB, extension to PostgreSQL
� Approach similar to many other DSMS
� Tuples tagged and ordered by arrival time
� These treat data streams similarly as traditional relations
� But, distinguishes between the following four types of relations:

� Static relations (Traditional relation)
� Streams
� Continuous transforms
� Continuous views

8 / 1

PipelineDB

� We will use PipelineDB, extension to PostgreSQL
� Approach similar to many other DSMS
� Tuples tagged and ordered by arrival time
� These treat data streams similarly as traditional relations
� But, distinguishes between the following four types of relations:

� Static relations (Traditional relation)

� Streams
� Continuous transforms
� Continuous views

8 / 1

PipelineDB

� We will use PipelineDB, extension to PostgreSQL
� Approach similar to many other DSMS
� Tuples tagged and ordered by arrival time
� These treat data streams similarly as traditional relations
� But, distinguishes between the following four types of relations:

� Static relations (Traditional relation)
� Streams

� Continuous transforms
� Continuous views

8 / 1

PipelineDB

� We will use PipelineDB, extension to PostgreSQL
� Approach similar to many other DSMS
� Tuples tagged and ordered by arrival time
� These treat data streams similarly as traditional relations
� But, distinguishes between the following four types of relations:

� Static relations (Traditional relation)
� Streams
� Continuous transforms

� Continuous views

8 / 1

PipelineDB

� We will use PipelineDB, extension to PostgreSQL
� Approach similar to many other DSMS
� Tuples tagged and ordered by arrival time
� These treat data streams similarly as traditional relations
� But, distinguishes between the following four types of relations:

� Static relations (Traditional relation)
� Streams
� Continuous transforms
� Continuous views

8 / 1

Streams

� Data streams come from foreign source

� Continuous transforms can alter
streams

� Resulting stream accessed with
output_of('temps')

� No tuples stored for either
� Must be read by continuous views
� Push based

CREATE FOREIGN TABLE sensors (
sid int,
temp float,
wind float,
humidity float

)
SERVER pipelinedb;

CREATE VIEW temps
WITH (action=transform) AS
SELECT sid,

(temp - 32)/1.8 AS tempC
FROM sensors

9 / 1

Streams

� Data streams come from foreign source

� Continuous transforms can alter
streams

� Resulting stream accessed with
output_of('temps')

� No tuples stored for either
� Must be read by continuous views
� Push based

CREATE FOREIGN TABLE sensors (
sid int,
temp float,
wind float,
humidity float

)
SERVER pipelinedb;

CREATE VIEW temps
WITH (action=transform) AS
SELECT sid,

(temp - 32)/1.8 AS tempC
FROM sensors

9 / 1

Streams

� Data streams come from foreign source
� Continuous transforms can alter
streams

� Resulting stream accessed with
output_of('temps')

� No tuples stored for either
� Must be read by continuous views
� Push based

CREATE FOREIGN TABLE sensors (
sid int,
temp float,
wind float,
humidity float

)
SERVER pipelinedb;

CREATE VIEW temps
WITH (action=transform) AS
SELECT sid,

(temp - 32)/1.8 AS tempC
FROM sensors

9 / 1

Streams

� Data streams come from foreign source
� Continuous transforms can alter
streams

� Resulting stream accessed with
output_of('temps')

� No tuples stored for either
� Must be read by continuous views
� Push based

CREATE FOREIGN TABLE sensors (
sid int,
temp float,
wind float,
humidity float

)
SERVER pipelinedb;

CREATE VIEW temps
WITH (action=transform) AS
SELECT sid,

(temp - 32)/1.8 AS tempC
FROM sensors

9 / 1

Streams

� Data streams come from foreign source
� Continuous transforms can alter
streams

� Resulting stream accessed with
output_of('temps')

� No tuples stored for either
� Must be read by continuous views
� Push based

CREATE FOREIGN TABLE sensors (
sid int,
temp float,
wind float,
humidity float

)
SERVER pipelinedb;

CREATE VIEW temps
WITH (action=transform) AS
SELECT sid,

(temp - 32)/1.8 AS tempC
FROM sensors

9 / 1

Streams

� Data streams come from foreign source
� Continuous transforms can alter
streams

� Resulting stream accessed with
output_of('temps')

� No tuples stored for either

� Must be read by continuous views
� Push based

CREATE FOREIGN TABLE sensors (
sid int,
temp float,
wind float,
humidity float

)
SERVER pipelinedb;

CREATE VIEW temps
WITH (action=transform) AS
SELECT sid,

(temp - 32)/1.8 AS tempC
FROM sensors

9 / 1

Streams

� Data streams come from foreign source
� Continuous transforms can alter
streams

� Resulting stream accessed with
output_of('temps')

� No tuples stored for either
� Must be read by continuous views

� Push based

CREATE FOREIGN TABLE sensors (
sid int,
temp float,
wind float,
humidity float

)
SERVER pipelinedb;

CREATE VIEW temps
WITH (action=transform) AS
SELECT sid,

(temp - 32)/1.8 AS tempC
FROM sensors

9 / 1

Streams

� Data streams come from foreign source
� Continuous transforms can alter
streams

� Resulting stream accessed with
output_of('temps')

� No tuples stored for either
� Must be read by continuous views
� Push based

CREATE FOREIGN TABLE sensors (
sid int,
temp float,
wind float,
humidity float

)
SERVER pipelinedb;

CREATE VIEW temps
WITH (action=transform) AS
SELECT sid,

(temp - 32)/1.8 AS tempC
FROM sensors

9 / 1

Continuous views

� Sometimes called time-varying relation

� Finite relations, but varies with time
� Views constructed as queries over streams
� or over transforms (using output_of)
� Materialized
� Can do synopsis or window-based

CREATE VIEW strongwind AS
SELECT sid, humidity, temp
FROM sensors
WHERE wind > 40

CREATE VIEW hightemps AS
SELECT sid, tempC
FROM output_of('temps')
WHERE tempC > 50

10 / 1

Continuous views

� Sometimes called time-varying relation
� Finite relations, but varies with time

� Views constructed as queries over streams
� or over transforms (using output_of)
� Materialized
� Can do synopsis or window-based

CREATE VIEW strongwind AS
SELECT sid, humidity, temp
FROM sensors
WHERE wind > 40

CREATE VIEW hightemps AS
SELECT sid, tempC
FROM output_of('temps')
WHERE tempC > 50

10 / 1

Continuous views

� Sometimes called time-varying relation
� Finite relations, but varies with time
� Views constructed as queries over streams

� or over transforms (using output_of)
� Materialized
� Can do synopsis or window-based

CREATE VIEW strongwind AS
SELECT sid, humidity, temp
FROM sensors
WHERE wind > 40

CREATE VIEW hightemps AS
SELECT sid, tempC
FROM output_of('temps')
WHERE tempC > 50

10 / 1

Continuous views

� Sometimes called time-varying relation
� Finite relations, but varies with time
� Views constructed as queries over streams

� or over transforms (using output_of)
� Materialized
� Can do synopsis or window-based

CREATE VIEW strongwind AS
SELECT sid, humidity, temp
FROM sensors
WHERE wind > 40

CREATE VIEW hightemps AS
SELECT sid, tempC
FROM output_of('temps')
WHERE tempC > 50

10 / 1

Continuous views

� Sometimes called time-varying relation
� Finite relations, but varies with time
� Views constructed as queries over streams
� or over transforms (using output_of)

� Materialized
� Can do synopsis or window-based

CREATE VIEW strongwind AS
SELECT sid, humidity, temp
FROM sensors
WHERE wind > 40

CREATE VIEW hightemps AS
SELECT sid, tempC
FROM output_of('temps')
WHERE tempC > 50

10 / 1

Continuous views

� Sometimes called time-varying relation
� Finite relations, but varies with time
� Views constructed as queries over streams
� or over transforms (using output_of)

� Materialized
� Can do synopsis or window-based

CREATE VIEW strongwind AS
SELECT sid, humidity, temp
FROM sensors
WHERE wind > 40

CREATE VIEW hightemps AS
SELECT sid, tempC
FROM output_of('temps')
WHERE tempC > 50

10 / 1

Continuous views

� Sometimes called time-varying relation
� Finite relations, but varies with time
� Views constructed as queries over streams
� or over transforms (using output_of)
� Materialized

� Can do synopsis or window-based

CREATE VIEW strongwind AS
SELECT sid, humidity, temp
FROM sensors
WHERE wind > 40

CREATE VIEW hightemps AS
SELECT sid, tempC
FROM output_of('temps')
WHERE tempC > 50

10 / 1

Continuous views

� Sometimes called time-varying relation
� Finite relations, but varies with time
� Views constructed as queries over streams
� or over transforms (using output_of)
� Materialized
� Can do synopsis or window-based

CREATE VIEW strongwind AS
SELECT sid, humidity, temp
FROM sensors
WHERE wind > 40

CREATE VIEW hightemps AS
SELECT sid, tempC
FROM output_of('temps')
WHERE tempC > 50

10 / 1

Stream Queries: Synopses

� A synopsis is made by
aggregation

� Can use any common SQL
aggregate

� Computed incrementally
� Result is a (materialized)
view with typically few rows

output_of('temps')
...

(0, 11, 12:00:00)

(1, 14, 12:00:02)

(1, 13, 12:00:03)

(2, 14, 12:00:06)

(0, 19, 12:00:07)

(1, 16, 12:00:10)

(1, 17, 12:00:12)

(0, 11, 12:00:15)

(2, 29, 12:00:17)

(2, 21, 12:00:18)
...

CREATE VIEW tempagg AS
SELECT

sid,
min(tempC) AS mn,
max(tempC) AS mx,
avg(tempC) AS ag

FROM output_of('temps')
GROUP BY sid

11 / 1

Stream Queries: Synopses

� A synopsis is made by
aggregation

� Can use any common SQL
aggregate

� Computed incrementally
� Result is a (materialized)
view with typically few rows

output_of('temps')
...

(0, 11, 12:00:00)

(1, 14, 12:00:02)

(1, 13, 12:00:03)

(2, 14, 12:00:06)

(0, 19, 12:00:07)

(1, 16, 12:00:10)

(1, 17, 12:00:12)

(0, 11, 12:00:15)

(2, 29, 12:00:17)

(2, 21, 12:00:18)
...

CREATE VIEW tempagg AS
SELECT

sid,
min(tempC) AS mn,
max(tempC) AS mx,
avg(tempC) AS ag

FROM output_of('temps')
GROUP BY sid

11 / 1

Stream Queries: Synopses

� A synopsis is made by
aggregation

� Can use any common SQL
aggregate

� Computed incrementally

� Result is a (materialized)
view with typically few rows

output_of('temps')
...

