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Recap: Vector space models

» General approach to representing data in a
geometrical model.

» Example use case: vector spaces for IR.

» Documents represented as points/vectors in
a feature space, * = (1,...,x,) € R™

» Bag-of-words:
» Documents represented by their unordered collection of word types.

» Each dimension in the space corresponds to a word in the vocabulary.

» Similarity modeled by distance of documents (and queries) in the space.



Recap: measuring similarity

» Euclidean distance between
points.

» Cosine similarity of vector angles.

» Raw counts often weighted by
iy TF-IDF.

a% d » Can reduce length bias by

— normalization.




Today

v

Classification: supervised learning

v

Rocchio
» ENN

» Representing classes and membership

Next lecture

» Clustering: wunsupervised learning

» c-Means



Example applications of text classification

» Topic classification of news articles

» Authorship attribution

» Spam detection

» Polarity classification (sentiment analysis)
» Language identification

» Abusive language detection

» Question type classification

» Content recommendation

» Political affiliation



Classes and classification

» In our vector space model, objects o
are represented as points, so .
classes will correspond to
collections of points; regions.

» Vector space classification is China
based on the contiguity
hypOtheSiS: Kenya

» Objects in the same class form a contiguous region, and regions of
different classes do not overlap.

» Classification amounts to computing the boundaries in the space that
separate the classes; the decision boundaries.

» How we draw the boundaries is influenced by how we choose to
represent the classes.



Different ways of representing classes

Exemplar-based

» No abstraction. Every stored instance of a group can potentially
represent the class.

» Used in so-called instance based or memory based learning (MBL).

» In its simplest form; the class = the collection of points.
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Exemplar-based

» No abstraction. Every stored instance of a group can potentially
represent the class.

» Used in so-called instance based or memory based learning (MBL).
» In its simplest form; the class = the collection of points.

» Another variant is to use medoids, — representing a class by a single
member that is considered central, typically the object with maximum
average similarity to other objects in the group.

Centroid-based
» The average, or the center of mass in the region.
» Given a class ¢;, where each object 0, being a member is represented as

a feature vector x;, we can compute the class centroid p; as
1
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Different ways of representing classes (cont'd)

Some more notes on centroids, medoids and typicality

» Both centroids and medoids represent a group by a single prototype.

» But while a medoid is an actual member of the group, a centroid is an
abstract prototype; an average.

» Typicality can be defined by a member's distance to the prototype.

» The centroid could also be distance weighted:
Let each member’s contribution to the average be determined by its
average pairwise similarity to the other members of the group.

» There are parallel discussions on how to represent classes and determine
typicality within linguistic and psychological prototype theory.



Rocchio classification

» AKA nearest centroid classifier or nearest prototype classifier.
» Uses centroids to represent classes.

» Each class ¢; is represented by its centroid p,;, computed as the average
of the vectors x; of its members;

1
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Rocchio classification

» AKA nearest centroid classifier or nearest prototype classifier.
» Uses centroids to represent classes.
» Each class ¢; is represented by its centroid p,;, computed as the average
of the vectors x; of its members;
1
M = ] >

v TjEC;
» The Rocchio decision rule:
» To classify a new object o; (represented by a feature vector x;);

— determine which centroid p; that x; is closest to,

— and assign it to the corresponding class c;.
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The decision boundary of the Rocchio classifier

» Defines the boundary between

two classes by the set of points o
equidistant from the centroids. ° a o
o < ¢
. . . °

» In two dimensions, this set of ®° ° UK

points corresponds to a line. * o N

<
- - . . . o .

» In multiple dimensions: A line in a b o

2D corresponds to a hyperplane in China

a higher-dimensional space.

» The boundaries are not explicitly e
computed; implied by the decision
rule.
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Problems with the Rocchio classifier

» The classification decision ignores the distribution of members locally
within a class, only based on the centroid distance.

» Implicitly assumes that classes are spheres with similar radii.

» Does not work well for classes than cannot be accurately represented by
a single prototype or center (e.g. disconnected or elongated regions).

