
IN2110: Språkteknologiske metoder

IN2110: Språkteknologiske metoder
Syntaktisk struktur

Stephan Oepen

Språkteknologigruppen (LTG)

26. mars 2019

Topics for Today

I Short recap: The Viterbi algorithm
I Filling in the Viterbi trellis

I Recursive problem definition

I Move on to grammatical structure
I The case for structure

I Context-free grammars

I Treebanks

I Probability Estimation

I Quick review of anonymous questionnaire

2

Topics for Today

I Short recap: The Viterbi algorithm
I Filling in the Viterbi trellis

I Recursive problem definition

I Move on to grammatical structure
I The case for structure

I Context-free grammars

I Treebanks

I Probability Estimation

I Quick review of anonymous questionnaire

2

Topics for Today

I Short recap: The Viterbi algorithm
I Filling in the Viterbi trellis

I Recursive problem definition

I Move on to grammatical structure
I The case for structure

I Context-free grammars

I Treebanks

I Probability Estimation

I Quick review of anonymous questionnaire

2

Recap: From the Diaries of Jason Eisner

Missing records of weather in Baltimore, MD, for Summer 2007

I Jason likes to eat ice cream.

I He records his daily ice cream consumption in his diary.

I The number of ice creams he ate was influenced, but not entirely
determined by the weather.

I Today’s weather is partially predictable from yesterday’s.

A Hidden Markov Model

I Hidden states: {H,C} (plus pseudo-states 〈S〉 and 〈/S〉)

I Observations: {1, 2, 3}

3

Recap: From the Diaries of Jason Eisner

Missing records of weather in Baltimore, MD, for Summer 2007

I Jason likes to eat ice cream.

I He records his daily ice cream consumption in his diary.

I The number of ice creams he ate was influenced, but not entirely
determined by the weather.

I Today’s weather is partially predictable from yesterday’s.

A Hidden Markov Model

I Hidden states: {H,C} (plus pseudo-states 〈S〉 and 〈/S〉)

I Observations: {1, 2, 3}

3

Recap: Ice Cream and Weather in Baltimore, MD

〈S〉

H C

〈/S〉

0.8 0.2

0.2

0.6 0.2

0.2

0.5

0.3

P (1|H)=0.2
P (2|H)=0.4
P (3|H)=0.4

P (1|C) = 0.5
P (2|C) = 0.4
P (3|C) = 0.1

4

Recap: Viterbi Decoding—Thanks, Bec!

C C C

H H H

〈S〉 〈/S〉

3 1 3

o1 o2 o3

H H H〈 〉

P (H|S
)P (3|H

)

0.8 ∗
0.4

P (C|S)P (3|C)
0.2 ∗ 0.1

P (H|H)P (1|H)
0.6 ∗ 0.2P (C|H)P (1|C)

0.2 ∗ 0.5

P
(H
|C

)P
(1|

H
)

0.3
∗ 0.2

P (C|C)P (1|C)
0.5 ∗ 0.5

P (H|H)P (3|H)
0.6 ∗ 0.4P (C|H)P (3|C)

0.2 ∗ 0.1

P
(H
|C

)P
(3|

H
)

0.3
∗ 0.4

P (C|C)P (3|C)
0.5 ∗ 0.1

P (〈/S〉|H)0.2

P (〈/
S〉|

C)

0.2

v1(H) = 0.32

v1(C) = 0.02

v2(H) =
max(.32 ∗ .12, .02 ∗ .06)

= .0384

v2(C) =
max(.32 ∗ .1, .02 ∗ .25)

= .032

v3(H) =
max(.0384 ∗ .24, .032 ∗ .12)

= .0092

v3(C) =
max(.0384 ∗ .02, .032 ∗ .05)

= .0016

vf (〈/S〉) =
max(.0092 ∗ .2,

.0016 ∗ .2)
= .0018

5

Recap: Viterbi Decoding—Thanks, Bec!

C C C

H H H

〈S〉 〈/S〉

3 1 3

o1 o2 o3

H H H〈 〉

P (H|S
)P (3|H

)

0.8 ∗
0.4

P (C|S)P (3|C)
0.2 ∗ 0.1

P (H|H)P (1|H)
0.6 ∗ 0.2P (C|H)P (1|C)

0.2 ∗ 0.5

P
(H
|C

)P
(1|

H
)

0.3
∗ 0.2

P (C|C)P (1|C)
0.5 ∗ 0.5

P (H|H)P (3|H)
0.6 ∗ 0.4P (C|H)P (3|C)

0.2 ∗ 0.1

P
(H
|C

)P
(3|

H
)

0.3
∗ 0.4

P (C|C)P (3|C)
0.5 ∗ 0.1

P (〈/S〉|H)0.2

P (〈/
S〉|

C)

0.2

v1(H) = 0.32

v1(C) = 0.02

v2(H) =
max(.32 ∗ .12, .02 ∗ .06)

= .0384

v2(C) =
max(.32 ∗ .1, .02 ∗ .25)

= .032

v3(H) =
max(.0384 ∗ .24, .032 ∗ .12)

= .0092

v3(C) =
max(.0384 ∗ .02, .032 ∗ .05)

= .0016

vf (〈/S〉) =
max(.0092 ∗ .2,

.0016 ∗ .2)
= .0018

5

Recap: Viterbi Decoding—Thanks, Bec!