(0, 11, 12:00:00)

(1, 14, 12:00:02)

(1, 13, 12:00:03)

(2, 14, 12:00:06)

(0, 19, 12:00:07)

(1, 16, 12:00:10)

(1, 17, 12:00:12)

(0, 11, 12:00:15)

(2, 29, 12:00:17)

(2, 21, 12:00:18)
...

CREATE VIEW tempagg AS
SELECT

sid,
min(tempC) AS mn,
max(tempC) AS mx,
avg(tempC) AS ag

FROM output_of('temps')
GROUP BY sid

11 / 1

Stream Queries: Synopses

� A synopsis is made by
aggregation

� Can use any common SQL
aggregate

� Computed incrementally
� Result is a (materialized)
view with typically few rows

output_of('temps')
...

(0, 11, 12:00:00)

(1, 14, 12:00:02)

(1, 13, 12:00:03)

(2, 14, 12:00:06)

(0, 19, 12:00:07)

(1, 16, 12:00:10)

(1, 17, 12:00:12)

(0, 11, 12:00:15)

(2, 29, 12:00:17)

(2, 21, 12:00:18)
...

CREATE VIEW tempagg AS
SELECT

sid,
min(tempC) AS mn,
max(tempC) AS mx,
avg(tempC) AS ag

FROM output_of('temps')
GROUP BY sid

11 / 1

Stream Queries: Synopses

� A synopsis is made by
aggregation

� Can use any common SQL
aggregate

� Computed incrementally
� Result is a (materialized)
view with typically few rows

output_of('temps')
...

(0, 11, 12:00:00)

(1, 14, 12:00:02)

(1, 13, 12:00:03)

(2, 14, 12:00:06)

(0, 19, 12:00:07)

(1, 16, 12:00:10)

(1, 17, 12:00:12)

(0, 11, 12:00:15)

(2, 29, 12:00:17)

(2, 21, 12:00:18)
...

CREATE VIEW tempagg AS
SELECT

sid,
min(tempC) AS mn,
max(tempC) AS mx,
avg(tempC) AS ag

FROM output_of('temps')
GROUP BY sid

11 / 1

Stream Queries: Synopses

� A synopsis is made by
aggregation

� Can use any common SQL
aggregate

� Computed incrementally
� Result is a (materialized)
view with typically few rows

output_of('temps')
...

(0, 11, 12:00:00)

(1, 14, 12:00:02)

(1, 13, 12:00:03)

(2, 14, 12:00:06)

(0, 19, 12:00:07)

(1, 16, 12:00:10)

(1, 17, 12:00:12)

(0, 11, 12:00:15)

(2, 29, 12:00:17)

(2, 21, 12:00:18)
...

CREATE VIEW tempagg AS
SELECT

sid,
min(tempC) AS mn,
max(tempC) AS mx,
avg(tempC) AS ag

FROM output_of('temps')
GROUP BY sid

tempagg (t=12:00:06)
sid mn mx ag
0 11 11 11.0
1 13 14 13.5
2 14 14 14.0

11 / 1

Stream Queries: Synopses

� A synopsis is made by
aggregation

� Can use any common SQL
aggregate

� Computed incrementally
� Result is a (materialized)
view with typically few rows

output_of('temps')
...

(0, 11, 12:00:00)

(1, 14, 12:00:02)

(1, 13, 12:00:03)

(2, 14, 12:00:06)

(0, 19, 12:00:07)

(1, 16, 12:00:10)

(1, 17, 12:00:12)

(0, 11, 12:00:15)

(2, 29, 12:00:17)

(2, 21, 12:00:18)
...

CREATE VIEW tempagg AS
SELECT

sid,
min(tempC) AS mn,
max(tempC) AS mx,
avg(tempC) AS ag

FROM output_of('temps')
GROUP BY sid

tempagg (t=12:00:07)
sid mn mx ag
0 11 19 15.0
1 13 14 13.5
2 14 14 14.0

11 / 1

Stream Queries: Synopses

� A synopsis is made by
aggregation

� Can use any common SQL
aggregate

� Computed incrementally
� Result is a (materialized)
view with typically few rows

output_of('temps')
...

(0, 11, 12:00:00)

(1, 14, 12:00:02)

(1, 13, 12:00:03)

(2, 14, 12:00:06)

(0, 19, 12:00:07)

(1, 16, 12:00:10)

(1, 17, 12:00:12)

(0, 11, 12:00:15)

(2, 29, 12:00:17)

(2, 21, 12:00:18)
...

CREATE VIEW tempagg AS
SELECT

sid,
min(tempC) AS mn,
max(tempC) AS mx,
avg(tempC) AS ag

FROM output_of('temps')
GROUP BY sid

tempagg (t=12:00:08)
sid mn mx ag
0 11 19 15.0
1 13 14 13.5
2 14 14 14.0

11 / 1

Stream Queries: Synopses

� A synopsis is made by
aggregation

� Can use any common SQL
aggregate

� Computed incrementally
� Result is a (materialized)
view with typically few rows

output_of('temps')
...

(0, 11, 12:00:00)

(1, 14, 12:00:02)

(1, 13, 12:00:03)

(2, 14, 12:00:06)

(0, 19, 12:00:07)

(1, 16, 12:00:10)

(1, 17, 12:00:12)

(0, 11, 12:00:15)

(2, 29, 12:00:17)

(2, 21, 12:00:18)
...

CREATE VIEW tempagg AS
SELECT

sid,
min(tempC) AS mn,
max(tempC) AS mx,
avg(tempC) AS ag

FROM output_of('temps')
GROUP BY sid

tempagg (t=12:00:09)
sid mn mx ag
0 11 19 15.0
1 13 14 13.5
2 14 14 14.0

11 / 1

Stream Queries: Synopses

� A synopsis is made by
aggregation

� Can use any common SQL
aggregate

� Computed incrementally
� Result is a (materialized)
view with typically few rows

output_of('temps')
...

(0, 11, 12:00:00)

(1, 14, 12:00:02)

(1, 13, 12:00:03)

(2, 14, 12:00:06)

(0, 19, 12:00:07)

(1, 16, 12:00:10)

(1, 17, 12:00:12)

(0, 11, 12:00:15)

(2, 29, 12:00:17)

(2, 21, 12:00:18)
...

CREATE VIEW tempagg AS
SELECT

sid,
min(tempC) AS mn,
max(tempC) AS mx,
avg(tempC) AS ag

FROM output_of('temps')
GROUP BY sid

tempagg (t=12:00:10)
sid mn mx ag
0 11 19 15.0
1 13 16 14.3
2 14 14 14.0

11 / 1

Stream Queries: Synopses

� A synopsis is made by
aggregation

� Can use any common SQL
aggregate

� Computed incrementally
� Result is a (materialized)
view with typically few rows

output_of('temps')
...

(0, 11, 12:00:00)

(1, 14, 12:00:02)

(1, 13, 12:00:03)

(2, 14, 12:00:06)

(0, 19, 12:00:07)

(1, 16, 12:00:10)

(1, 17, 12:00:12)

(0, 11, 12:00:15)

(2, 29, 12:00:17)

(2, 21, 12:00:18)
...

CREATE VIEW tempagg AS
SELECT

sid,
min(tempC) AS mn,
max(tempC) AS mx,
avg(tempC) AS ag

FROM output_of('temps')
GROUP BY sid

tempagg (t=12:00:11)
sid mn mx ag
0 11 19 15.0
1 13 16 14.3
2 14 14 14.0

11 / 1

Stream Queries: Synopses

� A synopsis is made by
aggregation

� Can use any common SQL
aggregate

� Computed incrementally
� Result is a (materialized)
view with typically few rows

output_of('temps')
...

(0, 11, 12:00:00)

(1, 14, 12:00:02)

(1, 13, 12:00:03)

(2, 14, 12:00:06)

(0, 19, 12:00:07)

(1, 16, 12:00:10)

(1, 17, 12:00:12)

(0, 11, 12:00:15)

(2, 29, 12:00:17)

(2, 21, 12:00:18)
...

CREATE VIEW tempagg AS
SELECT

sid,
min(tempC) AS mn,
max(tempC) AS mx,
avg(tempC) AS ag

FROM output_of('temps')
GROUP BY sid

tempagg (t=12:00:12)
sid mn mx ag
0 11 19 15.0
1 13 17 15.0
2 14 14 14.0

11 / 1

Stream Queries: Windows

� A window-query is
evaluated over windows

� Each window is treated as a
regular relation

� Results updates whenever
window updates

� Computed incrementally
based on difference

output_of('temps')
...

(0, 11, 12:00:00)

(1, 14, 12:00:02)

(1, 13, 12:00:03)

(2, 14, 12:00:06)

(0, 19, 12:00:07)

(1, 16, 12:00:10)

(1, 17, 12:00:12)

(0, 11, 12:00:15)

(2, 29, 12:00:17)

(2, 21, 12:00:18)
...

CREATE VIEW tempagg
WITH (sw='6 seconds') AS
SELECT

sid,
min(tempC) AS mn,
max(tempC) AS mx,
avg(tempC) AS ag

FROM output_of('temps')
GROUP BY sid

12 / 1

Stream Queries: Windows

� A window-query is
evaluated over windows

� Each window is treated as a
regular relation

� Results updates whenever
window updates

� Computed incrementally
based on difference

output_of('temps')
...

(0, 11, 12:00:00)

(1, 14, 12:00:02)

(1, 13, 12:00:03)

(2, 14, 12:00:06)

(0, 19, 12:00:07)

(1, 16, 12:00:10)

(1, 17, 12:00:12)

(0, 11, 12:00:15)

(2, 29, 12:00:17)

(2, 21, 12:00:18)
...

CREATE VIEW tempagg
WITH (sw='6 seconds') AS
SELECT

sid,
min(tempC) AS mn,
max(tempC) AS mx,
avg(tempC) AS ag

FROM output_of('temps')
GROUP BY sid

12 / 1

Stream Queries: Windows

� A window-query is
evaluated over windows

� Each window is treated as a
regular relation

� Results updates whenever
window updates

� Computed incrementally
based on difference

output_of('temps')
...

(0, 11, 12:00:00)

(1, 14, 12:00:02)

(1, 13, 12:00:03)

(2, 14, 12:00:06)

(0, 19, 12:00:07)

(1, 16, 12:00:10)

(1, 17, 12:00:12)

(0, 11, 12:00:15)

(2, 29, 12:00:17)

(2, 21, 12:00:18)
...