» Because the Rocchio classifier defines a linear decision boundary, it is
only suitable for problems involving linearly separable classes.
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Problematic: Elongated regions
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Problematic: Non-contiguous regions
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Problematic: Different sizes
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Problematic: Nonlinear boundary
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A side-note on non-linearity

bbb bbb

-~
A 4

» Before we turn to talk about non-linear classifiers, note that:
Classes that are not linearly separable in a given feature space. ..
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A side-note on non-linearity

b b
y=x
b b
b b
» ... may become linearly separable when the features are mapped to a

higher-dimensional space (this is the basis for so-called kernel methods).
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kNN-classification

» k Nearest Neighbor classification.

» An example of a memory-based, non-linear classifier.

Decision rule

» For k = 1: Assign each object to the class of its closest neighbor.

» For k > 1: Assign each object to the majority class among its k closest
neighbors.

» The parameter k must be specified in advance.

19



kNN-classification

>

>

Decision rule

>

>

k Nearest Neighbor classification.

An example of a memory-based, non-linear classifier.

For k£ = 1: Assign each object to the class of its closest neighbor.

For k£ > 1: Assign each object to the majority class among its k closest
neighbors.

The parameter £ must be specified in advance.

Rationale: given the contiguity hypothesis, we expect a test object o; to
have the same label as the training objects in the local region of x;.

Unlike Rocchio, the kNN decision boundary is determined locally.
» The decision boundary defined by the Voronoi tessellation.
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Voronoi tessellation

» Assuming k = 1: For a given set of objects in the space, let each object
define a cell consisting of all points that are closer to that object than
to other objects.

» Results in a set of convex
polygons; so-called Voronoi cells.

» Decomposing a space into such
cells gives us the so-called
Voronoi tessellation.

> In the general case of k > 1, the Voronoi cells are given by the regions
in the space for which the set of k nearest neighbors is the same.
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Voronoi tessellation for 1NN

» Figure 14.3 Voronoi tessellation and decision boundaries (double lines) in 1NN clas-
sification. The three classes are: X, circle and diamond.

Decision boundary for 1INN: defined along the regions of Voronoi cells for
the objects in each class. Shows the non-linearity of KNN.



The effect of K

1-Nearest Neighbor Classifier 15-Nearest Neighbor Classifier

a g ‘\‘

Figures from Elements of Statistical Learning

» What would happen if K = N7
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‘Softened’ ENN-classification

A probabilistic version

» The probability of membership in a
class c¢ given by the proportion of the b
k nearest neighbors in c. b
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‘Softened’ ENN-classification

A probabilistic version

» The probability of membership in a
class c¢ given by the proportion of the b
k nearest neighbors in c. b

Distance weighted votes

» The score for a given class ¢; can be computed as

score(c;, 05) = Z I(ci, xp) sim(r, x;)
TnpEknn(x;)

where knn(x;) is the set of k nearest neighbors of x;, sim is the
similarity measure, and I(¢;, z,,) is 1 if x,, € ¢; and 0 otherwise.

» Can give more accurate results, and also help resolve ties.



Peculiarities of kNN

» Not really any learning or estimation going on at all;

» simply memorizes all training examples.

» Generally with ML; the more training data the better.

» But for kNN, large training sets come with an efficiency penalty.
» Test time is linear in the size of the training set,

» but independent of the number of classes.

» A potential advantage for problems with many classes.

» Notice the similarity to the problem of ad hoc retrieval (e.g., returning
relevant documents for a given query);

» Both are instances of finding nearest neighbors.
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Testing a classifier

v

To evaluate a classifier, we measure its number of correct classification
predictions on unseen test items.

Labeled test data is sometimes referred to as the gold standard.

We evaluate by comparing the predictions made by the model towards
the gold labels.

We will consider different evaluation metrics,
and the different data splits: Training, development, and test sets.

(Why can’t we test on the training data?)
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Using data splits

» While tuning our model, estimated from the training set, we repeatedly

evaluate towards the development or validation data.

» Or, if we have little data, by n-fold cross-validation.

» Then we want to evaluate how well our final model generalizes on a

held-out test set.

