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Today

I Evaluation of classifiers
I Unsupervised machine learning for class discovery: Clustering
I k-means clustering
I Recap
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Recap – Classification

I Supervised vector space classification
I Rocchio
I kNN
I Differences?
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Testing a classifier

I A classification model imlicitly defines a decision boundary separating
the class regions.

I To evaluate a classifier, we measure the number of correct predictions
on unseen test items.

I Labeled test data is sometimes
refered to as the gold standard.

I The model does not get to see
the gold labels; we only use them
for evaluating its predictions.
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Using data splits

I While tuning our model, estimated from the training set, we repeatedly
evaluate towards the development or validation data.

I Or, if we have little data, by n-fold cross-validation.
I Then we evaluate how our final model generalizes on a held-out test set.
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Example: Evaluating classifier decisions

I Predictions for a given class can be wrong or correct in two ways.

gold = positive gold = negative
prediction = positive true positive (TP) false positive (FP)
prediction = negative false negative (FN) true negative (TN)
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Example: Evaluating classifier decisions

Accuracy = TP+TN
N

= 1+6
10 = 0.7

Precision = TP
TP+FP

= 1
1+1 = 0.5

Recall = TP
TP+FN

= 1
1+2 = 0.33

F-score
= 2× precision×recall

precision+recall = 0.4
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Evaluation measures

I Accuracy = TP+TN
N = TP+TN

TP+TN+FP+FN
I The ratio of correct predictions.
I Not suitable for unbalanced numbers of positive / negative examples.

I Precision = TP
TP+FP

I The number of detected class members that were correct.

I Recall = TP
TP+FN

I The number of actual class members that were detected.
I Trade-off: Positive predictions for all examples would give 100% recall
but (typically) terrible precision.

I F-score = 2× precision×recall
precision+recall

I Balanced measure of precision and recall (harmonic mean).
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Evaluating multi-class predictions

Macro-averaging
I Sum precision and recall for each class, and then compute global
averages of these.

I The macro average will be highly influenced by the small classes.

Micro-averaging
I Sum TPs, FPs, and FNs for all points/objects across all classes, and
then compute global precision and recall.

I The micro average will be highly influenced by the large classes.

9



Evaluating multi-class predictions

Macro-averaging
I Sum precision and recall for each class, and then compute global
averages of these.

I The macro average will be highly influenced by the small classes.

Micro-averaging
I Sum TPs, FPs, and FNs for all points/objects across all classes, and
then compute global precision and recall.

I The micro average will be highly influenced by the large classes.

9



Classification:

(We will return to classification later in the term.)
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Cluster analysis (klyngeanalyse)

I A cluster: ‘A group of similar things
or people positioned or occurring
closely together.’ Oxford Dictionaries

I Cf. the contiguity hypothesis in
classification

Clustering or cluster analysis
I Unsupervised learning from unlabeled data.
I Automatically group similar objects together into k categories.
I No pre-defined classes:
I We only specify the features and similarity measure (and k, usually).
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Example applications of cluster analysis

I Clustering for understanding or knowledge acquisition: visualization and
exploratory data analysis.

I Many applications within IR, e.g.:
I Speed up search: First retrieve the most relevant cluster, then retrieve
documents from within the cluster.

I Presenting the search results: Instead of ranked lists, organize the results
as clusters.

I Dimensionality reduction: class-based features.
I Social network analysis; identify sub-communities and user segments.
I Product recommendations, demographic analysis, news aggregation, . . .
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Main types of clustering methods

Hierarchical
I Creates a tree structure of hierarchically nested clusters.

Flat
I Tries to directly decompose the data into a set of clusters.
I What we will focus on.
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Flat clustering

I Given a set of objects O = {o1, . . . , on}, construct a set of clusters
C = {c1, . . . , ck}, where each object oi is assigned to a cluster cj .

I = a partition.
I Parameters:

I The cardinality k (the number of clusters).
I The similarity function s.

I Formally defined as an optimization problem:

I We want to find an assignment γ : O → C that optimizes some
objective function Fs(γ).

I In general terms, we want to optimize for:
I High intra-cluster similarity
I Low inter-cluster similarity
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Flat clustering (cont’d)

Optimization problems are search problems:
I There’s a finite number of possible partitionings of O.

I Naive solution: enumerate all possible assignments Γ = {γ1, . . . , γm}
and choose the best one,

γ̂ = arg min
γ∈Γ

Fs(γ)

I Problem: Exponentially many possible partitions.

I Approximate the solution by iteratively improving on an initial (possibly
random) partition until some stopping criterion is met.
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k-means

I Unsupervised variant of the Rocchio classifier.
I Goal: Partition the n observed objects into k clusters C so that each
point xj belongs to the cluster ci with the nearest centroid µi.