CREATE VIEW tempagg
WITH (sw='6 seconds') AS
SELECT

sid,
min(tempC) AS mn,
max(tempC) AS mx,
avg(tempC) AS ag

FROM output_of('temps')
GROUP BY sid

12 / 1

Stream Queries: Windows

� A window-query is
evaluated over windows

� Each window is treated as a
regular relation

� Results updates whenever
window updates

� Computed incrementally
based on difference

output_of('temps')
...

(0, 11, 12:00:00)

(1, 14, 12:00:02)

(1, 13, 12:00:03)

(2, 14, 12:00:06)

(0, 19, 12:00:07)

(1, 16, 12:00:10)

(1, 17, 12:00:12)

(0, 11, 12:00:15)

(2, 29, 12:00:17)

(2, 21, 12:00:18)
...

CREATE VIEW tempagg
WITH (sw='6 seconds') AS
SELECT

sid,
min(tempC) AS mn,
max(tempC) AS mx,
avg(tempC) AS ag

FROM output_of('temps')
GROUP BY sid

12 / 1

Stream Queries: Windows

� A window-query is
evaluated over windows

� Each window is treated as a
regular relation

� Results updates whenever
window updates

� Computed incrementally
based on difference

output_of('temps')
...

(0, 11, 12:00:00)

(1, 14, 12:00:02)

(1, 13, 12:00:03)

(2, 14, 12:00:06)

(0, 19, 12:00:07)

(1, 16, 12:00:10)

(1, 17, 12:00:12)

(0, 11, 12:00:15)

(2, 29, 12:00:17)

(2, 21, 12:00:18)
...

CREATE VIEW tempagg
WITH (sw='6 seconds') AS
SELECT

sid,
min(tempC) AS mn,
max(tempC) AS mx,
avg(tempC) AS ag

FROM output_of('temps')
GROUP BY sid

12 / 1

Stream Queries: Windows

� A window-query is
evaluated over windows

� Each window is treated as a
regular relation

� Results updates whenever
window updates

� Computed incrementally
based on difference

output_of('temps')
...

(0, 11, 12:00:00)

(1, 14, 12:00:02)

(1, 13, 12:00:03)

(2, 14, 12:00:06)

(0, 19, 12:00:07)

(1, 16, 12:00:10)

(1, 17, 12:00:12)

(0, 11, 12:00:15)

(2, 29, 12:00:17)

(2, 21, 12:00:18)
...

CREATE VIEW tempagg
WITH (sw='6 seconds') AS
SELECT

sid,
min(tempC) AS mn,
max(tempC) AS mx,
avg(tempC) AS ag

FROM output_of('temps')
GROUP BY sid

tempagg (t=12:00:06)
sid mn mx ag
0 11 11 11.0
1 13 14 13.5
2 14 14 14.0

12 / 1

Stream Queries: Windows

� A window-query is
evaluated over windows

� Each window is treated as a
regular relation

� Results updates whenever
window updates

� Computed incrementally
based on difference

output_of('temps')
...

(0, 11, 12:00:00)

(1, 14, 12:00:02)

(1, 13, 12:00:03)

(2, 14, 12:00:06)

(0, 19, 12:00:07)

(1, 16, 12:00:10)

(1, 17, 12:00:12)

(0, 11, 12:00:15)

(2, 29, 12:00:17)

(2, 21, 12:00:18)
...

CREATE VIEW tempagg
WITH (sw='6 seconds') AS
SELECT

sid,
min(tempC) AS mn,
max(tempC) AS mx,
avg(tempC) AS ag

FROM output_of('temps')
GROUP BY sid

tempagg (t=12:00:07)
sid mn mx ag
0 19 19 19.0
1 13 14 13.5
2 14 14 14.0

12 / 1

Stream Queries: Windows

� A window-query is
evaluated over windows

� Each window is treated as a
regular relation

� Results updates whenever
window updates

� Computed incrementally
based on difference

output_of('temps')
...

(0, 11, 12:00:00)

(1, 14, 12:00:02)

(1, 13, 12:00:03)

(2, 14, 12:00:06)

(0, 19, 12:00:07)

(1, 16, 12:00:10)

(1, 17, 12:00:12)

(0, 11, 12:00:15)

(2, 29, 12:00:17)

(2, 21, 12:00:18)
...

CREATE VIEW tempagg
WITH (sw='6 seconds') AS
SELECT

sid,
min(tempC) AS mn,
max(tempC) AS mx,
avg(tempC) AS ag

FROM output_of('temps')
GROUP BY sid

tempagg (t=12:00:08)
sid mn mx ag
0 19 19 19.0
1 13 14 13.5
2 14 14 14.0

12 / 1

Stream Queries: Windows

� A window-query is
evaluated over windows

� Each window is treated as a
regular relation

� Results updates whenever
window updates

� Computed incrementally
based on difference

output_of('temps')
...

(0, 11, 12:00:00)

(1, 14, 12:00:02)

(1, 13, 12:00:03)

(2, 14, 12:00:06)

(0, 19, 12:00:07)

(1, 16, 12:00:10)

(1, 17, 12:00:12)

(0, 11, 12:00:15)

(2, 29, 12:00:17)

(2, 21, 12:00:18)
...

CREATE VIEW tempagg
WITH (sw='6 seconds') AS
SELECT

sid,
min(tempC) AS mn,
max(tempC) AS mx,
avg(tempC) AS ag

FROM output_of('temps')
GROUP BY sid

tempagg (t=12:00:09)
sid mn mx ag
0 19 19 19.0
1 13 14 13.5
2 14 14 14.0

12 / 1

Stream Queries: Windows

� A window-query is
evaluated over windows

� Each window is treated as a
regular relation

� Results updates whenever
window updates

� Computed incrementally
based on difference

output_of('temps')
...

(0, 11, 12:00:00)

(1, 14, 12:00:02)

(1, 13, 12:00:03)

(2, 14, 12:00:06)

(0, 19, 12:00:07)

(1, 16, 12:00:10)

(1, 17, 12:00:12)

(0, 11, 12:00:15)

(2, 29, 12:00:17)

(2, 21, 12:00:18)
...

CREATE VIEW tempagg
WITH (sw='6 seconds') AS
SELECT

sid,
min(tempC) AS mn,
max(tempC) AS mx,
avg(tempC) AS ag

FROM output_of('temps')
GROUP BY sid

tempagg (t=12:00:10)
sid mn mx ag
0 19 19 19.0
1 16 16 16.0
2 14 14 14.0

12 / 1

Stream Queries: Windows

� A window-query is
evaluated over windows

� Each window is treated as a
regular relation

� Results updates whenever
window updates

� Computed incrementally
based on difference

output_of('temps')
...

(0, 11, 12:00:00)

(1, 14, 12:00:02)

(1, 13, 12:00:03)

(2, 14, 12:00:06)

(0, 19, 12:00:07)

(1, 16, 12:00:10)

(1, 17, 12:00:12)

(0, 11, 12:00:15)

(2, 29, 12:00:17)

(2, 21, 12:00:18)
...

CREATE VIEW tempagg
WITH (sw='6 seconds') AS
SELECT

sid,
min(tempC) AS mn,
max(tempC) AS mx,
avg(tempC) AS ag

FROM output_of('temps')
GROUP BY sid

tempagg (t=12:00:11)
sid mn mx ag
0 19 19 19.0
1 16 16 16.0
2 14 14 14.0

12 / 1

Stream Queries: Windows

� A window-query is
evaluated over windows

� Each window is treated as a
regular relation

� Results updates whenever
window updates

� Computed incrementally
based on difference

output_of('temps')
...

(0, 11, 12:00:00)

(1, 14, 12:00:02)

(1, 13, 12:00:03)

(2, 14, 12:00:06)

(0, 19, 12:00:07)

(1, 16, 12:00:10)

(1, 17, 12:00:12)

(0, 11, 12:00:15)

(2, 29, 12:00:17)

(2, 21, 12:00:18)
...

CREATE VIEW tempagg
WITH (sw='6 seconds') AS
SELECT

sid,
min(tempC) AS mn,
max(tempC) AS mx,
avg(tempC) AS ag

FROM output_of('temps')
GROUP BY sid

tempagg (t=12:00:12)
sid mn mx ag
0 19 19 19.0
1 16 17 16.5
2 14 14 14.0

12 / 1

Joins

� Streams and continuous views can be joined

� both with other streams and continuous views
� and with static relations
� But, restrictions apply

13 / 1

Joins

� Streams and continuous views can be joined
� both with other streams and continuous views

� and with static relations
� But, restrictions apply

13 / 1

Joins

� Streams and continuous views can be joined
� both with other streams and continuous views
� and with static relations

� But, restrictions apply

13 / 1

Joins

� Streams and continuous views can be joined
� both with other streams and continuous views
� and with static relations
� But, restrictions apply

13 / 1

Spatial Streams and Views

� Streams or continuous views can either:

� be joined with static spatial data,
� contain spatial data directly,
� or be interpreted as spatial objects

to become a spatial data stream or a continuous view

14 / 1

Spatial Streams and Views

� Streams or continuous views can either:
� be joined with static spatial data,

� contain spatial data directly,
� or be interpreted as spatial objects

to become a spatial data stream or a continuous view

14 / 1

Spatial Streams and Views

� Streams or continuous views can either:
� be joined with static spatial data,
� contain spatial data directly,

� or be interpreted as spatial objects
to become a spatial data stream or a continuous view

14 / 1

Spatial Streams and Views

� Streams or continuous views can either:
� be joined with static spatial data,
� contain spatial data directly,
� or be interpreted as spatial objects

to become a spatial data stream or a continuous view

14 / 1

Spatial Streams and Views

� Streams or continuous views can either:
� be joined with static spatial data,
� contain spatial data directly,
� or be interpreted as spatial objects

to become a spatial data stream or a continuous view

14 / 1

Spatial Queries over Streams

� Spatial streams and continuous views can be queried like any other stream or
view

� Can filter, transform, and derive spatial data with spatial predicates and
functions

� Can use spatial aggregates to form complex spatial objects from simpler
objects

� PipelineDB supports all functions, predicate and aggregates from PostGIS

15 / 1

Spatial Queries over Streams

� Spatial streams and continuous views can be queried like any other stream or
view

� Can filter, transform, and derive spatial data with spatial predicates and
functions

� Can use spatial aggregates to form complex spatial objects from simpler
objects

� PipelineDB supports all functions, predicate and aggregates from PostGIS

15 / 1

Spatial Queries over Streams

� Spatial streams and continuous views can be queried like any other stream or
view

� Can filter, transform, and derive spatial data with spatial predicates and
functions

� Can use spatial aggregates to form complex spatial objects from simpler
objects

� PipelineDB supports all functions, predicate and aggregates from PostGIS

15 / 1

Spatial Queries over Streams

� Spatial streams and continuous views can be queried like any other stream or
view

� Can filter, transform, and derive spatial data with spatial predicates and
functions

� Can use spatial aggregates to form complex spatial objects from simpler
objects

� PipelineDB supports all functions, predicate and aggregates from PostGIS

15 / 1

Use case 1: Storms

� Stream of weather data from sensors

� Each sensor has a (static) location
associated with it

� Join the stream with static table to get
location of wind speeds:
CREATE VIEW wind_loc
WITH (action=transform) AS
SELECT sid, l.location, s.wind
FROM sensors AS s, sensor_loc AS l
WHERE s.sid = l.sid

� Use average over sliding window to get
current picture
CREATE VIEW wind_avg
WITH (sw='1 minute') AS
SELECT l.location AS loc,

avg(s.wind) AS wind
FROM output_of('obs_loc')
GROUP BY sid

sensors(sid, wind, temp, humid, time)
...

