
IN2110: Språkteknologiske metoder
Vektorrom for IR

Erik Velldal

Språkteknologigruppen (LTG)

22. Januar, 2019



Agenda

Next weeks
I How to represent our data in a mathematical model.

I Vector space models

I Examples: representing documents, words and meaning.

I Vector space classification methods.

Today
I Vector space models for Information Retrieval (IR).

I Modeling the similarity of documents, queries, and topics.

2



ML

I In a very high-level terms, classification and all machine learning models
can be described as a learned mapping from inputs to outputs.

I The first step is to represent our data in a way that the model can take
as input.

I Very often done by describing the data by a set of features.

3



Feature engineering

I Features record observable and relevant properties of the data.

I Every feature has a numerical value.

I Each object x to be modeled described as a tuple of d feature values:

I a feature vector: x = 〈x1, x2, . . . , xd〉

I Features are also numerically indexed.

4



Vector space models

I Once our data is represented as feature vectors, we often adopt a vector
space model.

I Based on a spatial metaphor.

I Feature correspond to dimensions or coordinate axes in the space.

I Object correspond to points in this feature space.

I Each example x is a point or vector x in a space of d dimensions:

I x ∈ Rd and x = 〈x1, x2, . . . , xd〉

I To measure the similarity of two objects, we can measure their
geometrical distance / closeness in the model.

5



Vectors and vector spaces
I Simple example of a 2-dimensional space, R2.

I Two vectors: v1 = [1, 8], v2 = [5, 5]

I In practice we only use the first (positive) quadrant.

−5 5

−5

5

O X

Y

6



Dimensionality

I For d = 1, examples are just points on a line.

I For d = 2, examples points in a plane.

I For d = 3, we have a three-dimensional space.

I For d > 3, it becomes difficult to visualize.

I High-dimensional spaces where d is the thousands or even millions not
uncommon in ML/NLP.

7



Vector space models for Information Retrieval

I We want to be able to quantify how similar different documents are.

I Or how relevant documents are to a given query.

I A simple and wide-spread approach:

I The features representing a document =

I frequency counts of all the words that occur in the text.

I So-called bag-of-words (BoW) features.

I Each word type corresponds to a dimension.

8



Token vs. type

“Rose is a rose is a rose is a rose.” Gertrude Stein

I How many words? (Assuming we ignore case and punctuation.)

I Three types and ten tokens.

9



Token vs. type

“Rose is a rose is a rose is a rose.” Gertrude Stein

I How many words? (Assuming we ignore case and punctuation.)
I Three types and ten tokens.

9



The matrix view

I Conceptually, a vector space is often thought of as a matrix, often
called co-occurrence matrix.

I For m documents and a vocabulary of n words, a BoW document
representations would be called a n×m term–document matrix.

I Rows represent words (features) in the vocabulary, and columns
represent the feature vectors of documents.

10



The matrix view
I We assume that documents that share many of the same words are
semantically similar in terms of their content.

I Note that we can also view the rows as vectors representing words.
I Words that tend to co-occur in the same documents will tend to be
semantically related.

I This is called the distributional hypothesis, and we will return to this
later in the course!

I Can compute similarity (of either words or documents) based on
distance in the space.

I Several ways this can be done.
11



Euclidean distance
I We can now compute document similarity in terms of spatial distance.

I One standard metric for this is the Euclidean distance:

d(a, b) =
√∑n

i=1 (ai − bi)2

I Computes the norm (or length) of the
difference of the vectors.

I The norm of a vector is:

‖x‖ =
√∑n

i=1 x2
i =
√

x · x

I Intuitive interpretation: The
distance between two points
corresponds to the length of the
straight line connecting them.

12



Euclidean distance and length bias

I Three document vectors, a, b
and c

I d(a, b) = 10
I d(a, c) = 7

I However, a potential problem with Euclidean distance is that it is very
sensitive to extreme values and the length of the vectors.

I As vectors of words with different frequencies will tend to have different
length, the frequency will also affect the similarity judgment.

13



Overcoming length bias by normalization

I One way to reduce frequency effects is to first normalize all our vectors
to have unit length, i.e. ‖x‖ = 1

I Can be achieved by simply dividing each element by the length: x 1
‖x‖

I Amounts to all vectors pointing to the surface of a unit sphere.
14



Cosine similarity

I We can measure (cosine) proximity rather than (Euclidean) distance.

I Computes similarity as a function of the angle between the vectors:

cos(a, b) =
∑

i
aibi√∑

i

a2
i

√∑
i

b2
i

= a·b
‖a‖‖b‖

I Avoids the arbitrary scaling caused
by dimensionality, frequency, etc.

I Constant range between 0 (for
orthogonal vectors) and 1 (for
vectors that point in the same
direction).

15



Cosine similarity (cont’d)

I For normalized (unit) vectors, the cosine is simply the dot product:

cos(a, b) = a · b =
∑n

i=1 aibi

I Can be computed very efficiently.

I The same relative rank order as the Euclidean distance for unit vectors!

16



Queries and relevance ranking

I Central task in information retrieval:

I Identifying and ranking relevant
documents for a given query (i.e. search
terms).

