
IN2110: Språkteknologiske metoder
Klassifikasjon

Erik Velldal

Språkteknologigruppen (LTG)

29. Januar, 2019

Recap: Vector space models

I General approach to representing data in a
geometrical model.

I Example use case: vector spaces for IR.

I Documents represented as points/vectors in
a feature space, x = 〈x1, . . . , xn〉 ∈ Rn.

I Bag-of-words:
I Documents represented by their unordered collection of word types.
I Each dimension in the space corresponds to a word in the vocabulary.

I Similarity modeled by distance of documents (and queries) in the space.

2

Recap: measuring similarity

I Euclidean distance between
points.

I Cosine similarity of vector angles.
I Raw counts often weighted by
TF-IDF.

I Can reduce length bias by
normalization.

3

Agenda

Today
I Classification: supervised learning
I Rocchio
I kNN
I Representing classes and membership

Next lecture
I Clustering: unsupervised learning
I c-Means

4

Example applications of text classification

I Topic classification of news articles

I Authorship attribution

I Spam detection

I Polarity classification (sentiment analysis)

I Language identification

I Abusive language detection

I Question type classification

I Content recommendation

I Political affiliation

I . . .

5

Classes and classification

I In our vector space model, objects
are represented as points, so
classes will correspond to
collections of points; regions.

I Vector space classification is
based on the contiguity
hypothesis:

I Objects in the same class form a contiguous region, and regions of
different classes do not overlap.

I Classification amounts to computing the boundaries in the space that
separate the classes; the decision boundaries.

I How we draw the boundaries is influenced by how we choose to
represent the classes.

6

Different ways of representing classes

Exemplar-based
I No abstraction. Every stored instance of a group can potentially
represent the class.

I Used in so-called instance based or memory based learning (MBL).
I In its simplest form; the class = the collection of points.

I Another variant is to use medoids, – representing a class by a single
member that is considered central, typically the object with maximum
average similarity to other objects in the group.

Centroid-based
I The average, or the center of mass in the region.
I Given a class ci, where each object oj being a member is represented as
a feature vector xj , we can compute the class centroid µi as

µi = 1
|ci|

∑
xj∈ci

xj

7

Different ways of representing classes

Exemplar-based
I No abstraction. Every stored instance of a group can potentially
represent the class.

I Used in so-called instance based or memory based learning (MBL).
I In its simplest form; the class = the collection of points.
I Another variant is to use medoids, – representing a class by a single
member that is considered central, typically the object with maximum
average similarity to other objects in the group.

Centroid-based
I The average, or the center of mass in the region.
I Given a class ci, where each object oj being a member is represented as
a feature vector xj , we can compute the class centroid µi as

µi = 1
|ci|

∑
xj∈ci

xj

7

Different ways of representing classes

Exemplar-based
I No abstraction. Every stored instance of a group can potentially
represent the class.

I Used in so-called instance based or memory based learning (MBL).
I In its simplest form; the class = the collection of points.
I Another variant is to use medoids, – representing a class by a single
member that is considered central, typically the object with maximum
average similarity to other objects in the group.

Centroid-based
I The average, or the center of mass in the region.
I Given a class ci, where each object oj being a member is represented as
a feature vector xj , we can compute the class centroid µi as

µi = 1
|ci|

∑
xj∈ci

xj

7

Different ways of representing classes (cont’d)

Some more notes on centroids, medoids and typicality
I Both centroids and medoids represent a group by a single prototype.
I But while a medoid is an actual member of the group, a centroid is an
abstract prototype; an average.

I Typicality can be defined by a member’s distance to the prototype.
I The centroid could also be distance weighted:
Let each member’s contribution to the average be determined by its
average pairwise similarity to the other members of the group.

I There are parallel discussions on how to represent classes and determine
typicality within linguistic and psychological prototype theory.

8

Rocchio classification

I AKA nearest centroid classifier or nearest prototype classifier.

I Uses centroids to represent classes.

I Each class ci is represented by its centroid µi, computed as the average
of the vectors xj of its members;

µi = 1
|ci|

∑
xj∈ci

xj

I The Rocchio decision rule:

I To classify a new object oj (represented by a feature vector xj);
– determine which centroid µi that xj is closest to,
– and assign it to the corresponding class ci.

9

Rocchio classification

I AKA nearest centroid classifier or nearest prototype classifier.

I Uses centroids to represent classes.

I Each class ci is represented by its centroid µi, computed as the average
of the vectors xj of its members;

µi = 1
|ci|

∑
xj∈ci

xj

I The Rocchio decision rule:

I To classify a new object oj (represented by a feature vector xj);
– determine which centroid µi that xj is closest to,
– and assign it to the corresponding class ci.

9

Rocchio classification

I AKA nearest centroid classifier or nearest prototype classifier.

I Uses centroids to represent classes.

I Each class ci is represented by its centroid µi, computed as the average
of the vectors xj of its members;

µi = 1
|ci|

∑
xj∈ci

xj

I The Rocchio decision rule:

I To classify a new object oj (represented by a feature vector xj);
– determine which centroid µi that xj is closest to,
– and assign it to the corresponding class ci.

