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Evaluation of classifiers
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Unsupervised machine learning for class discovery: Clustering
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k-means clustering
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Recap — Classification
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Testing a classifier

» A classification model imlicitly defines a decision boundary separating
the class regions.

» To evaluate a classifier, we measure the number of correct predictions
on unseen test items.

» Labeled test data is sometimes
refered to as the gold standard.

» The model does not get to see
the gold labels; we only use them
for evaluating its predictions.




Using data splits

» While tuning our model, estimated from the training set, we repeatedly
evaluate towards the development or validation data.

» Or, if we have little data, by n-fold cross-validation.

» Then we evaluate how our final model generalizes on a held-out test set.

Dataset

Training

Testing

Cross Validation

Data Permitting:

Training

Validation

Testing

Holdout Method

Training, Validation, Testing
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Example: Evaluating classifier decisions
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Example: Evaluating classifier decisions

Accuracy = w
_ 146 __
=45 =0.7
Precision = TPT+7PFP
_ 1 _
=1 = 0.5

_ TP
Reczill = TPLFN
=13 = 0.33
F-score
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Evaluation measures

_ R NPT
> Accuracy = = = TPITNTFPIFN

» The ratio of correct predictions.

» Not suitable for unbalanced numbers of positive / negative examples.

_TP _
TP+FP

» The number of detected class members that were correct.

» Precision =

TP __
TP+FN

» The number of actual class members that were detected.

» Recall =

» Trade-off: Positive predictions for all examples would give 100% recall
but (typically) terrible precision.

_ precision Xrecall
» _ — JAAAG G AN S UNAGEIGD
F-score 2 x precision—+recall

» Balanced measure of precision and recall (harmonic mean).



Evaluating multi-class predictions

Macro-averaging

» Sum precision and recall for each class, and then compute global
averages of these.
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Macro-averaging

» Sum precision and recall for each class, and then compute global
averages of these.

» The M ACIO average will be highly influenced by the smai classes.

Micro-averaging

» Sum TPs, FPs, and FNs for all points/objects across all classes, and
then compute global precision and recall.

» The mico average will be highly influenced by the |arge classes.



Classification:

(We will return to classification later in the term.)
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Cluster analysis (klyngeanalyse)
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Clustering or cluster analysis

» Unsupervised learning from unlabeled data.

» Automatically group similar objects together into k categories.
» No pre-defined classes:

» We only specify the features and similarity measure (and k, usually).
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Example applications of cluster analysis

» Clustering for understanding or knowledge acquisition: visualization and
exploratory data analysis.
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Example applications of cluster analysis

v

Clustering for understanding or knowledge acquisition: visualization and
exploratory data analysis.

v

Many applications within IR, e.g.:
» Speed up search: First retrieve the most relevant cluster, then retrieve
documents from within the cluster.

» Presenting the search results: Instead of ranked lists, organize the results
as clusters.

» Dimensionality reduction: class-based features.

v

Social network analysis; identify sub-communities and user segments.

\4

Product recommendations, demographic analysis, news aggregation, ...
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Main types of clustering methods

Hierarchical

» Creates a tree structure of hierarchically nested clusters.

» Tries to directly decompose the data into a set of clusters.

» What we will focus on.



Flat clustering

» Given a set of objects O = {o1,...,0,}, construct a set of clusters
C ={c1,...,cr}, where each object o; is assigned to a cluster c;.

» = a partition.

» Parameters:
» The cardinality k& (the number of clusters).

» The similarity function s.
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Flat clustering

» Given a set of objects O = {o1,...,0,}, construct a set of clusters
C ={c1,...,cr}, where each object o; is assigned to a cluster c;.

» = a partition.

» Parameters:
» The cardinality k& (the number of clusters).
» The similarity function s.
» Formally defined as an optimization problem:
» We want to find an assignment v : O — C' that optimizes some
objective function Fs(7).
» In general terms, we want to optimize for:

» High intra-cluster similarity

» Low inter-cluster similarity
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Flat clustering (cont'd)

Optimization problems are search problems:

» There's a finite number of possible partitionings of O.

» Naive solution: enumerate all possible assignments I' = {v1,...,vm}
and choose the best one,

4 = argmin Fs(7y)
yel'



Flat clustering (cont'd)

Optimization problems are search problems:

» There's a finite number of possible partitionings of O.

» Naive solution: enumerate all possible assignments I' = {v1,...,vm}
and choose the best one,

4 = argmin Fs(7y)
yel'

» Problem: Exponentially many possible partitions.

» Approximate the solution by iteratively improving on an initial (possibly
random) partition until some stopping criterion is met.
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» Unsupervised variant of the Rocchio classifier.

» Goal: Partition the n observed objects into k clusters C' so that each
point x; belongs to the cluster ¢; with the nearest centroid p,.

» Typically assumes Euclidean distance as the similarity function s.
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Unsupervised variant of the Rocchio classifier.

Goal: Partition the n observed objects into k clusters C' so that each
point x; belongs to the cluster ¢; with the nearest centroid p,.

Typically assumes Euclidean distance as the similarity function s.