(0, 11, 10, 61, 12:00:00)
(1, 4, 12, 82, 12:00:02)
(4, 13, 14, 74, 12:00:03)
(22, 2, 19, 53, 12:00:06)
(8, 19, 21, 60, 12:00:07)
(7, 6, 11, 63, 12:00:10)
(17, 2, 18, 59, 12:00:12)
(9, 11, 11, 71, 12:00:15)
(24, 29, 13, 84, 12:00:17)

...

16 / 1

Use case 1: Storms

� Stream of weather data from sensors
� Each sensor has a (static) location
associated with it

� Join the stream with static table to get
location of wind speeds:
CREATE VIEW wind_loc
WITH (action=transform) AS
SELECT sid, l.location, s.wind
FROM sensors AS s, sensor_loc AS l
WHERE s.sid = l.sid

� Use average over sliding window to get
current picture
CREATE VIEW wind_avg
WITH (sw='1 minute') AS
SELECT l.location AS loc,

avg(s.wind) AS wind
FROM output_of('obs_loc')
GROUP BY sid

sensors(sid, wind, temp, humid, time)
...

(0, 11, 10, 61, 12:00:00)
(1, 4, 12, 82, 12:00:02)
(4, 13, 14, 74, 12:00:03)
(22, 2, 19, 53, 12:00:06)
(8, 19, 21, 60, 12:00:07)
(7, 6, 11, 63, 12:00:10)
(17, 2, 18, 59, 12:00:12)
(9, 11, 11, 71, 12:00:15)
(24, 29, 13, 84, 12:00:17)

...

16 / 1

Use case 1: Storms

� Stream of weather data from sensors
� Each sensor has a (static) location
associated with it

� Join the stream with static table to get
location of wind speeds:
CREATE VIEW wind_loc
WITH (action=transform) AS
SELECT sid, l.location, s.wind
FROM sensors AS s, sensor_loc AS l
WHERE s.sid = l.sid

� Use average over sliding window to get
current picture
CREATE VIEW wind_avg
WITH (sw='1 minute') AS
SELECT l.location AS loc,

avg(s.wind) AS wind
FROM output_of('obs_loc')
GROUP BY sid

.

.

.

.

.

16 / 1

Use case 1: Storms

� Stream of weather data from sensors
� Each sensor has a (static) location
associated with it

� Join the stream with static table to get
location of wind speeds:
CREATE VIEW wind_loc
WITH (action=transform) AS
SELECT sid, l.location, s.wind
FROM sensors AS s, sensor_loc AS l
WHERE s.sid = l.sid

� Use average over sliding window to get
current picture
CREATE VIEW wind_avg
WITH (sw='1 minute') AS
SELECT l.location AS loc,

avg(s.wind) AS wind
FROM output_of('obs_loc')
GROUP BY sid

.

.

.

.

.

16 / 1

Use case 1: Storms

� Stream of weather data from sensors
� Each sensor has a (static) location
associated with it

� Join the stream with static table to get
location of wind speeds:
CREATE VIEW wind_loc
WITH (action=transform) AS
SELECT sid, l.location, s.wind
FROM sensors AS s, sensor_loc AS l
WHERE s.sid = l.sid

� Use average over sliding window to get
current picture
CREATE VIEW wind_avg
WITH (sw='1 minute') AS
SELECT l.location AS loc,

avg(s.wind) AS wind
FROM output_of('obs_loc')
GROUP BY sid

.

.

.

.

.

16 / 1

Use case 1: Storms

� Stream of weather data from sensors
� Each sensor has a (static) location
associated with it

� Join the stream with static table to get
location of wind speeds:
CREATE VIEW wind_loc
WITH (action=transform) AS
SELECT sid, l.location, s.wind
FROM sensors AS s, sensor_loc AS l
WHERE s.sid = l.sid

� Use average over sliding window to get
current picture
CREATE VIEW wind_avg
WITH (sw='1 minute') AS
SELECT l.location AS loc,

avg(s.wind) AS wind
FROM output_of('obs_loc')
GROUP BY sid

wind_avg
location wind
Point(11,59) 11.7
Point(12,60) 4.6
Point(13,59) 13.1
Point(10,61) 2.0
Point(12,59) 19.7
Point(11,61) 6.1
Point(13,60) 2.2
Point(10,58) 11.8
Point(11,60) 29.9
...

...

16 / 1

Use case 1: Detecting storms

� Might now have multiple sensors forming a
storm (wind > 25)

� However, a storm has a spatial extent
� Let the storm equal convex hull of locations
of sensors observing storm

CREATE VIEW storm AS
SELECT loc
FROM wind_avg
WHERE wind > 25

.

.

.

.

.

.25.223.8

.25.3

.
. .

.

27.1

26.9 29.7

25.1

17 / 1

Use case 1: Detecting storms

� Might now have multiple sensors forming a
storm (wind > 25)

� However, a storm has a spatial extent
� Let the storm equal convex hull of locations
of sensors observing storm

CREATE VIEW storm AS
SELECT loc
FROM wind_avg
WHERE wind > 25

.

.

.

.

.

.25.2

23.8

.25.3

.
. .

.

27.1

26.9 29.7

25.1

17 / 1

Use case 1: Detecting storms

� Might now have multiple sensors forming a
storm (wind > 25)

� However, a storm has a spatial extent
� Let the storm equal convex hull of locations
of sensors observing storm

CREATE VIEW storm AS
SELECT loc
FROM wind_avg
WHERE wind > 25

.

.

.

.

.25.2

23.8

.25.3

.
. .

.

27.1

26.9 29.7

25.1

17 / 1

Use case 1: Detecting storms

� Might now have multiple sensors forming a
storm (wind > 25)

� However, a storm has a spatial extent

� Let the storm equal convex hull of locations
of sensors observing storm

CREATE VIEW storm AS
SELECT loc
FROM wind_avg
WHERE wind > 25

.

.

.

.

.25.2

23.8

.25.3

.
. .

.

27.1

26.9 29.7

25.1

17 / 1

Use case 1: Detecting storms

� Might now have multiple sensors forming a
storm (wind > 25)

� However, a storm has a spatial extent
� Let the storm equal convex hull of locations
of sensors observing storm

CREATE VIEW storm AS
SELECT loc
FROM wind_avg
WHERE wind > 25

.

.

.

.

.25.2

23.8

.25.3

.
. .

.

27.1

26.9 29.7

25.1

17 / 1

Use case 1: Detecting storms

� Might now have multiple sensors forming a
storm (wind > 25)

� However, a storm has a spatial extent
� Let the storm equal convex hull of locations
of sensors observing storm

CREATE VIEW storm AS
SELECT loc
FROM wind_avg
WHERE wind > 25

.

.

.

.

.25.2

23.8

.25.3

.
. .

.

27.1

26.9 29.7

25.1

17 / 1

Use case 1: Detecting storms

� Might now have multiple sensors forming a
storm (wind > 25)

� However, a storm has a spatial extent
� Let the storm equal convex hull of locations
of sensors observing storm

CREATE VIEW storm AS
SELECT ST_ConvexHull(loc) AS extent
FROM wind_avg
WHERE wind > 25

.

.

.

.

.25.2

23.8

.25.3

.
. .

.

27.1

26.9 29.7

25.1

17 / 1

Use case 1: Detecting storms

� Might now have multiple sensors forming a
storm (wind > 25)

� However, a storm has a spatial extent
� Let the storm equal convex hull of locations
of sensors observing storm

CREATE VIEW storm AS
SELECT ST_ConvexHull(loc) AS extent
FROM wind_avg
WHERE wind > 25

.

.

.

.

.25.2

23.8

.25.3

.
. .

.

27.1

26.9 29.7

25.1

17 / 1

Use case 1: Detecting storms

� Might now have multiple sensors forming a
storm (wind > 25)

� However, a storm has a spatial extent
� Let the storm equal convex hull of locations
of sensors observing storm

CREATE VIEW storm AS
SELECT ST_ConvexHull(loc) AS extent
FROM wind_avg
WHERE wind > 25

.

.

.

.

.25.223.8

.25.3

.
. .

.

27.1

26.9 29.7

25.1

17 / 1

Use case 1: Complication – Multiple storms

� Can have more than one storm

� Current approach fails
� Use clustering to group close points together

CREATE VIEW storm AS
SELECT ST_ConvexHull(loc) AS extent
FROM wind_avg
WHERE wind > 25

.

.

.

.

.

.25.3

. .

.
25.6 25.9

26.3

.
. .

.

27.1

26.9 29.7

25.1

18 / 1

Use case 1: Complication – Multiple storms

� Can have more than one storm

� Current approach fails
� Use clustering to group close points together

CREATE VIEW storm AS
SELECT ST_ConvexHull(loc) AS extent
FROM wind_avg
WHERE wind > 25

.

.

.

.

.

.25.3
. .
.
25.6 25.9

26.3

.
. .

.

27.1

26.9 29.7

25.1

18 / 1

Use case 1: Complication – Multiple storms

� Can have more than one storm
� Current approach fails

� Use clustering to group close points together

CREATE VIEW storm AS
SELECT ST_ConvexHull(loc) AS extent
FROM wind_avg
WHERE wind > 25

.

.

.

.

.

.25.3
. .
.
25.6 25.9

26.3

.
. .

.