9

The decision boundary of the Rocchio classifier

I Defines the boundary between
two classes by the set of points
equidistant from the centroids.

I In two dimensions, this set of
points corresponds to a line.

I In multiple dimensions: A line in
2D corresponds to a hyperplane in
a higher-dimensional space.

I The boundaries are not explicitly
computed; implied by the decision
rule.

10

Problems with the Rocchio classifier

I The classification decision ignores the distribution of members locally
within a class, only based on the centroid distance.

I Implicitly assumes that classes are spheres with similar radii.

I Does not work well for classes than cannot be accurately represented by
a single prototype or center (e.g. disconnected or elongated regions).

I Because the Rocchio classifier defines a linear decision boundary, it is
only suitable for problems involving linearly separable classes.

11

Ideal

12

Problematic: Elongated regions

13

Problematic: Non-contiguous regions

14

Problematic: Different sizes

15

Problematic: Nonlinear boundary

16

A side-note on non-linearity

I Before we turn to talk about non-linear classifiers, note that:
Classes that are not linearly separable in a given feature space. . .

17

A side-note on non-linearity

I . . . may become linearly separable when the features are mapped to a
higher-dimensional space (this is the basis for so-called kernel methods).

18

kNN-classification

I k Nearest Neighbor classification.
I An example of a memory-based, non-linear classifier.

Decision rule
I For k = 1: Assign each object to the class of its closest neighbor.
I For k > 1: Assign each object to the majority class among its k closest
neighbors.

I The parameter k must be specified in advance.

I Rationale: given the contiguity hypothesis, we expect a test object oi to
have the same label as the training objects in the local region of xi.

I Unlike Rocchio, the kNN decision boundary is determined locally.
I The decision boundary defined by the Voronoi tessellation.

19

kNN-classification

I k Nearest Neighbor classification.
I An example of a memory-based, non-linear classifier.

Decision rule
I For k = 1: Assign each object to the class of its closest neighbor.
I For k > 1: Assign each object to the majority class among its k closest
neighbors.

I The parameter k must be specified in advance.
I Rationale: given the contiguity hypothesis, we expect a test object oi to
have the same label as the training objects in the local region of xi.

I Unlike Rocchio, the kNN decision boundary is determined locally.
I The decision boundary defined by the Voronoi tessellation.

19

Voronoi tessellation

I Assuming k = 1: For a given set of objects in the space, let each object
define a cell consisting of all points that are closer to that object than
to other objects.

I Results in a set of convex
polygons; so-called Voronoi cells.

I Decomposing a space into such
cells gives us the so-called
Voronoi tessellation.

I In the general case of k ≥ 1, the Voronoi cells are given by the regions
in the space for which the set of k nearest neighbors is the same.

20

Voronoi tessellation for 1NN

Decision boundary for 1NN: defined along the regions of Voronoi cells for
the objects in each class. Shows the non-linearity of kNN.

21

The effect of K

Figures from Elements of Statistical Learning

I What would happen if K = N?

22

‘Softened’ kNN-classification

A probabilistic version
I The probability of membership in a
class c given by the proportion of the
k nearest neighbors in c.

Distance weighted votes
I The score for a given class ci can be computed as

score(ci, oj) =
∑

xn∈knn(xj)
I(ci,xn) sim(xn,xj)

where knn(xj) is the set of k nearest neighbors of xj , sim is the
similarity measure, and I(ci,xn) is 1 if xn ∈ ci and 0 otherwise.

I Can give more accurate results, and also help resolve ties.

23

‘Softened’ kNN-classification

A probabilistic version
I The probability of membership in a
class c given by the proportion of the
k nearest neighbors in c.

Distance weighted votes
I The score for a given class ci can be computed as

score(ci, oj) =
∑

xn∈knn(xj)
I(ci,xn) sim(xn,xj)

where knn(xj) is the set of k nearest neighbors of xj , sim is the
similarity measure, and I(ci,xn) is 1 if xn ∈ ci and 0 otherwise.

I Can give more accurate results, and also help resolve ties.
23

Peculiarities of kNN

I Not really any learning or estimation going on at all;

I simply memorizes all training examples.

I Generally with ML; the more training data the better.

I But for kNN, large training sets come with an efficiency penalty.

I Test time is linear in the size of the training set,

I but independent of the number of classes.

I A potential advantage for problems with many classes.
I Notice the similarity to the problem of ad hoc retrieval (e.g., returning
relevant documents for a given query);

I Both are instances of finding nearest neighbors.

24

Testing a classifier

I To evaluate a classifier, we measure its number of correct classification
predictions on unseen test items.

I Labeled test data is sometimes referred to as the gold standard.
I We evaluate by comparing the predictions made by the model towards
the gold labels.

I We will consider different evaluation metrics,
I and the different data splits: Training, development, and test sets.
I (Why can’t we test on the training data?)

25

Using data splits

I While tuning our model, estimated from the training set, we repeatedly
evaluate towards the development or validation data.