I Treat the query as a short document:

I Represent it as a vector and find its
nearest neighbors.

I I.e. rank the documents based on the
distance between the document vectors
and the query vector.

17



Frequencies

I Problem: Raw frequency counts not always good indicators of relevance.

I The most frequent words will typically not be very discriminative.

I A weighting function is therefore usually applied to the raw counts.

18



TF-IDF

I The most commonly used weighting function is tf-idf:

I The term frequency tf(ti, dj) denotes the number of times the term ti

occurs in document dj .
I The document frequency df(ti) denotes the total number of documents
in the collection that the term occurs in.

I The inverse document frequency is defined as idf(ti) = log
(

N
df(ti)

)
,

where N is the total number of documents in the collection.
I The weight given to term ti in document dj is then computed as

tf-idf(ti, dj) = tf(ti, dj)× idf(ti)

I A high tf-idf is obtained if a term has a high frequency in the given
document and a low frequency in the document collection as whole.

I The weights hence tend to filter out common terms.

19



TF-IDF

I The most commonly used weighting function is tf-idf:
I The term frequency tf(ti, dj) denotes the number of times the term ti

occurs in document dj .

I The document frequency df(ti) denotes the total number of documents
in the collection that the term occurs in.

I The inverse document frequency is defined as idf(ti) = log
(

N
df(ti)

)
,

where N is the total number of documents in the collection.
I The weight given to term ti in document dj is then computed as

tf-idf(ti, dj) = tf(ti, dj)× idf(ti)

I A high tf-idf is obtained if a term has a high frequency in the given
document and a low frequency in the document collection as whole.

I The weights hence tend to filter out common terms.

19



TF-IDF

I The most commonly used weighting function is tf-idf:
I The term frequency tf(ti, dj) denotes the number of times the term ti

occurs in document dj .
I The document frequency df(ti) denotes the total number of documents
in the collection that the term occurs in.

I The inverse document frequency is defined as idf(ti) = log
(

N
df(ti)

)
,

where N is the total number of documents in the collection.
I The weight given to term ti in document dj is then computed as

tf-idf(ti, dj) = tf(ti, dj)× idf(ti)

I A high tf-idf is obtained if a term has a high frequency in the given
document and a low frequency in the document collection as whole.

I The weights hence tend to filter out common terms.

19



TF-IDF

I The most commonly used weighting function is tf-idf:
I The term frequency tf(ti, dj) denotes the number of times the term ti

occurs in document dj .
I The document frequency df(ti) denotes the total number of documents
in the collection that the term occurs in.

I The inverse document frequency is defined as idf(ti) = log
(

N
df(ti)

)
,

where N is the total number of documents in the collection.

I The weight given to term ti in document dj is then computed as

tf-idf(ti, dj) = tf(ti, dj)× idf(ti)

I A high tf-idf is obtained if a term has a high frequency in the given
document and a low frequency in the document collection as whole.

I The weights hence tend to filter out common terms.

19



TF-IDF

I The most commonly used weighting function is tf-idf:
I The term frequency tf(ti, dj) denotes the number of times the term ti

occurs in document dj .
I The document frequency df(ti) denotes the total number of documents
in the collection that the term occurs in.

I The inverse document frequency is defined as idf(ti) = log
(

N
df(ti)

)
,

where N is the total number of documents in the collection.
I The weight given to term ti in document dj is then computed as

tf-idf(ti, dj) = tf(ti, dj)× idf(ti)

I A high tf-idf is obtained if a term has a high frequency in the given
document and a low frequency in the document collection as whole.

I The weights hence tend to filter out common terms.

19



TF-IDF

I The most commonly used weighting function is tf-idf:
I The term frequency tf(ti, dj) denotes the number of times the term ti

occurs in document dj .
I The document frequency df(ti) denotes the total number of documents
in the collection that the term occurs in.

I The inverse document frequency is defined as idf(ti) = log
(

N
df(ti)

)
,

where N is the total number of documents in the collection.
I The weight given to term ti in document dj is then computed as

tf-idf(ti, dj) = tf(ti, dj)× idf(ti)

I A high tf-idf is obtained if a term has a high frequency in the given
document and a low frequency in the document collection as whole.

I The weights hence tend to filter out common terms.

19



Text pre-processing. Or, what is a word?

Raw: “The programmer’s programs had been programmed.”

Tokenized: the programmer ’s programs had been programmed .
Lemmatized: the programmer ’s program have be program .
W/ stop-list: programmer program program
Stemmed: program program program

I Tokenization: Splitting a text into sentences and words or other units.
I Different levels of abstraction and morphological normalization:

I What to do with case, numbers, punctuation, compounds, . . . ?
I Full-form words vs. lemmas vs. stems . . .

I Stop-list: filter out closed-class words or function words.
I The idea is that only content words provide relevant context.

20



Text pre-processing. Or, what is a word?

Raw: “The programmer’s programs had been programmed.”
Tokenized: the programmer ’s programs had been programmed .