27.1

26.9 29.7

25.1

18 / 1

Use case 1: Complication – Multiple storms

� Can have more than one storm
� Current approach fails
� Use clustering to group close points together

CREATE VIEW storm AS
SELECT ST_ConvexHull(loc) AS extent
FROM wind_avg
WHERE wind > 25

.

.

.

.

.

.25.3
. .
.
25.6 25.9

26.3

.
. .

.

27.1

26.9 29.7

25.1

18 / 1

Use case 1: Complication – Multiple storms

� Can have more than one storm
� Current approach fails
� Use clustering to group close points together

CREATE VIEW storms AS
SELECT ST_ConvexHull(c.cl) AS extent
FROM (
SELECT
unnest(ST_ClusterWithin(loc, 10000)) AS cl

FROM wind_avg
WHERE wind > 25

) AS c
.
.
.
.
.

.25.3
. .
.
25.6 25.9

26.3

.
. .

.

27.1

26.9 29.7

25.1

18 / 1

Use case 1: Complication – Multiple storms

� Can have more than one storm
� Current approach fails
� Use clustering to group close points together

CREATE VIEW storms AS
SELECT ST_ConvexHull(c.cl) AS extent
FROM (
SELECT
unnest(ST_ClusterWithin(loc, 10000)) AS cl

FROM wind_avg
WHERE wind > 25

) AS c
.
.
.
.
.

.25.3
. .
.
25.6 25.9

26.3

.
. .

.

27.1

26.9 29.7

25.1

18 / 1

Use case 1: Creating a storm warning system

� Can now use the storms as spatial objects
without thinking of sensors

� For example, make a storm warning system
� Given a table sensitive(name, extent) of
storm sensitive objects

� Want to give warning if storm distance
< 20000

CREATE VIEW warnings AS
SELECT

sen.name,
min(ST_Distance(sen.extent, sto.extent)) AS dist

FROM storms AS sto, sensitive AS sen
GROUP BY sen.name
HAVING dist < 20000

.

.

.

.

.

.25.3
. .
.
25.6 25.9

26.3

.
. .

.

27.1

26.9 29.7

25.1

dist=23000

dist=15000

19 / 1

Use case 1: Creating a storm warning system

� Can now use the storms as spatial objects
without thinking of sensors

� For example, make a storm warning system
� Given a table sensitive(name, extent) of
storm sensitive objects

� Want to give warning if storm distance
< 20000

CREATE VIEW warnings AS
SELECT

sen.name,
min(ST_Distance(sen.extent, sto.extent)) AS dist

FROM storms AS sto, sensitive AS sen
GROUP BY sen.name
HAVING dist < 20000

.

.

.

.

.

.25.3
. .
.
25.6 25.9

26.3

.
. .

.

27.1

26.9 29.7

25.1

dist=23000

dist=15000

19 / 1

Use case 1: Creating a storm warning system

� Can now use the storms as spatial objects
without thinking of sensors

� For example, make a storm warning system

� Given a table sensitive(name, extent) of
storm sensitive objects

� Want to give warning if storm distance
< 20000

CREATE VIEW warnings AS
SELECT

sen.name,
min(ST_Distance(sen.extent, sto.extent)) AS dist

FROM storms AS sto, sensitive AS sen
GROUP BY sen.name
HAVING dist < 20000

.

.

.

.

.

.25.3
. .
.
25.6 25.9

26.3

.
. .

.

27.1

26.9 29.7

25.1

dist=23000

dist=15000

19 / 1

Use case 1: Creating a storm warning system

� Can now use the storms as spatial objects
without thinking of sensors

� For example, make a storm warning system
� Given a table sensitive(name, extent) of
storm sensitive objects

� Want to give warning if storm distance
< 20000

CREATE VIEW warnings AS
SELECT

sen.name,
min(ST_Distance(sen.extent, sto.extent)) AS dist

FROM storms AS sto, sensitive AS sen
GROUP BY sen.name
HAVING dist < 20000

.

.

.

.

.

.25.3
. .
.
25.6 25.9

26.3

.
. .

.

27.1

26.9 29.7

25.1

dist=23000

dist=15000

19 / 1

Use case 1: Creating a storm warning system

� Can now use the storms as spatial objects
without thinking of sensors

� For example, make a storm warning system
� Given a table sensitive(name, extent) of
storm sensitive objects

� Want to give warning if storm distance
< 20000

CREATE VIEW warnings AS
SELECT

sen.name,
min(ST_Distance(sen.extent, sto.extent)) AS dist

FROM storms AS sto, sensitive AS sen
GROUP BY sen.name
HAVING dist < 20000

.

.

.

.

.

.25.3
. .
.
25.6 25.9

26.3

.
. .

.

27.1

26.9 29.7

25.1

dist=23000

dist=15000

19 / 1

Use case 1: Creating a storm warning system

� Can now use the storms as spatial objects
without thinking of sensors

� For example, make a storm warning system
� Given a table sensitive(name, extent) of
storm sensitive objects

� Want to give warning if storm distance
< 20000

CREATE VIEW warnings AS
SELECT

sen.name,
min(ST_Distance(sen.extent, sto.extent)) AS dist

FROM storms AS sto, sensitive AS sen
GROUP BY sen.name
HAVING dist < 20000

.

.

.

.

.

.25.3
. .
.
25.6 25.9

26.3

.
. .

.

27.1

26.9 29.7

25.1

dist=23000

dist=15000

19 / 1

Use case 1: Creating a storm warning system

� Can now use the storms as spatial objects
without thinking of sensors

� For example, make a storm warning system
� Given a table sensitive(name, extent) of
storm sensitive objects

� Want to give warning if storm distance
< 20000

CREATE VIEW warnings AS
SELECT

sen.name,
min(ST_Distance(sen.extent, sto.extent)) AS dist

FROM storms AS sto, sensitive AS sen
GROUP BY sen.name
HAVING dist < 20000

.

.

.

.

.

.25.3
. .
.
25.6 25.9

26.3

.
. .

.

27.1

26.9 29.7

25.1

dist=23000

dist=15000

19 / 1

Use case 1: Creating a storm warning system

� Can now use the storms as spatial objects
without thinking of sensors

� For example, make a storm warning system
� Given a table sensitive(name, extent) of
storm sensitive objects

� Want to give warning if storm distance
< 20000

CREATE VIEW warnings AS
SELECT

sen.name,
min(ST_Distance(sen.extent, sto.extent)) AS dist

FROM storms AS sto, sensitive AS sen
GROUP BY sen.name
HAVING dist < 20000

.

.

.

.

.

.25.3
. .
.
25.6 25.9

26.3

.
. .

.

27.1

26.9 29.7

25.1

dist=23000

dist=15000

19 / 1

Use case 1: Pipeline
CREATE VIEW wind_loc
WITH (action=transform) AS
SELECT sid, l.location, s.wind
FROM sensors AS s, sensor_loc AS l
WHERE s.sid = l.sid

CREATE VIEW wind_avg
WITH (sw='1 minute') AS
SELECT l.location AS loc,

avg(s.wind) AS wind
FROM output_of('obs_loc')
GROUP BY sid

CREATE VIEW storms AS
SELECT ST_ConvexHull(c.cl) AS extent
FROM (
SELECT
unnest(ST_ClusterWithin(loc, 10000)) AS cl

FROM wind_avg
WHERE wind > 25

) AS c

CREATE VIEW warnings AS
SELECT

sen.name,
min(ST_Distance(sen.extent, sto.extent)) AS dist

FROM storms AS sto, sensitive AS sen
GROUP BY sen.name
HAVING dist < 20000

Static
data

20 / 1

Use case 2: Traffic

� Stream of vehicle locations based on GPS,
as strings

� Use query to parse location to spatial entities
� Could here also remove noise and other
preprocessing steps

CREATE VIEW vlocations
WITH (action=transform) AS
SELECT

CAST(raw[0] AS integer) AS vid,
CAST(raw[1] AS datetime) AS gps_time,
ST_MakePoint(CAST(raw[2] AS double),

CAST(raw[3] AS double)) AS loc
FROM (SELECT regexp_split_to_array(data, ' ')

FROM gps_stream) AS t(raw)

.
.
.
.

.....
.
.
.

..

21 / 1

Use case 2: Traffic

� Stream of vehicle locations based on GPS,
as strings

� Use query to parse location to spatial entities
� Could here also remove noise and other
preprocessing steps

CREATE VIEW vlocations
WITH (action=transform) AS
SELECT

CAST(raw[0] AS integer) AS vid,
CAST(raw[1] AS datetime) AS gps_time,
ST_MakePoint(CAST(raw[2] AS double),

CAST(raw[3] AS double)) AS loc
FROM (SELECT regexp_split_to_array(data, ' ')

FROM gps_stream) AS t(raw)

gps_stream
...

''0 12:00:00 11 59''

''1 12:00:02 12 58''

''2 12:00:06 14 60''

''1 12:00:03 13 57''

''0 12:00:07 11 59''

''1 12:00:10 12 58''

''0 12:00:15 11 59''

''1 12:00:12 13 61''

''2 12:00:17 14 62''

''2 12:00:18 11 61''
...

21 / 1

Use case 2: Traffic

� Stream of vehicle locations based on GPS,
as strings

� Use query to parse location to spatial entities

� Could here also remove noise and other
preprocessing steps

CREATE VIEW vlocations
WITH (action=transform) AS
SELECT

CAST(raw[0] AS integer) AS vid,
CAST(raw[1] AS datetime) AS gps_time,
ST_MakePoint(CAST(raw[2] AS double),

CAST(raw[3] AS double)) AS loc
FROM (SELECT regexp_split_to_array(data, ' ')

FROM gps_stream) AS t(raw)

gps_stream
...

''0 12:00:00 11 59''

''1 12:00:02 12 58''

''2 12:00:06 14 60''

''1 12:00:03 13 57''

''0 12:00:07 11 59''

''1 12:00:10 12 58''

''0 12:00:15 11 59''

''1 12:00:12 13 61''

''2 12:00:17 14 62''

''2 12:00:18 11 61''
...

21 / 1

Use case 2: Traffic

� Stream of vehicle locations based on GPS,
as strings

� Use query to parse location to spatial entities

� Could here also remove noise and other
preprocessing steps

CREATE VIEW vlocations
WITH (action=transform) AS
SELECT

CAST(raw[0] AS integer) AS vid,
CAST(raw[1] AS datetime) AS gps_time,
ST_MakePoint(CAST(raw[2] AS double),

CAST(raw[3] AS double)) AS loc
FROM (SELECT regexp_split_to_array(data, ' ')

FROM gps_stream) AS t(raw)

gps_stream
...

