IN2110: Språkteknologiske metoder Ord: Leksikalsk semantikk og ordvektorer

Eivind Alexander Bergem Samia Touileb

Språkteknologigruppen (LTG)

19. februar 2019

- Evaluation of classifiers.
- ► Unsupervised machine learning for class discovery: Clustering.
- ► k-means clustering.

- Focus on *words* rather than documents.
- Distributional models of word meaning (lexical semantics).
- ► Vector Semantics.
- ► Words and Vectors.
- Example tasks for evaluating word vectors.

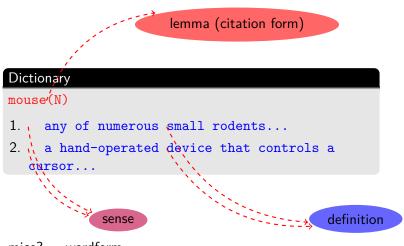
Lexical Semantics

- Lexical Semantics = linguistic study of word meaning.
- How should we represent the meaning of a word?
- What do we want a word meaning model to do for us?

We want a model of word meaning to tell us (e.g.):

- ▶ words have similar meanings (*cat* is similar to *dog*).
- ▶ words are antonyms (*cold* is the opposite of *hot*).
- words have positive or negative connotations (*happy* and *sad* respectively).
- the meaning of *sell*, *pay*, *buy* are different perspectives on the same underlying purchasing event.

What do words mean?



mice? = wordform

- ► A sense or "concept" is the meaning component of a word.
- Important component of word meaning = relationships between word senses.

- Synonyms have the same meaning in some or all contexts.
 - ► couch & sofa, big & large, automobile & car, vomit & throw up, water & H₂0
- Synonymy between senses: "a word sense whose meaning is (nearly) identical to a sense of another word". Chapter 6, p.3.
- Synonymy between words (more formal): "two words are synonyms if they are substitutable one for the other in any sentence without changing the *truth conditions* of the sentence, the situations in which the sentence would be true." Chapter 6, p.3.
- No examples of perfect synonymy.
- The Linguistic Principle of Contrast:
 - Difference in form \rightarrow difference in meaning.
 - ► water & H₂0: H₂0 appropriate in scientific contexts, inappropriate in hiking guide.

Senses that are opposites with respect to one feature of meaning. Otherwise, very similar!

 dark/light , short/long , fast/slow , rise/fall , hot/cold , up/down , in/out

More formally, antonyms can:

- ► define a binary opposition, or be at opposite ends of a scale
 - ► long/short , fast/slow
- ► be reversives:
 - ► rise/fall, up/down

How to automatically distinguish synonyms from antonyms ?

Words don't have many synonyms, but have lots of similar words.

From synonymy to similarity:

• relations between senses \rightarrow relations between words.

Words with similar meanings. Not synonyms, but sharing some element of meaning:

Examples

- ► alligator, crocodile
- love, affection
- ► cat, dog

Word relatedness (or word association): words are related if they do not share features, but commonly "participate" in a shared event.

Similarity VS Relatedness

- ► car , bicycle: similar.
- car , gasoline: related, not similar.

Word Relatedness

- car , tyre
- car , motorway
- ► car , crash
- ► coffee , cup

Words can be related in any way, e.g. via a semantic frame or semantic field.

Values of word similarity

How to get values for word similarities?

How to automatically differentiate between word similarity and word relatedness?

► Ask human judges!

SimLex-999 dataset (Hill et al., 2015):

- ► gold standard resource for evaluating distributional semantic models.
- quantifies similarity rather than relatedness.

word1	word2	similarity
vanish	disappear	9.8
behave	obey	7.3
belief	impression	5.95
muscle	bone	3.65
modest	flexible	0.98
hole	agreement	0.3

Words that:

- cover a particular semantic domain.
- bear structured relations with each other.

Examples

- ► hospitals: surgeon, scalpel, nurse, anesthetic, hospital
- ► restaurants: waiter, menu, plate, food, chef
- ► houses: door, roof, kitchen, family, bed

Closely related to semantic fields.

"A semantic frame is a set of words that denote perspectives or participants in a particular type of event." Chapter 6, p.4.

Frames have semantic roles, and words in a sentence can take on these roles.

- ► buy, sell, pay.
- buyer, seller, goods, money.

Semantic frames makes it possible for systems to recognize paraphrases.

- Sam bought the book from Ling.
- Ling sold the book to Sam.

Word senses can be related taxonomically.

hyponyms and hypernyms:

- ► a word (sense) is a hyponym of another word (sense) if the first is more specific, denoting a subclass of the other.
- ► a word (sense) is a hypernym of another word (sense) if the first one is more general.

Examples

- car is a hyponym of vehicle.
- mango is a hyponym of fruit.
- vehicle is a hypernym of car.
- fruit is a hypernym of mango.

