IN2110: Språkteknologiske metoder Klassifikasjon

Erik Velldal

Språkteknologigruppen (LTG)

29. Januar, 2019

Recap: Vector space models

- \triangleright General approach to representing data in a geometrical model.
- Example use case: vector spaces for IR .
- \triangleright Documents represented as points/vectors in a feature space, $\boldsymbol{x} = \langle x_1, \dots, x_n \rangle \in \mathbb{R}^n$.
- **Bag-of-words:**
	- \triangleright Documents represented by their unordered collection of word types.
	- \triangleright Each dimension in the space corresponds to a word in the vocabulary.
- \triangleright Similarity modeled by distance of documents (and queries) in the space.

Recap: measuring similarity

- \blacktriangleright Euclidean distance between points.
- \triangleright Cosine similarity of vector angles.
- \blacktriangleright Raw counts often weighted by TF-IDF.
- \triangleright Can reduce length bias by normalization.

Agenda

Today

- \triangleright Classification: supervised learning
- \triangleright Rocchio
- \blacktriangleright *kNN*
- \blacktriangleright Representing classes and membership

Next lecture

- \triangleright Clustering: unsupervised learning
- \triangleright *c*-Means

Example applications of text classification

- \triangleright Topic classification of news articles
- \blacktriangleright Authorship attribution
- \blacktriangleright Spam detection
- \triangleright Polarity classification (sentiment analysis)
- \blacktriangleright Language identification
- \blacktriangleright Abusive language detection
- \triangleright Question type classification
- \triangleright Content recommendation
- \blacktriangleright Political affiliation

Classes and classification

- \blacktriangleright In our vector space model, objects are represented as points, so classes will correspond to collections of points; regions.
- \triangleright Vector space classification is based on the contiguity hypothesis:

- \triangleright Objects in the same class form a contiguous region, and regions of different classes do not overlap.
- \triangleright Classification amounts to computing the boundaries in the space that separate the classes; the decision boundaries.
- \blacktriangleright How we draw the boundaries is influenced by how we choose to represent the classes.

Exemplar-based

- \triangleright No abstraction. Every stored instance of a group can potentially represent the class.
- \triangleright Used in so-called *instance based* or *memory based learning* (MBL).
- In its simplest form; the class $=$ the collection of points.

Exemplar-based

- \triangleright No abstraction. Every stored instance of a group can potentially represent the class.
- \triangleright Used in so-called *instance based* or *memory based learning* (MBL).
- In its simplest form; the class $=$ the collection of points.
- Another variant is to use *medoids*, $-$ representing a class by a single member that is considered central, typically the object with maximum average similarity to other objects in the group.

Exemplar-based

- \triangleright No abstraction. Every stored instance of a group can potentially represent the class.
- \triangleright Used in so-called *instance based* or *memory based learning* (MBL).
- In its simplest form; the class $=$ the collection of points.
- Another variant is to use *medoids*, $-$ representing a class by a single member that is considered central, typically the object with maximum average similarity to other objects in the group.

Centroid-based

- \triangleright The average, or the center of mass in the region.
- \blacktriangleright Given a class c_i , where each object o_j being a member is represented as a feature vector x_j , we can compute the class centroid $\boldsymbol{\mu}_i$ as

$$
\boldsymbol{\mu}_i = \frac{1}{|c_i|}\sum_{\boldsymbol{x}_j \in c_i} \boldsymbol{x}_j
$$

Some more notes on centroids, medoids and typicality

- \triangleright Both centroids and medoids represent a group by a single prototype.
- \triangleright But while a *medoid* is an actual member of the group, a *centroid* is an abstract prototype; an average.
- \triangleright Typicality can be defined by a member's distance to the prototype.
- \triangleright The centroid could also be distance weighted: Let each member's contribution to the average be determined by its average pairwise similarity to the other members of the group.
- \triangleright There are parallel discussions on how to represent classes and determine typicality within linguistic and psychological prototype theory.

Rocchio classification

- \triangleright AKA nearest centroid classifier or nearest prototype classifier.
- \triangleright Uses centroids to represent classes.
- \blacktriangleright Each class c_i is represented by its centroid $\boldsymbol{\mu}_i$, computed as the average of the vectors x_j of its members;

$$
\boldsymbol{\mu}_i = \frac{1}{|c_i|}\sum_{\boldsymbol{x}_j \in c_i} \boldsymbol{x}_j
$$

Rocchio classification

- \triangleright AKA nearest centroid classifier or nearest prototype classifier.
- \triangleright Uses centroids to represent classes.
- \blacktriangleright Each class c_i is represented by its centroid $\boldsymbol{\mu}_i$, computed as the average of the vectors x_j of its members;

$$
\boldsymbol{\mu}_i = \frac{1}{|c_i|}\sum_{\boldsymbol{x}_j \in c_i} \boldsymbol{x}_j
$$