Dataset

Training

Testing

Cross Validation

Data Permitting:

Training

Validation

Testing

Holdout Method

Training, Validation, Testing

Joseph Nelson @josephofiowa
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Example: Evaluating classifier decisions

» Predictions for a given class can be wrong or correct in two ways:

prediction
prediction

A 4

positive
negative

gold = positive
true positive (TP)
false negative (FN)

gold = negative
false positive (FP)
true negative (TN)

27



Example: Evaluating classifier decisions

» Predictions for a given class can be wrong or correct in two ways:

prediction
prediction

A 4

positive
negative

gold = positive
true positive (TP)
false negative (FN)

gold = negative
false positive (FP)
true negative (TN)

27



Example: Evaluating classifier decisions

» Predictions for a given class can be wrong or correct in two ways:

prediction
prediction

A 4

positive
negative

gold = positive
true positive (TP)
false negative (FN)

gold = negative
false positive (FP)
true negative (TN)

27



Example: Evaluating classifier decisions

» Predictions for a given class can be wrong or correct in two ways:

prediction
prediction

A 4

positive
negative

gold = positive
true positive (TP)
false negative (FN)

gold = negative
false positive (FP)
true negative (TN)

27



Example: Evaluating classifier decisions

» Predictions for a given class can be wrong or correct in two ways:

prediction
prediction

A 4

positive
negative

gold = positive
true positive (TP)
false negative (FN)

gold = negative
false positive (FP)
true negative (TN)

27



Example: Evaluating classifier decisions

» Predictions for a given class can be wrong or correct in two ways:

prediction
prediction

A 4

positive
negative

gold = positive
true positive (TP)
false negative (FN)

gold = negative
false positive (FP)
true negative (TN)

27



Example: Evaluating classifier decisions

» Predictions for a given class can be wrong or correct in two ways:

prediction
prediction

A 4

positive
negative

gold = positive
true positive (TP)
false negative (FN)

gold = negative
false positive (FP)
true negative (TN)

27



Example: Evaluating classifier decisions

» Predictions for a given class can be wrong or correct in two ways:

prediction
prediction

A 4

positive
negative

gold = positive
true positive (TP)
false negative (FN)

gold = negative
false positive (FP)
true negative (TN)

27



Example: Evaluating classifier decisions

Accuracy = w

\ 4

28



Example: Evaluating classifier decisions

Accuracy = w

_ 146 _

\ 4

28



Example: Evaluating classifier decisions

\ 4

Accuracy = w

_ 146 __

=45 =0.7
Precision = TPT+7PFP
Recall = —LE

TP+FN

28



Example: Evaluating classifier decisions

\ 4

Accuracy = w
_ 146 __
=45 =0.7
Precision = TPT+7PFP
_ 1 _
=1 = 0.5

_ TP
Recall = TPIFN
=-1.-033

142
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Example: Evaluating classifier decisions

Accuracy = w
_ 146 __
=45 =0.7
Precision = TPT+7PFP
_ 1 _
=1 = 0.5

_ TP
Reczill = TPLFN
=13 = 0.33
F-score

\ 4

_ precisionXrecall __
=2X precision—+recall ~— 0.4
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Evaluation measures

_ R NPT
> Accuracy = = = TPITNTFPIFN

» The ratio of correct predictions.

» Not suitable for unbalanced numbers of positive / negative examples.

_TP _
TP+FP

» The number of detected class members that were correct.

» Precision =

TP __
TP+FN

» The number of actual class members that were detected.

» Recall =

» Trade-off: Positive predictions for all examples would give 100% recall
but (typically) terrible precision.
» F-score = 2 x precision Xrecall

precision—+recall

» Balanced measure of precision and recall (harmonic mean).

29



Evaluating multi-class predictions

Macro-averaging

» Sum precision and recall for each class, and then compute global
averages of these.

» The M ACIO average will be highly influenced by the smai classes.
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Evaluating multi-class predictions

Macro-averaging

» Sum precision and recall for each class, and then compute global
averages of these.

» The M ACIO average will be highly influenced by the smai classes.

Micro-averaging

» Sum TPs, FPs, and FNs for all points/objects across all classes, and
then compute global precision and recall.

» The mico average will be highly influenced by the |arge classes.



Next lecture

» Unsupervised machine learning for class discovery: Clustering

\4

Flat vs. hierarchical clustering.
» C-Means Clustering.

Reading: Manning, Raghavan & Schiitze (2008), section 16, 16.1, 16.2,
and 16.4 up until 16.4.1.

v
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