Lemmatized: the programmer ’s program have be program .
W/ stop-list: programmer program program
Stemmed: program program program

I Tokenization: Splitting a text into sentences and words or other units.
I Different levels of abstraction and morphological normalization:

I What to do with case, numbers, punctuation, compounds, . . . ?
I Full-form words vs. lemmas vs. stems . . .

I Stop-list: filter out closed-class words or function words.
I The idea is that only content words provide relevant context.

20



Text pre-processing. Or, what is a word?

Raw: “The programmer’s programs had been programmed.”
Tokenized: the programmer ’s programs had been programmed .
Lemmatized: the programmer ’s program have be program .

W/ stop-list: programmer program program
Stemmed: program program program

I Tokenization: Splitting a text into sentences and words or other units.
I Different levels of abstraction and morphological normalization:

I What to do with case, numbers, punctuation, compounds, . . . ?
I Full-form words vs. lemmas vs. stems . . .

I Stop-list: filter out closed-class words or function words.
I The idea is that only content words provide relevant context.

20



Text pre-processing. Or, what is a word?

Raw: “The programmer’s programs had been programmed.”
Tokenized: the programmer ’s programs had been programmed .
Lemmatized: the programmer ’s program have be program .
W/ stop-list: programmer program program

Stemmed: program program program

I Tokenization: Splitting a text into sentences and words or other units.
I Different levels of abstraction and morphological normalization:

I What to do with case, numbers, punctuation, compounds, . . . ?
I Full-form words vs. lemmas vs. stems . . .

I Stop-list: filter out closed-class words or function words.
I The idea is that only content words provide relevant context.

20



Text pre-processing. Or, what is a word?

Raw: “The programmer’s programs had been programmed.”
Tokenized: the programmer ’s programs had been programmed .
Lemmatized: the programmer ’s program have be program .
W/ stop-list: programmer program program
Stemmed: program program program

I Tokenization: Splitting a text into sentences and words or other units.
I Different levels of abstraction and morphological normalization:

I What to do with case, numbers, punctuation, compounds, . . . ?
I Full-form words vs. lemmas vs. stems . . .

I Stop-list: filter out closed-class words or function words.
I The idea is that only content words provide relevant context.

20



Practical comments: Sparsity

I BoW feature vectors will be extremely high-dimensional.

I The number of non-zero elements will be very low.

I Few active features per word.

I We say that the vectors are sparse.

I This has implications for how to implement our data structures and
vector operations:

I Don’t want to waste space representing and iterating over zero-valued
features.

21



Next: Two categorization tasks in machine learning

Classification
I Supervised learning, requiring labeled training data.
I Train a classifier to automatically assign new instances to predefined
classes, given some set of training examples.

I (Topic for next week.)

Clustering
I Unsupervised learning from unlabeled data.
I Automatically group similar objects together.
I No predefined classes or structure, we only specify the similarity
measure.

I (The topic for the week after.)

22



Next: Two categorization tasks in machine learning

Classification
I Supervised learning, requiring labeled training data.
I Train a classifier to automatically assign new instances to predefined
classes, given some set of training examples.

I (Topic for next week.)

Clustering
I Unsupervised learning from unlabeled data.
I Automatically group similar objects together.
I No predefined classes or structure, we only specify the similarity
measure.

I (The topic for the week after.)

22



Classes and classification

I In our vector space model, objects
are represented as points, so
classes will correspond to
collections of points; regions.

I Vector space classification is
based on the contiguity
hypothesis:

I Objects in the same class form a contiguous region, and regions of
different classes do not overlap.

I Classification amounts to computing the boundaries in the space that
separate the classes; the decision boundaries.

23



Vector space classification

I Classifiers based on vector space representations are well-suited for
introducing the notion of classification:

I Little math required, easy to understand on the basis of geometrical
intuitions.

I We will consider two very simple but powerful methods:

I K-Nearest Neighbor (KNN) classification

I Rocchio classification (a.k.a. Nearest centroid)

I Example task: text classification

24



Oblig 1a

I Theme for the 1st obligatory assignment:

I Topic classification of news articles (reviews in NoReC)

I using KNN

I and with BoW feature vectors using TF-IDF weighting.

I Deadline: 15/2

I Group work encouraged!

https://www.uio.no/studier/emner/matnat/ifi/IN2110/v19/
innleveringer.html

25

https://www.uio.no/studier/emner/matnat/ifi/IN2110/v19/innleveringer.html
https://www.uio.no/studier/emner/matnat/ifi/IN2110/v19/innleveringer.html


Example applications of text classification

I Topic classification of news articles

I Authorship attribution

I Spam detection

I Polarity classification (sentiment analysis)

I Language identification

I Hate-speech / abusive language detection / threat detection

I Question type classification

I Content recommendation

I Political affiliation

I . . .

26



Next week

I More on vector space models

I Classification algorithms: KNN-classification and c-means

I Reading: The chapter Vector Space Classification (sections 14-14.4) in
Manning, Raghavan & Schütze (2008);
https://nlp.stanford.edu/IR-book/.

I Want to learn more about IR? Take IN3120 (INF3800) – Search
Technology.

27

https://nlp.stanford.edu/IR-book/