I Or, if we have little data, by n-fold cross-validation.
I Then we want to evaluate how well our final model generalizes on a
held-out test set.

26

Example: Evaluating classifier decisions

I Predictions for a given class can be wrong or correct in two ways:

gold = positive gold = negative
prediction = positive true positive (TP) false positive (FP)
prediction = negative false negative (FN) true negative (TN)

27

Example: Evaluating classifier decisions

I Predictions for a given class can be wrong or correct in two ways:

gold = positive gold = negative
prediction = positive true positive (TP) false positive (FP)
prediction = negative false negative (FN) true negative (TN)

27

Example: Evaluating classifier decisions

I Predictions for a given class can be wrong or correct in two ways:

gold = positive gold = negative
prediction = positive true positive (TP) false positive (FP)
prediction = negative false negative (FN) true negative (TN)

27

Example: Evaluating classifier decisions

I Predictions for a given class can be wrong or correct in two ways:

gold = positive gold = negative
prediction = positive true positive (TP) false positive (FP)
prediction = negative false negative (FN) true negative (TN)

27

Example: Evaluating classifier decisions

I Predictions for a given class can be wrong or correct in two ways:

gold = positive gold = negative
prediction = positive true positive (TP) false positive (FP)
prediction = negative false negative (FN) true negative (TN)

27

Example: Evaluating classifier decisions

I Predictions for a given class can be wrong or correct in two ways:

gold = positive gold = negative
prediction = positive true positive (TP) false positive (FP)
prediction = negative false negative (FN) true negative (TN)

27

Example: Evaluating classifier decisions

I Predictions for a given class can be wrong or correct in two ways:

gold = positive gold = negative
prediction = positive true positive (TP) false positive (FP)
prediction = negative false negative (FN) true negative (TN)

27

Example: Evaluating classifier decisions

I Predictions for a given class can be wrong or correct in two ways:

gold = positive gold = negative
prediction = positive true positive (TP) false positive (FP)
prediction = negative false negative (FN) true negative (TN)

27

Example: Evaluating classifier decisions

Accuracy = T P +T N
N

= 1+6
10 = 0.7

Precision = T P
T P +F P

= 1
1+1 = 0.5

Recall = T P
T P +F N

= 1
1+2 = 0.33

F-score
= 2× precision×recall

precision+recall = 0.4

28

Example: Evaluating classifier decisions

Accuracy = T P +T N
N

= 1+6
10 = 0.7

Precision = T P
T P +F P

= 1
1+1 = 0.5

Recall = T P
T P +F N

= 1
1+2 = 0.33

F-score
= 2× precision×recall

precision+recall = 0.4

28

Example: Evaluating classifier decisions

Accuracy = T P +T N
N

= 1+6
10 = 0.7

Precision = T P
T P +F P

= 1
1+1 = 0.5

Recall = T P
T P +F N

= 1
1+2 = 0.33

F-score
= 2× precision×recall

precision+recall = 0.4

28

Example: Evaluating classifier decisions

Accuracy = T P +T N
N

= 1+6
10 = 0.7

Precision = T P
T P +F P

= 1
1+1 = 0.5

Recall = T P
T P +F N

= 1
1+2 = 0.33

F-score
= 2× precision×recall

precision+recall = 0.4

28

Example: Evaluating classifier decisions

Accuracy = T P +T N
N

= 1+6
10 = 0.7

Precision = T P
T P +F P

= 1
1+1 = 0.5

Recall = T P
T P +F N

= 1
1+2 = 0.33

F-score
= 2× precision×recall

precision+recall = 0.4

28

Evaluation measures

I Accuracy = T P +T N
N = T P +T N

T P +T N+F P +F N

I The ratio of correct predictions.
I Not suitable for unbalanced numbers of positive / negative examples.

I Precision = T P
T P +F P

I The number of detected class members that were correct.

I Recall = T P
T P +F N

I The number of actual class members that were detected.
I Trade-off: Positive predictions for all examples would give 100% recall
but (typically) terrible precision.

I F-score = 2× precision×recall
precision+recall

I Balanced measure of precision and recall (harmonic mean).

29

Evaluating multi-class predictions

Macro-averaging
I Sum precision and recall for each class, and then compute global
averages of these.

I The macro average will be highly influenced by the small classes.

Micro-averaging
I Sum TPs, FPs, and FNs for all points/objects across all classes, and
then compute global precision and recall.

I The micro average will be highly influenced by the large classes.

30

Evaluating multi-class predictions

Macro-averaging
I Sum precision and recall for each class, and then compute global
averages of these.

I The macro average will be highly influenced by the small classes.

Micro-averaging
I Sum TPs, FPs, and FNs for all points/objects across all classes, and
then compute global precision and recall.

I The micro average will be highly influenced by the large classes.

30

Next lecture

I Unsupervised machine learning for class discovery: Clustering
I Flat vs. hierarchical clustering.
I C-Means Clustering.
I Reading: Manning, Raghavan & Schütze (2008), section 16, 16.1, 16.2,
and 16.4 up until 16.4.1.

31

	Evaluation