- \triangleright The Rocchio decision rule:
- \triangleright To classify a new object o_j (represented by a feature vector x_j);
	- determine which centroid $\pmb{\mu}_i$ that $\pmb{x_j}$ is closest to,
	- $-$ and assign it to the corresponding class $c_i.$

Rocchio classification

- \triangleright AKA nearest centroid classifier or nearest prototype classifier.
- \triangleright Uses centroids to represent classes.
- \blacktriangleright Each class c_i is represented by its centroid $\boldsymbol{\mu}_i$, computed as the average of the vectors x_j of its members;

$$
\boldsymbol{\mu}_i = \frac{1}{|c_i|}\sum_{\boldsymbol{x}_j \in c_i} \boldsymbol{x}_j
$$

- \triangleright The Rocchio decision rule:
- \triangleright To classify a new object o_j (represented by a feature vector x_j);
	- determine which centroid $\pmb{\mu}_i$ that $\pmb{x_j}$ is closest to,
	- $-$ and assign it to the corresponding class $c_i.$

- \triangleright Defines the boundary between two classes by the set of points equidistant from the centroids.
- \blacktriangleright In two dimensions, this set of points corresponds to a line.
- \blacktriangleright In multiple dimensions: A line in 2D corresponds to a *hyperplane* in China a higher-dimensional space.
- \blacktriangleright The boundaries are not explicitly computed; implied by the decision rule.

- \triangleright The classification decision ignores the distribution of members locally within a class, only based on the centroid distance.
- \triangleright Implicitly assumes that classes are spheres with similar radii.
- \triangleright Does not work well for classes than cannot be accurately represented by a single prototype or center (e.g. disconnected or elongated regions).
- \triangleright Because the Rocchio classifier defines a linear decision boundary, it is only suitable for problems involving *linearly separable* classes.

 $\begin{array}{c} b \\ b \\ b \\ b \end{array}$ b b b $\mathbf b$ $\frac{b}{b}$ $\frac{b}{b}$ $\mathbf b$ $\mathbf b$ $\mathbf b$

Problematic: Elongated regions

Problematic: Non-contiguous regions

Problematic: Different sizes

Problematic: Nonlinear boundary

b b b a a a a a b b b

 \triangleright Before we turn to talk about non-linear classifiers, note that: Classes that are not linearly separable in a given feature space. . .

A side-note on non-linearity

... may become linearly separable when the features are mapped to a higher-dimensional space (this is the basis for so-called kernel methods).

*k*NN-classification

- \triangleright *k* Nearest Neighbor classification.
- \triangleright An example of a memory-based, non-linear classifier.

Decision rule

- \triangleright For $k = 1$: Assign each object to the class of its closest neighbor.
- \triangleright For $k > 1$: Assign each object to the majority class among its k closest neighbors.
- \blacktriangleright The parameter k must be specified in advance.

*k*NN-classification

- \triangleright *k* Nearest Neighbor classification.
- \triangleright An example of a memory-based, non-linear classifier.

Decision rule

- For $k = 1$: Assign each object to the class of its closest neighbor.
- \triangleright For $k > 1$: Assign each object to the majority class among its k closest neighbors.
- \blacktriangleright The parameter k must be specified in advance.
- \blacktriangleright Rationale: given the contiguity hypothesis, we expect a test object o_i to have the same label as the training objects in the local region of x_i .
- \triangleright Unlike Rocchio, the kNN decision boundary is determined locally.
	- \triangleright The decision boundary defined by the Voronoi tessellation.

Voronoi tessellation

-
- \blacktriangleright Assuming $k = 1$: For a given set of objects in the space, let each object define a cell consisting of all points that are closer to that object than to other objects.
- \triangleright Results in a set of convex polygons; so-called Voronoi cells.
- \triangleright Decomposing a space into such cells gives us the so-called Voronoi tessellation.

In the general case of $k \geq 1$, the Voronoi cells are given by the regions in the space for which the set of *k* nearest neighbors is the same.

Voronoi tessellation for 1NN

Decision boundary for 1NN: defined along the regions of Voronoi cells for the objects in each class. Shows the non-linearity of *k*NN.

The effect of *K*

 $\frac{1}{2}$

ö

15-Nearest Neighbor Classifier

 \blacktriangleright What would happen if $K = N$?

'Softened' *k*NN-classification

A probabilistic version

 \blacktriangleright The probability of membership in a class *c* given by the proportion of the *k* nearest neighbors in *c*.

'Softened' *k*NN-classification

A probabilistic version

 \triangleright The probability of membership in a class *c* given by the proportion of the *k* nearest neighbors in *c*.