Hypernymy can be defined in terms of entailment:

- ► sense A is a hyponym of B if everything that is A is also B.
- being A entails being B.

Hyponymy and hypernymy are transitive: A hyponym of B, B hyponym of C, then A is hyponym of C.

Hyponyms and hypernyms structure is the IS-A hierarchy: A IS-A B, or B subsumes A.

Hyponym and hypernym too similar: easily confused.

The words subordinate and superordinate are used instead.

Superordinate	vehicle	fruit	furniture
Subordinate	car	mango	chair

Words have affective meanings or connotations.

Connotations are aspects of a word's meaning related to a writer/reader's emotions, sentiment, opinions, or evaluations.

- ► positive connotations (happy).
- negative connotations (sad).
- ► positive evaluation (great, love) sentiment.
- ▶ negative evaluation (terrible, hate) sentiment.

In affective meaning (Osgood et al., 1957) – words vary along 3 dimensions:

- ► valence, arousal, and dominance represented by numbers.
- word meaning can be represented as a vector, a list of numbers, point in a dimensional space.

Concepts or word senses

- Have a complex many-to-many association with words (homonymy, multiple senses)
- Have relations with each other
 - Synonymy , Antonymy, Similarity, Relatedness, Superordinate/subordinate, Connotation

How to build a computational model that successfully deals with the different aspects of word meaning?

How to define word meaning for a computational model?

Distributional hypothesis

- ► A perfect model that can deal with all the aspects of word meaning is very difficult to find!
- Linguistic and philosophical works from the 1950's inspired the current best model: vector semantics
- "The meaning of a word is its use in the language" (Ludwig Wittgenstein, 1953, PI 43).
- ► The linguistic distributionalists Joos (1950), Harris (1954), Firth (1957):
 - words are defined by their environments or distributions (the words around them).
 - a word's distribution is the set of contexts in which it occurs: the neighboring words or grammatical environment.
- "If A and B have almost identical environments we say that they are synonyms." (Zellig Harris, 1954).

 \rightarrow two words that occur in very similar distributions (context, similar words) tend to have the same meaning.

Suppose you see these sentences:

- Ongchoi is delicious sautéed with garlic.
- Ongchoi is superb over rice.
- Ongchoi **leaves** with salty sauces.

And you've also seen these:

- ...spinach sautéed with garlic over rice.
- Chard stems and **leaves** are **delicious**.
- Collard greens and other **salty** leafy greens.

Conclusion:

 Ongchoi is a leafy green like spinach, chard (bladbete), or collard greens (en type grønnkål).

Computationally:

- count words in the context of *ongchoi*:
 - ▶ find words like *sauteed*, *eaten*, *garlic*.
 - ► these words occur around *spinach/collard green*.

 \rightarrow there is a similarity between *ongchoi* and *spinach/collard green*.

Vector semantics combines two intuitions:

- distributional intuition.
- ▶ vector intuition (Osgood et al., 1957, slide 22)

Model of word meaning

Build a model of meaning focused on similarity:

- Each word = a vector.
- ► Similar words are "nearby in space".

to	by	's		not good bad	
that	now		are	dislike	worst
а	i	you		incredibly bad	
than	with	is			worse

A word vector is called an "embedding" (embedded into a space).

The standard way to represent meaning in NLP.

Fine-grained model of meaning for similarity:

We focus on 2 kinds of embeddings:

- ► Tf-idf:
 - Sparse vectors and common baseline model.
 - ► Words are represented by a simple function of the counts of nearby words.
- ► Word2vec (next week with Fredrik):
 - Dense vectors.
 - Representation is created by training a classifier to distinguish nearby and far-away words.

Vectors and documents VS Words and vectors

Distributional models of meaning (vectors) generally based on a co-occurrence matrix.

Term-document matrix VS word-word matrix:

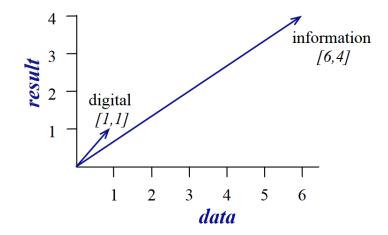
	As You Like It		Twelfth Night		Julius Caesar		Henry V	
battle	1		0		7		13	
good	114		80		62		89	
fool	36		58		1		4	
wit	20		15		2		3	

	As ۱	ou Like It	Twelfth Night	Julius Caesar	Henry V	/
battle		1	0	7	13	
good	(114	80	62	89)
fool		36	58	1	4	
wit		20	15	2	3	

word-word matrix or term-term matrix or term-context matrix.

Two words are similar in meaning if their context vectors are similar.

	aardvark	 computer	data	pinch	result	sugar
apricot	0	 0	0	1	0	1
pineapple	0	 0	0	1	0	1
digital	0	 2	1	0	1	0
infomation	0	 1	6	0	4	0



Based on all we've seen so far, how to compute word similarity? (Eivind will tell you more about it!)