''0 12:00:00 11 59''

''1 12:00:02 12 58''

''2 12:00:06 14 60''

''1 12:00:03 13 57''

''0 12:00:07 11 59''

''1 12:00:10 12 58''

''0 12:00:15 11 59''

''1 12:00:12 13 61''

''2 12:00:17 14 62''

''2 12:00:18 11 61''
...

21 / 1

Use case 2: Traffic

� Stream of vehicle locations based on GPS,
as strings

� Use query to parse location to spatial entities

� Could here also remove noise and other
preprocessing steps

CREATE VIEW vlocations
WITH (action=transform) AS
SELECT

CAST(raw[0] AS integer) AS vid,
CAST(raw[1] AS datetime) AS gps_time,
ST_MakePoint(CAST(raw[2] AS double),

CAST(raw[3] AS double)) AS loc
FROM (SELECT regexp_split_to_array(data, ' ')

FROM gps_stream) AS t(raw)

vlocations
...

(0, 12:00:00, Point(11, 59))

(1, 12:00:02, Point(12, 58))

(2, 12:00:06, Point(14, 60))

(1, 12:00:03, Point(13, 57))

(0, 12:00:07, Point(11, 59))

(1, 12:00:10, Point(12, 58))

(0, 12:00:15, Point(11, 59))

(1, 12:00:12, Point(13, 61))

(2, 12:00:17, Point(14, 62))

(2, 12:00:18, Point(11, 61))
...

21 / 1

Use case 2: Traffic

� Stream of vehicle locations based on GPS,
as strings

� Use query to parse location to spatial entities
� Could here also remove noise and other
preprocessing steps

CREATE VIEW vlocations
WITH (action=transform) AS
SELECT

CAST(raw[0] AS integer) AS vid,
CAST(raw[1] AS datetime) AS gps_time,
ST_MakePoint(CAST(raw[2] AS double),

CAST(raw[3] AS double)) AS loc
FROM (SELECT regexp_split_to_array(data, ' ')

FROM gps_stream) AS t(raw)

vlocations
...

(0, 12:00:00, Point(11, 59))

(1, 12:00:02, Point(12, 58))

(2, 12:00:06, Point(14, 60))

(1, 12:00:03, Point(13, 57))

(0, 12:00:07, Point(11, 59))

(1, 12:00:10, Point(12, 58))

(0, 12:00:15, Point(11, 59))

(1, 12:00:12, Point(13, 61))

(2, 12:00:17, Point(14, 62))

(2, 12:00:18, Point(11, 61))
...

21 / 1

Use case 2: Traffic analysis

CREATE VIEW paths WITH (sw='1 minute') AS
SELECT vid,

ST_MakeLine(loc ORDER BY gps_time) AS path,
min(gps_time) AS start,
max(gps_time) AS end,

FROM output_of('vlocations')
GROUP BY vid

CREATE VIEW paths WITH (sw='1 minute') AS
SELECT vid,

ST_MakeLine(loc ORDER BY gps_time) AS path,
min(gps_time) AS start,
max(gps_time) AS end

FROM vlocations
GROUP BY vid

CREATE VIEW jams AS
SELECT unnest(ST_ClusterIntersect(path))
FROM paths
WHERE ST_Length(path) /

seconds(end - start) < 2

CREATE VIEW jams AS
SELECT unnest(ST_ClusterIntersect(path))
FROM paths
WHERE ST_Length(path) /

seconds(end - start) < 2

CREATE VIEW speedings AS
SELECT p.vid, s.speed
FROM paths AS p, speedlimits AS s
WHERE ST_contains(s.extent, p.path) AND

ST_Length(p.path) /
seconds(p.end - p.start) > s.speed

CREATE VIEW speedings AS
SELECT p.vid, s.speed
FROM paths AS p, speedlimits AS s
WHERE ST_contains(s.extent, p.path) AND

ST_Length(p.path) /
seconds(p.end - p.start) > s.speed

CREATE VIEW tolls AS
SELECT p.vid,

t.cost * count(p.vid) AS due
FROM paths AS p, tolls AS t
WHERE ST_contains(p.path, t.loc)
GROUP BY p.vid, t.cost

CREATE VIEW tolls AS
SELECT p.vid,

t.cost * count(p.vid) AS due
FROM paths AS p, tolls AS t
WHERE ST_contains(p.path, t.loc)
GROUP BY p.vid, t.cost

vid speed
2 60
5 80

vid due
3 6
7 4
9 10

22 / 1

Use case 2: Traffic analysis

CREATE VIEW paths WITH (sw='1 minute') AS
SELECT vid,

ST_MakeLine(loc ORDER BY gps_time) AS path,
min(gps_time) AS start,
max(gps_time) AS end,

FROM output_of('vlocations')
GROUP BY vid

CREATE VIEW paths WITH (sw='1 minute') AS
SELECT vid,

ST_MakeLine(loc ORDER BY gps_time) AS path,
min(gps_time) AS start,
max(gps_time) AS end

FROM vlocations
GROUP BY vid

CREATE VIEW jams AS
SELECT unnest(ST_ClusterIntersect(path))
FROM paths
WHERE ST_Length(path) /

seconds(end - start) < 2

CREATE VIEW jams AS
SELECT unnest(ST_ClusterIntersect(path))
FROM paths
WHERE ST_Length(path) /

seconds(end - start) < 2

CREATE VIEW speedings AS
SELECT p.vid, s.speed
FROM paths AS p, speedlimits AS s
WHERE ST_contains(s.extent, p.path) AND

ST_Length(p.path) /
seconds(p.end - p.start) > s.speed

CREATE VIEW speedings AS
SELECT p.vid, s.speed
FROM paths AS p, speedlimits AS s
WHERE ST_contains(s.extent, p.path) AND

ST_Length(p.path) /
seconds(p.end - p.start) > s.speed

CREATE VIEW tolls AS
SELECT p.vid,

t.cost * count(p.vid) AS due
FROM paths AS p, tolls AS t
WHERE ST_contains(p.path, t.loc)
GROUP BY p.vid, t.cost

CREATE VIEW tolls AS
SELECT p.vid,

t.cost * count(p.vid) AS due
FROM paths AS p, tolls AS t
WHERE ST_contains(p.path, t.loc)
GROUP BY p.vid, t.cost

vid speed
2 60
5 80

vid due
3 6
7 4
9 10

22 / 1

Use case 2: Traffic analysis

CREATE VIEW paths WITH (sw='1 minute') AS
SELECT vid,

ST_MakeLine(loc ORDER BY gps_time) AS path,
min(gps_time) AS start,
max(gps_time) AS end,

FROM output_of('vlocations')
GROUP BY vid

CREATE VIEW paths WITH (sw='1 minute') AS
SELECT vid,

ST_MakeLine(loc ORDER BY gps_time) AS path,
min(gps_time) AS start,
max(gps_time) AS end

FROM vlocations
GROUP BY vid

CREATE VIEW jams AS
SELECT unnest(ST_ClusterIntersect(path))
FROM paths
WHERE ST_Length(path) /

seconds(end - start) < 2

CREATE VIEW jams AS
SELECT unnest(ST_ClusterIntersect(path))
FROM paths
WHERE ST_Length(path) /

seconds(end - start) < 2

CREATE VIEW speedings AS
SELECT p.vid, s.speed
FROM paths AS p, speedlimits AS s
WHERE ST_contains(s.extent, p.path) AND

ST_Length(p.path) /
seconds(p.end - p.start) > s.speed

CREATE VIEW speedings AS
SELECT p.vid, s.speed
FROM paths AS p, speedlimits AS s
WHERE ST_contains(s.extent, p.path) AND

ST_Length(p.path) /
seconds(p.end - p.start) > s.speed

CREATE VIEW tolls AS
SELECT p.vid,

t.cost * count(p.vid) AS due
FROM paths AS p, tolls AS t
WHERE ST_contains(p.path, t.loc)
GROUP BY p.vid, t.cost

CREATE VIEW tolls AS
SELECT p.vid,

t.cost * count(p.vid) AS due
FROM paths AS p, tolls AS t
WHERE ST_contains(p.path, t.loc)
GROUP BY p.vid, t.cost

vid speed
2 60
5 80

vid due
3 6
7 4
9 10

22 / 1

Use case 2: Traffic analysis

CREATE VIEW paths WITH (sw='1 minute') AS
SELECT vid,

ST_MakeLine(loc ORDER BY gps_time) AS path,
min(gps_time) AS start,
max(gps_time) AS end,

FROM output_of('vlocations')
GROUP BY vid

CREATE VIEW paths WITH (sw='1 minute') AS
SELECT vid,

ST_MakeLine(loc ORDER BY gps_time) AS path,
min(gps_time) AS start,
max(gps_time) AS end

FROM vlocations
GROUP BY vid

CREATE VIEW jams AS
SELECT unnest(ST_ClusterIntersect(path))
FROM paths
WHERE ST_Length(path) /

seconds(end - start) < 2

CREATE VIEW jams AS
SELECT unnest(ST_ClusterIntersect(path))
FROM paths
WHERE ST_Length(path) /

seconds(end - start) < 2

CREATE VIEW speedings AS
SELECT p.vid, s.speed
FROM paths AS p, speedlimits AS s
WHERE ST_contains(s.extent, p.path) AND

ST_Length(p.path) /
seconds(p.end - p.start) > s.speed

CREATE VIEW speedings AS
SELECT p.vid, s.speed
FROM paths AS p, speedlimits AS s
WHERE ST_contains(s.extent, p.path) AND

ST_Length(p.path) /
seconds(p.end - p.start) > s.speed

CREATE VIEW tolls AS
SELECT p.vid,

t.cost * count(p.vid) AS due
FROM paths AS p, tolls AS t
WHERE ST_contains(p.path, t.loc)
GROUP BY p.vid, t.cost

CREATE VIEW tolls AS
SELECT p.vid,

t.cost * count(p.vid) AS due
FROM paths AS p, tolls AS t
WHERE ST_contains(p.path, t.loc)
GROUP BY p.vid, t.cost

vid speed
2 60
5 80

vid due
3 6
7 4
9 10

22 / 1

Use case 2: Traffic analysis

CREATE VIEW paths WITH (sw='1 minute') AS
SELECT vid,

ST_MakeLine(loc ORDER BY gps_time) AS path,
min(gps_time) AS start,
max(gps_time) AS end,