I Typically assumes Euclidean distance as the similarity function s.

I The optimization problem: For each cluster, minimize the within-cluster
sum of squares, Fs = WCSS:

WCSS =
∑
ci∈C

∑
xj∈ci

‖xj − µi‖
2

I Equivalent to minimizing the average squared distance between objects
and their cluster centroids (since n is fixed) – a measure of how well
each centroid represents the members assigned to the cluster.
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k-means (cont’d)

I Goal: Partition the n observed objects into k clusters C so that each
point xj belongs to the cluster ci with the nearest centroid µi.

Algorithm
Initialize: Randomly select k centroid seeds.
Iterate:

– Assign each object to the cluster with the nearest centroid.
– Compute new centroids for the clusters.

Terminate: When stopping criterion is satisfied.

I In short, we iteratively reassign memberships and recompute centroids
until the configuration stabilizes.
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k-means example for k = 2 in R2
(Manning, Raghavan & Schütze 2008)
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Comments on k-means

Possible termination criteria
I Fixed number of iterations

I Clusters or centroids are unchanged between iterations.

I Threshold on the decrease of the objective function (absolute or relative
to previous iteration)

Some close relatives of k-means
I k-medoids: Like k-means but uses medoids instead of centroids to
represent the cluster centers.

I Fuzzy c-means (FCM): Like k-means but assigns soft memberships in
[0, 1], where membership is a function of the centroid distance.

I The computations of both WCSS and centroids are weighted by the
membership function.
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Properties of k-means

I The time complexity is linear, O(kn).
I WCSS is monotonically decreasing (or unchanged) for each iteration.

I Guaranteed to converge but
not to find the global
minimum.

I Possible solution: multiple
random initializations.

I (k-means is non-deterministic)
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Comments on k-means

‘Seeding’
I We initialize the algorithm by choosing random seeds that we use to
compute the first set of centroids, e.g:

I pick k random objects from the collection;
I pick k random points in the space;
I pick k sets of m random points and compute centroids for each set; etc.

I The seeds can have a large impact on the resulting clustering.
I Outliers are troublemakers.
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Flat Clustering: The good and the bad

Pros
I Conceptually simple, and easy to implement.
I Efficient. Typically linear in the number of objects.

Cons
I The dependence on random seeds as in k-means makes the clustering
non-deterministic.

I The number of clusters k must be pre-specified. Often no principled
means of a priori specifying k.

I Not as informative as the more structured clusterings produced by
hierarchical methods.
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Connecting the dots

I Focus of the last two lectures: Rocchio / nearest centroid classification,
kNN classification, and k-means clustering.

I Note how k-means clustering can be thought of as performing Rocchio
classification in each iteration.

I Moreover, Rocchio can be thought of as a 1 Nearest Neighbor classifier
with respect to the centroids.

I How can this be? Isn’t kNN non-linear and Rocchio linear?
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Connecting the dots

I Recall that the kNN decision boundary is locally linear for each cell in
the Voronoi diagram.

I For both Rocchio and k-means, we’re partitioning the observations
according to the Voronoi diagram generated by the centroids.
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Tying up a loose end
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BoW representations of text

I So far we’ve been assuming BoW features for representing documents.

I Often also be used for representing other units of texts, like sentences.

I Many sentence-classification tasks in NLP.

I Example: polarity classification (part of sentiment analysis).

I was impressed, this was not bad!

⇒
{was, was, !, not, I, impressed, bad, this }

I What is missing with a BoW representation?
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Dealing with compositionality

I was impressed, this was not bad!
,

I was not impressed, this was bad!

I Will have the same BoW representation! :(

I A simplistic but much-used approximation to capture ordering
constraints: n-grams (typically bigrams and trigrams).

I Ordered sub-sequences of n words.

{was, was, !, not, I, impressed, bad, this }

vs.

{‘I was’, ‘was impressed’ . . . ‘was not’, ‘not bad’, ‘bad, !’ }
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No information sharing

I No information sharing between features.

I All features are equally distinct.

I The pizza was great
I The margeritha was awesome
I The dog was sick

I Would be nice if our BoW representations knew that pizza and
margeritha are similar to each other (but not to dog).

I We’ve discussed one possible approach in this lecture. . .What?

I Will return to this issue in a few weeks.
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Next lecture

I Focus on words rather than documents.

I Distributional models of word meaning (lexical semantics).

I Example tasks for evaluating word vectors
I Lecturers:

I Eivind Alexander Bergem
I Samia Touileb
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