Distance weighted votes

 \triangleright The score for a given class c_i can be computed as

$$
\text{score}(c_i, o_j) = \sum_{\bm{x_n} \in \text{knn}(\bm{x}_j)} \text{I}(c_i, \bm{x}_n) \sin(\bm{x_n}, \bm{x_j})
$$

where $\text{km}(x_i)$ is the set of *k* nearest neighbors of x_j , sim is the similarity measure, and $\mathrm{I}(c_i,x_n)$ is 1 if $x_n\in c_i$ and 0 otherwise.

 \triangleright Can give more accurate results, and also help resolve ties.

Peculiarities of *k*NN

- \triangleright Not really any *learning* or estimation going on at all;
- \triangleright simply memorizes all training examples.
- \triangleright Generally with ML; the more training data the better.
- \triangleright But for kNN , large training sets come with an efficiency penalty.
- \triangleright Test time is linear in the size of the training set,
- \triangleright but independent of the number of classes.
- \triangleright A potential advantage for problems with many classes.
- In Notice the similarity to the problem of ad hoc retrieval (e.g., returning relevant documents for a given query);
	- \triangleright Both are instances of finding nearest neighbors.

Testing a classifier

- \triangleright To evaluate a classifier, we measure its number of correct classification predictions on unseen test items.
- \triangleright Labeled test data is sometimes referred to as the gold standard.
- \triangleright We evaluate by comparing the predictions made by the model towards the gold labels.
- \triangleright We will consider different evaluation metrics,
- \triangleright and the different data splits: Training, development, and test sets.
- \triangleright (Why can't we test on the training data?)

Using data splits

- \triangleright While tuning our model, estimated from the training set, we repeatedly evaluate towards the development or validation data.
- \triangleright Or, if we have little data, by *n*-fold cross-validation.
- \triangleright Then we want to evaluate how well our final model generalizes on a held-out test set.

 $\mathsf{Accuracy} = \frac{TP + TN}{N}$ *N*

$$
Accuracy = \frac{TP + TN}{N}
$$

$$
= \frac{1+6}{10} = 0.7
$$

$$
Accuracy = \frac{TP + TN}{N}
$$

$$
= \frac{1+6}{10} = 0.7
$$

$$
\text{Precision} = \frac{TP}{TP + FP}
$$

$$
Recall = \frac{TP}{TP + FN}
$$

 $\mathsf{Accuracy} = \frac{TP + TN}{N}$ *N* $=\frac{1+6}{10}=0.7$

Precision $= \frac{TP}{TP+P}$ *T P* +*F P* $=\frac{1}{1+1} = 0.5$

 $Recall = \frac{TF}{TP+1}$ $TP + FN$ $=\frac{1}{1+2} = 0.33$

 $\mathsf{Accuracy} = \frac{TP + TN}{N}$ *N* $=\frac{1+6}{10}=0.7$

Precision $= \frac{TP}{TP+P}$ *T P* +*F P* $=\frac{1}{1+1} = 0.5$

 $Recall = \frac{TF}{TP+1}$ $TP + FN$ $=\frac{1}{1+2} = 0.33$

F-score $= 2 \times \frac{precision \times recall}{precision + recall} = 0.4$

Evaluation measures

- \blacktriangleright Accuracy = $\frac{TP+TN}{N} = \frac{TP+TN}{TP+TN+FP}$ *T P* +*T N*+*F P* +*F N*
	- \blacktriangleright The ratio of correct predictions.
	- \triangleright Not suitable for unbalanced numbers of positive / negative examples.
- **Precision** = $\frac{TP}{TP+1}$ *T P* +*F P*
	- \triangleright The number of detected class members that were correct.
- \blacktriangleright Recall $=\frac{TP}{TP+1}$ *T P* +*F N*
	- \triangleright The number of actual class members that were detected.
	- \triangleright Trade-off: Positive predictions for all examples would give 100% recall but (typically) terrible precision.
- \blacktriangleright F-score $= 2 \times \frac{precision \times recall}{precision + recall}$ *precision*+*recall*
	- \triangleright Balanced measure of precision and recall (harmonic mean).

Macro-averaging

- \triangleright Sum precision and recall for each class, and then compute global averages of these.
- \triangleright The **MACIO** average will be highly influenced by the $\frac{1}{2}$ classes.

Macro-averaging

- \triangleright Sum precision and recall for each class, and then compute global averages of these.
- \triangleright The **MACIO** average will be highly influenced by the $\frac{1}{n}$ classes.

Micro-averaging

- \triangleright Sum TPs, FPs, and FNs for all points/objects across all classes, and then compute global precision and recall.
- ► The _{micro} average will be highly influenced by the **large** classes.

- \triangleright Unsupervised machine learning for class discovery: Clustering
- \blacktriangleright Flat vs. hierarchical clustering.
- \triangleright C-Means Clustering.
- ▶ Reading: Manning, Raghavan & Schütze (2008), section 16, 16.1, 16.2, and 16.4 up until 16.4.1.