FROM output_of('vlocations')
GROUP BY vid

CREATE VIEW paths WITH (sw='1 minute') AS
SELECT vid,

ST_MakeLine(loc ORDER BY gps_time) AS path,
min(gps_time) AS start,
max(gps_time) AS end

FROM vlocations
GROUP BY vid

CREATE VIEW jams AS
SELECT unnest(ST_ClusterIntersect(path))
FROM paths
WHERE ST_Length(path) /

seconds(end - start) < 2

CREATE VIEW jams AS
SELECT unnest(ST_ClusterIntersect(path))
FROM paths
WHERE ST_Length(path) /

seconds(end - start) < 2

CREATE VIEW speedings AS
SELECT p.vid, s.speed
FROM paths AS p, speedlimits AS s
WHERE ST_contains(s.extent, p.path) AND

ST_Length(p.path) /
seconds(p.end - p.start) > s.speed

CREATE VIEW speedings AS
SELECT p.vid, s.speed
FROM paths AS p, speedlimits AS s
WHERE ST_contains(s.extent, p.path) AND

ST_Length(p.path) /
seconds(p.end - p.start) > s.speed

CREATE VIEW tolls AS
SELECT p.vid,

t.cost * count(p.vid) AS due
FROM paths AS p, tolls AS t
WHERE ST_contains(p.path, t.loc)
GROUP BY p.vid, t.cost

CREATE VIEW tolls AS
SELECT p.vid,

t.cost * count(p.vid) AS due
FROM paths AS p, tolls AS t
WHERE ST_contains(p.path, t.loc)
GROUP BY p.vid, t.cost

vid speed
2 60
5 80

vid due
3 6
7 4
9 10

22 / 1

Use case 2: Traffic analysis

CREATE VIEW paths WITH (sw='1 minute') AS
SELECT vid,

ST_MakeLine(loc ORDER BY gps_time) AS path,
min(gps_time) AS start,
max(gps_time) AS end,

FROM output_of('vlocations')
GROUP BY vid

CREATE VIEW paths WITH (sw='1 minute') AS
SELECT vid,

ST_MakeLine(loc ORDER BY gps_time) AS path,
min(gps_time) AS start,
max(gps_time) AS end

FROM vlocations
GROUP BY vid

CREATE VIEW jams AS
SELECT unnest(ST_ClusterIntersect(path))
FROM paths
WHERE ST_Length(path) /

seconds(end - start) < 2

CREATE VIEW jams AS
SELECT unnest(ST_ClusterIntersect(path))
FROM paths
WHERE ST_Length(path) /

seconds(end - start) < 2

CREATE VIEW speedings AS
SELECT p.vid, s.speed
FROM paths AS p, speedlimits AS s
WHERE ST_contains(s.extent, p.path) AND

ST_Length(p.path) /
seconds(p.end - p.start) > s.speed

CREATE VIEW speedings AS
SELECT p.vid, s.speed
FROM paths AS p, speedlimits AS s
WHERE ST_contains(s.extent, p.path) AND

ST_Length(p.path) /
seconds(p.end - p.start) > s.speed

CREATE VIEW tolls AS
SELECT p.vid,

t.cost * count(p.vid) AS due
FROM paths AS p, tolls AS t
WHERE ST_contains(p.path, t.loc)
GROUP BY p.vid, t.cost

CREATE VIEW tolls AS
SELECT p.vid,

t.cost * count(p.vid) AS due
FROM paths AS p, tolls AS t
WHERE ST_contains(p.path, t.loc)
GROUP BY p.vid, t.cost

vid speed
2 60
5 80

vid due
3 6
7 4
9 10

22 / 1

Use case 2: Traffic analysis

CREATE VIEW paths WITH (sw='1 minute') AS
SELECT vid,

ST_MakeLine(loc ORDER BY gps_time) AS path,
min(gps_time) AS start,
max(gps_time) AS end,

FROM output_of('vlocations')
GROUP BY vid

CREATE VIEW paths WITH (sw='1 minute') AS
SELECT vid,

ST_MakeLine(loc ORDER BY gps_time) AS path,
min(gps_time) AS start,
max(gps_time) AS end

FROM vlocations
GROUP BY vid

CREATE VIEW jams AS
SELECT unnest(ST_ClusterIntersect(path))
FROM paths
WHERE ST_Length(path) /

seconds(end - start) < 2

CREATE VIEW jams AS
SELECT unnest(ST_ClusterIntersect(path))
FROM paths
WHERE ST_Length(path) /

seconds(end - start) < 2

CREATE VIEW speedings AS
SELECT p.vid, s.speed
FROM paths AS p, speedlimits AS s
WHERE ST_contains(s.extent, p.path) AND

ST_Length(p.path) /
seconds(p.end - p.start) > s.speed

CREATE VIEW speedings AS
SELECT p.vid, s.speed
FROM paths AS p, speedlimits AS s
WHERE ST_contains(s.extent, p.path) AND

ST_Length(p.path) /
seconds(p.end - p.start) > s.speed

CREATE VIEW tolls AS
SELECT p.vid,

t.cost * count(p.vid) AS due
FROM paths AS p, tolls AS t
WHERE ST_contains(p.path, t.loc)
GROUP BY p.vid, t.cost

CREATE VIEW tolls AS
SELECT p.vid,

t.cost * count(p.vid) AS due
FROM paths AS p, tolls AS t
WHERE ST_contains(p.path, t.loc)
GROUP BY p.vid, t.cost

vid speed
2 60
5 80

vid due
3 6
7 4
9 10

22 / 1

Use case 2: Traffic analysis

CREATE VIEW paths WITH (sw='1 minute') AS
SELECT vid,

ST_MakeLine(loc ORDER BY gps_time) AS path,
min(gps_time) AS start,
max(gps_time) AS end,

FROM output_of('vlocations')
GROUP BY vid

CREATE VIEW paths WITH (sw='1 minute') AS
SELECT vid,

ST_MakeLine(loc ORDER BY gps_time) AS path,
min(gps_time) AS start,
max(gps_time) AS end

FROM vlocations
GROUP BY vid

CREATE VIEW jams AS
SELECT unnest(ST_ClusterIntersect(path))
FROM paths
WHERE ST_Length(path) /

seconds(end - start) < 2

CREATE VIEW jams AS
SELECT unnest(ST_ClusterIntersect(path))
FROM paths
WHERE ST_Length(path) /

seconds(end - start) < 2

CREATE VIEW speedings AS
SELECT p.vid, s.speed
FROM paths AS p, speedlimits AS s
WHERE ST_contains(s.extent, p.path) AND

ST_Length(p.path) /
seconds(p.end - p.start) > s.speed

CREATE VIEW speedings AS
SELECT p.vid, s.speed
FROM paths AS p, speedlimits AS s
WHERE ST_contains(s.extent, p.path) AND

ST_Length(p.path) /
seconds(p.end - p.start) > s.speed

CREATE VIEW tolls AS
SELECT p.vid,

t.cost * count(p.vid) AS due
FROM paths AS p, tolls AS t
WHERE ST_contains(p.path, t.loc)
GROUP BY p.vid, t.cost

CREATE VIEW tolls AS
SELECT p.vid,

t.cost * count(p.vid) AS due
FROM paths AS p, tolls AS t
WHERE ST_contains(p.path, t.loc)
GROUP BY p.vid, t.cost

vid speed
2 60
5 80

vid due
3 6
7 4
9 10

22 / 1

Use case 2: Traffic analysis

CREATE VIEW paths WITH (sw='1 minute') AS
SELECT vid,

ST_MakeLine(loc ORDER BY gps_time) AS path,
min(gps_time) AS start,
max(gps_time) AS end,

FROM output_of('vlocations')
GROUP BY vid

CREATE VIEW paths WITH (sw='1 minute') AS
SELECT vid,

ST_MakeLine(loc ORDER BY gps_time) AS path,
min(gps_time) AS start,
max(gps_time) AS end

FROM vlocations
GROUP BY vid

CREATE VIEW jams AS
SELECT unnest(ST_ClusterIntersect(path))
FROM paths
WHERE ST_Length(path) /

seconds(end - start) < 2

CREATE VIEW jams AS
SELECT unnest(ST_ClusterIntersect(path))
FROM paths
WHERE ST_Length(path) /

seconds(end - start) < 2

CREATE VIEW speedings AS
SELECT p.vid, s.speed
FROM paths AS p, speedlimits AS s
WHERE ST_contains(s.extent, p.path) AND

ST_Length(p.path) /
seconds(p.end - p.start) > s.speed

CREATE VIEW speedings AS
SELECT p.vid, s.speed
FROM paths AS p, speedlimits AS s
WHERE ST_contains(s.extent, p.path) AND

ST_Length(p.path) /
seconds(p.end - p.start) > s.speed

CREATE VIEW tolls AS
SELECT p.vid,

t.cost * count(p.vid) AS due
FROM paths AS p, tolls AS t
WHERE ST_contains(p.path, t.loc)
GROUP BY p.vid, t.cost

CREATE VIEW tolls AS
SELECT p.vid,

t.cost * count(p.vid) AS due
FROM paths AS p, tolls AS t
WHERE ST_contains(p.path, t.loc)
GROUP BY p.vid, t.cost

vid speed
2 60
5 80

vid due
3 6
7 4
9 10

22 / 1

Use case 2: Traffic analysis

CREATE VIEW paths WITH (sw='1 minute') AS
SELECT vid,

ST_MakeLine(loc ORDER BY gps_time) AS path,
min(gps_time) AS start,
max(gps_time) AS end,

FROM output_of('vlocations')
GROUP BY vid

CREATE VIEW paths WITH (sw='1 minute') AS
SELECT vid,

ST_MakeLine(loc ORDER BY gps_time) AS path,
min(gps_time) AS start,
max(gps_time) AS end

FROM vlocations
GROUP BY vid

CREATE VIEW jams AS
SELECT unnest(ST_ClusterIntersect(path))
FROM paths
WHERE ST_Length(path) /

seconds(end - start) < 2

CREATE VIEW jams AS
SELECT unnest(ST_ClusterIntersect(path))
FROM paths
WHERE ST_Length(path) /

seconds(end - start) < 2

CREATE VIEW speedings AS
SELECT p.vid, s.speed
FROM paths AS p, speedlimits AS s
WHERE ST_contains(s.extent, p.path) AND

ST_Length(p.path) /
seconds(p.end - p.start) > s.speed

CREATE VIEW speedings AS
SELECT p.vid, s.speed
FROM paths AS p, speedlimits AS s
WHERE ST_contains(s.extent, p.path) AND