The optimization problem: For each cluster, minimize the within-cluster
sum of squares, Fy = WCSS:

WCSS = > > [z — pl

c, €C T;€EC;

Equivalent to minimizing the average squared distance between objects
and their cluster centroids (since n is fixed) — a measure of how well
each centroid represents the members assigned to the cluster.
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k-means (cont'd)

» Goal: Partition the n observed objects into k clusters C' so that each
point x; belongs to the cluster ¢; with the nearest centroid p,.

Algorithm

Initialize: Randomly select k centroid seeds.

Iterate:
— Assign each object to the cluster with the nearest centroid.
— Compute new centroids for the clusters.

Terminate: When stopping criterion is satisfied.

» In short, we iteratively reassign memberships and recompute centroids
until the configuration stabilizes.
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. 2
]{_means example for k — 2 n R—l (Manning, Raghavan & Schiitze 2008)
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Comments on k-means

Possible termination criteria

» Fixed number of iterations

» Clusters or centroids are unchanged between iterations.

» Threshold on the decrease of the objective function (absolute or relative
to previous iteration)
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Comments on k-means

Possible termination criteria

» Fixed number of iterations
» Clusters or centroids are unchanged between iterations.

» Threshold on the decrease of the objective function (absolute or relative
to previous iteration)

Some close relatives of k-means

» k-medoids: Like k-means but uses medoids instead of centroids to
represent the cluster centers.

» Fuzzy c-means (FCM): Like k-means but assigns soft memberships in
[0, 1], where membership is a function of the centroid distance.

» The computations of both WCSS and centroids are weighted by the
membership function.



Properties of k-means

» The time complexity is linear, O(kn).

» WCSS is monotonically decreasing (or unchanged) for each iteration.

6 [ f m

» Guaranteed to converge but af | olobalmaximum :
. local maximum
not to find the global L 4
minimum.

» Possible solution: multiple

random initializations. local minimum

» (k-means is non-deterministic) - global minimum

-6 ! ! ! ! ! .

0 0.2 0.4 0.6 0.8 1 1.2
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Comments on k-means

» We initialize the algorithm by choosing random seeds that we use to
compute the first set of centroids, e.g:
» pick k£ random objects from the collection;

» pick k random points in the space;
» pick k sets of m random points and compute centroids for each set; etc.

» The seeds can have a large impact on the resulting clustering.

» Qutliers are troublemakers.

21



Flat Clustering: The good and the bad

» Conceptually simple, and easy to implement.

» Efficient. Typically linear in the number of objects.

» The dependence on random seeds as in k-means makes the clustering
non-deterministic.

» The number of clusters & must be pre-specified. Often no principled
means of a priori specifying k.

» Not as informative as the more structured clusterings produced by
hierarchical methods.



Connecting the dots

» Focus of the last two lectures: Rocchio / nearest centroid classification,
ENN classification, and k-means clustering.

» Note how k-means clustering can be thought of as performing Rocchio
classification in each iteration.
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Connecting the dots

» Focus of the last two lectures: Rocchio / nearest centroid classification,
ENN classification, and k-means clustering.

» Note how k-means clustering can be thought of as performing Rocchio
classification in each iteration.

» Moreover, Rocchio can be thought of as a 1 Nearest Neighbor classifier
with respect to the centroids.

» How can this be? Isn’t kNN non-linear and Rocchio linear?
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Connecting the dots

» Recall that the NN decision boundary is locally linear for each cell in
the Voronoi diagram.

» For both Rocchio and k-means, we're partitioning the observations
according to the Voronoi diagram generated by the centroids.

» Figure 14.3  Voronoi tessellation and decision boundaries (double lines) in INN clas-
sification. The three classes are: X, circle and diamond.
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Tying up a loose end
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BoW representations of text

v

So far we've been assuming BoW features for representing documents.

\4

Often also be used for representing other units of texts, like sentences.

» Many sentence-classification tasks in NLP.

v

Example: polarity classification (part of sentiment analysis).

| was impressed, this was not bad!

=

{was, was, !, not, |, impressed, bad, this }

» What is missing with a BoW representation?

26



Dealing with compositionality

| was impressed, this was not bad!
+
| was not impressed, this was bad!

» Will have the same BoW representation! :(
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Dealing with compositionality

| was impressed, this was not bad!
+
| was not impressed, this was bad!

» Will have the same BoW representation! :(

» A simplistic but much-used approximation to capture ordering
constraints: n-grams (typically bigrams and trigrams).

» Ordered sub-sequences of n words.
{was, was, !, not, |, impressed, bad, this }

VS.

{'l was’, ‘was impressed’ ... ‘was not’, ‘not bad’, ‘bad, !" }
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No information sharing

» No information sharing between features.

» All features are equally distinct.

» The pizza was great
» The margeritha was awesome

» The dog was sick

» Would be nice if our BoW representations knew that pizza and
margeritha are similar to each other (but not to dog).

» We've discussed one possible approach in this lecture. .. What?

» Will return to this issue in a few weeks.
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Next lecture

» Focus on words rather than documents.

» Distributional models of word meaning (lexical semantics).
» Example tasks for evaluating word vectors
» Lecturers:

» Eivind Alexander Bergem
» Samia Touileb

29



	Recap
	Evaluation