ST_Length(p.path) /
seconds(p.end - p.start) > s.speed

CREATE VIEW tolls AS
SELECT p.vid,

t.cost * count(p.vid) AS due
FROM paths AS p, tolls AS t
WHERE ST_contains(p.path, t.loc)
GROUP BY p.vid, t.cost

CREATE VIEW tolls AS
SELECT p.vid,

t.cost * count(p.vid) AS due
FROM paths AS p, tolls AS t
WHERE ST_contains(p.path, t.loc)
GROUP BY p.vid, t.cost

vid speed
2 60
5 80

vid due
3 6
7 4
9 10

22 / 1

Use case 2: Traffic analysis

CREATE VIEW paths WITH (sw='1 minute') AS
SELECT vid,

ST_MakeLine(loc ORDER BY gps_time) AS path,
min(gps_time) AS start,
max(gps_time) AS end,

FROM output_of('vlocations')
GROUP BY vid

CREATE VIEW paths WITH (sw='1 minute') AS
SELECT vid,

ST_MakeLine(loc ORDER BY gps_time) AS path,
min(gps_time) AS start,
max(gps_time) AS end

FROM vlocations
GROUP BY vid

CREATE VIEW jams AS
SELECT unnest(ST_ClusterIntersect(path))
FROM paths
WHERE ST_Length(path) /

seconds(end - start) < 2

CREATE VIEW jams AS
SELECT unnest(ST_ClusterIntersect(path))
FROM paths
WHERE ST_Length(path) /

seconds(end - start) < 2

CREATE VIEW speedings AS
SELECT p.vid, s.speed
FROM paths AS p, speedlimits AS s
WHERE ST_contains(s.extent, p.path) AND

ST_Length(p.path) /
seconds(p.end - p.start) > s.speed

CREATE VIEW speedings AS
SELECT p.vid, s.speed
FROM paths AS p, speedlimits AS s
WHERE ST_contains(s.extent, p.path) AND

ST_Length(p.path) /
seconds(p.end - p.start) > s.speed

CREATE VIEW tolls AS
SELECT p.vid,

t.cost * count(p.vid) AS due
FROM paths AS p, tolls AS t
WHERE ST_contains(p.path, t.loc)
GROUP BY p.vid, t.cost

CREATE VIEW tolls AS
SELECT p.vid,

t.cost * count(p.vid) AS due
FROM paths AS p, tolls AS t
WHERE ST_contains(p.path, t.loc)
GROUP BY p.vid, t.cost

vid speed
2 60
5 80

vid due
3 6
7 4
9 10

22 / 1

Use case 2: Traffic analysis

CREATE VIEW paths WITH (sw='1 minute') AS
SELECT vid,

ST_MakeLine(loc ORDER BY gps_time) AS path,
min(gps_time) AS start,
max(gps_time) AS end,

FROM output_of('vlocations')
GROUP BY vid

CREATE VIEW paths WITH (sw='1 minute') AS
SELECT vid,

ST_MakeLine(loc ORDER BY gps_time) AS path,
min(gps_time) AS start,
max(gps_time) AS end

FROM vlocations
GROUP BY vid

CREATE VIEW jams AS
SELECT unnest(ST_ClusterIntersect(path))
FROM paths
WHERE ST_Length(path) /

seconds(end - start) < 2

CREATE VIEW jams AS
SELECT unnest(ST_ClusterIntersect(path))
FROM paths
WHERE ST_Length(path) /

seconds(end - start) < 2

CREATE VIEW speedings AS
SELECT p.vid, s.speed
FROM paths AS p, speedlimits AS s
WHERE ST_contains(s.extent, p.path) AND

ST_Length(p.path) /
seconds(p.end - p.start) > s.speed

CREATE VIEW speedings AS
SELECT p.vid, s.speed
FROM paths AS p, speedlimits AS s
WHERE ST_contains(s.extent, p.path) AND

ST_Length(p.path) /
seconds(p.end - p.start) > s.speed

CREATE VIEW tolls AS
SELECT p.vid,

t.cost * count(p.vid) AS due
FROM paths AS p, tolls AS t
WHERE ST_contains(p.path, t.loc)
GROUP BY p.vid, t.cost

CREATE VIEW tolls AS
SELECT p.vid,

t.cost * count(p.vid) AS due
FROM paths AS p, tolls AS t
WHERE ST_contains(p.path, t.loc)
GROUP BY p.vid, t.cost

vid speed
2 60
5 80

vid due
3 6
7 4
9 10

22 / 1

Use case 2: Traffic analysis

CREATE VIEW paths WITH (sw='1 minute') AS
SELECT vid,

ST_MakeLine(loc ORDER BY gps_time) AS path,
min(gps_time) AS start,
max(gps_time) AS end,

FROM output_of('vlocations')
GROUP BY vid

CREATE VIEW paths WITH (sw='1 minute') AS
SELECT vid,

ST_MakeLine(loc ORDER BY gps_time) AS path,
min(gps_time) AS start,
max(gps_time) AS end

FROM vlocations
GROUP BY vid

CREATE VIEW jams AS
SELECT unnest(ST_ClusterIntersect(path))
FROM paths
WHERE ST_Length(path) /

seconds(end - start) < 2

CREATE VIEW jams AS
SELECT unnest(ST_ClusterIntersect(path))
FROM paths
WHERE ST_Length(path) /

seconds(end - start) < 2

CREATE VIEW speedings AS
SELECT p.vid, s.speed
FROM paths AS p, speedlimits AS s
WHERE ST_contains(s.extent, p.path) AND

ST_Length(p.path) /
seconds(p.end - p.start) > s.speed

CREATE VIEW speedings AS
SELECT p.vid, s.speed
FROM paths AS p, speedlimits AS s
WHERE ST_contains(s.extent, p.path) AND

ST_Length(p.path) /
seconds(p.end - p.start) > s.speed

CREATE VIEW tolls AS
SELECT p.vid,

t.cost * count(p.vid) AS due
FROM paths AS p, tolls AS t
WHERE ST_contains(p.path, t.loc)
GROUP BY p.vid, t.cost

CREATE VIEW tolls AS
SELECT p.vid,

t.cost * count(p.vid) AS due
FROM paths AS p, tolls AS t
WHERE ST_contains(p.path, t.loc)
GROUP BY p.vid, t.cost

vid speed
2 60
5 80

vid due
3 6
7 4
9 10

22 / 1

Use case 2: Traffic analysis

CREATE VIEW paths WITH (sw='1 minute') AS
SELECT vid,

ST_MakeLine(loc ORDER BY gps_time) AS path,
min(gps_time) AS start,
max(gps_time) AS end,

FROM output_of('vlocations')
GROUP BY vid

CREATE VIEW paths WITH (sw='1 minute') AS
SELECT vid,

ST_MakeLine(loc ORDER BY gps_time) AS path,
min(gps_time) AS start,
max(gps_time) AS end

FROM vlocations
GROUP BY vid

CREATE VIEW jams AS
SELECT unnest(ST_ClusterIntersect(path))
FROM paths
WHERE ST_Length(path) /

seconds(end - start) < 2

CREATE VIEW jams AS
SELECT unnest(ST_ClusterIntersect(path))
FROM paths
WHERE ST_Length(path) /

seconds(end - start) < 2

CREATE VIEW speedings AS
SELECT p.vid, s.speed
FROM paths AS p, speedlimits AS s
WHERE ST_contains(s.extent, p.path) AND

ST_Length(p.path) /
seconds(p.end - p.start) > s.speed

CREATE VIEW speedings AS
SELECT p.vid, s.speed
FROM paths AS p, speedlimits AS s
WHERE ST_contains(s.extent, p.path) AND

ST_Length(p.path) /
seconds(p.end - p.start) > s.speed

CREATE VIEW tolls AS
SELECT p.vid,

t.cost * count(p.vid) AS due
FROM paths AS p, tolls AS t
WHERE ST_contains(p.path, t.loc)
GROUP BY p.vid, t.cost

CREATE VIEW tolls AS
SELECT p.vid,

t.cost * count(p.vid) AS due
FROM paths AS p, tolls AS t
WHERE ST_contains(p.path, t.loc)
GROUP BY p.vid, t.cost

vid speed
2 60
5 80

vid due
3 6
7 4
9 10

22 / 1

Spatial information management using continuous queries

Raw streams

...
''0 52.0 11 59''
''1 12.2 12 58''
''2 43.7 14 60''
''1 59.9 13 57''...

Process Spatial

.
..
.

..
. .
...

.....
Filter Relevant

....

..
.

Aggregate Abstract

....
.

Join Applications

Storm approaching Oslo!

Traffic jam at Busy Street

Toll bill: 21 x 10,-

Static
data

23 / 1

Summary

� Queries over data streams allow us to parse and build abstractions over the
raw data streams

� Different applications can use different abstraction levels
� Windows takes care of keeping data fresh and relevant
� Can still store longer history of abstract objects (e.g. storms)

24 / 1

Summary

� Queries over data streams allow us to parse and build abstractions over the
raw data streams

� Different applications can use different abstraction levels

� Windows takes care of keeping data fresh and relevant
� Can still store longer history of abstract objects (e.g. storms)

24 / 1

Summary

� Queries over data streams allow us to parse and build abstractions over the
raw data streams

� Different applications can use different abstraction levels
� Windows takes care of keeping data fresh and relevant

� Can still store longer history of abstract objects (e.g. storms)

24 / 1

Summary

� Queries over data streams allow us to parse and build abstractions over the
raw data streams

� Different applications can use different abstraction levels
� Windows takes care of keeping data fresh and relevant
� Can still store longer history of abstract objects (e.g. storms)

24 / 1

More information:
� Data Stream Management, Minos Garofalakis, Johannes Gehrke, Rajeev
Rastogi (Editors), Springer 2016

� docs.pipelinedb.org
� Spatio-Temporal Data Streams, Zdravko Galić, Springer 2016

Thank you for listening!

25 / 1

docs.pipelinedb.org

Actual queries: single storm

CREATE VIEW storm
WITH (action=materialize , sw='30 seconds') AS
SELECT ST_ConvexHull(ST_Collect(loc)) AS location
FROM locations
WHERE wind > 20

26 / 1

Actual queries: jams

CREATE VIEW jams AS
SELECT ST_LineMerge(ST_SnapToGrid(c.cluster , 0.0001))
FROM (SELECT unnest(ST_ClusterIntersect(path)) AS cluster

FROM paths
WHERE ST_Length(path) /

extract('epoch' from (end - start)::interval)
< 3 -- ft/s

) AS c

27 / 1