C C C

H H H

〈S〉 〈/S〉

3 1 3

o1 o2 o3

H H H〈 〉

P (H|S
)P (3|H

)

0.8 ∗
0.4

P (C|S)P (3|C)
0.2 ∗ 0.1

P (H|H)P (1|H)
0.6 ∗ 0.2P (C|H)P (1|C)

0.2 ∗ 0.5

P
(H
|C

)P
(1|

H
)

0.3
∗ 0.2

P (C|C)P (1|C)
0.5 ∗ 0.5

P (H|H)P (3|H)
0.6 ∗ 0.4P (C|H)P (3|C)

0.2 ∗ 0.1

P
(H
|C

)P
(3|

H
)

0.3
∗ 0.4

P (C|C)P (3|C)
0.5 ∗ 0.1

P (〈/S〉|H)0.2

P (〈/
S〉|

C)

0.2

v1(H) = 0.32

v1(C) = 0.02

v2(H) =
max(.32 ∗ .12, .02 ∗ .06)

= .0384

v2(C) =
max(.32 ∗ .1, .02 ∗ .25)

= .032

v3(H) =
max(.0384 ∗ .24, .032 ∗ .12)

= .0092

v3(C) =
max(.0384 ∗ .02, .032 ∗ .05)

= .0016

vf (〈/S〉) =
max(.0092 ∗ .2,

.0016 ∗ .2)
= .0018

5

Recap: Viterbi Decoding—Thanks, Bec!

C C C

H H H

〈S〉 〈/S〉

3 1 3

o1 o2 o3

H H H〈 〉

P (H|S
)P (3|H

)

0.8 ∗
0.4

P (C|S)P (3|C)
0.2 ∗ 0.1

P (H|H)P (1|H)
0.6 ∗ 0.2P (C|H)P (1|C)

0.2 ∗ 0.5

P
(H
|C

)P
(1|

H
)

0.3
∗ 0.2

P (C|C)P (1|C)
0.5 ∗ 0.5

P (H|H)P (3|H)
0.6 ∗ 0.4P (C|H)P (3|C)

0.2 ∗ 0.1

P
(H
|C

)P
(3|

H
)

0.3
∗ 0.4

P (C|C)P (3|C)
0.5 ∗ 0.1

P (〈/S〉|H)0.2

P (〈/
S〉|

C)

0.2

v1(H) = 0.32

v1(C) = 0.02

v2(H) =
max(.32 ∗ .12, .02 ∗ .06)

= .0384

v2(C) =
max(.32 ∗ .1, .02 ∗ .25)

= .032

v3(H) =
max(.0384 ∗ .24, .032 ∗ .12)

= .0092

v3(C) =
max(.0384 ∗ .02, .032 ∗ .05)

= .0016

vf (〈/S〉) =
max(.0092 ∗ .2,

.0016 ∗ .2)
= .0018

5

Recap: Viterbi Decoding—Thanks, Bec!

C C C

H H H

〈S〉 〈/S〉

3 1 3

o1 o2 o3

H H H〈 〉

P (H|S
)P (3|H

)

0.8 ∗
0.4

P (C|S)P (3|C)
0.2 ∗ 0.1

P (H|H)P (1|H)
0.6 ∗ 0.2P (C|H)P (1|C)

0.2 ∗ 0.5

P
(H
|C

)P
(1|

H
)

0.3
∗ 0.2

P (C|C)P (1|C)
0.5 ∗ 0.5

P (H|H)P (3|H)
0.6 ∗ 0.4P (C|H)P (3|C)

0.2 ∗ 0.1

P
(H
|C

)P
(3|

H
)

0.3
∗ 0.4

P (C|C)P (3|C)
0.5 ∗ 0.1

P (〈/S〉|H)0.2

P (〈/
S〉|

C)

0.2

v1(H) = 0.32

v1(C) = 0.02

v2(H) =
max(.32 ∗ .12, .02 ∗ .06)

= .0384

v2(C) =
max(.32 ∗ .1, .02 ∗ .25)

= .032

v3(H) =
max(.0384 ∗ .24, .032 ∗ .12)

= .0092

v3(C) =
max(.0384 ∗ .02, .032 ∗ .05)

= .0016

vf (〈/S〉) =
max(.0092 ∗ .2,

.0016 ∗ .2)
= .0018

5

Recap: Viterbi Decoding—Thanks, Bec!

C C C

H H H

〈S〉 〈/S〉

3 1 3

o1 o2 o3

H H H〈 〉

P (H|S
)P (3|H

)

0.8 ∗
0.4

P (C|S)P (3|C)
0.2 ∗ 0.1

P (H|H)P (1|H)
0.6 ∗ 0.2

P (C|H)P (1|C)

0.2 ∗ 0.5

P
(H
|C

)P
(1|

H
)

0.3
∗ 0.2

P (C|C)P (1|C)
0.5 ∗ 0.5

P (H|H)P (3|H)
0.6 ∗ 0.4P (C|H)P (3|C)

0.2 ∗ 0.1

P
(H
|C

)P
(3|

H
)

0.3
∗ 0.4

P (C|C)P (3|C)
0.5 ∗ 0.1

P (〈/S〉|H)0.2

P (〈/
S〉|

C)

0.2

v1(H) = 0.32

v1(C) = 0.02

v2(H) =
max(.32 ∗ .12, .02 ∗ .06)

= .0384

v2(C) =
max(.32 ∗ .1, .02 ∗ .25)

= .032

v3(H) =
max(.0384 ∗ .24, .032 ∗ .12)

= .0092

v3(C) =
max(.0384 ∗ .02, .032 ∗ .05)

= .0016

vf (〈/S〉) =
max(.0092 ∗ .2,

.0016 ∗ .2)
= .0018

5

Recap: Viterbi Decoding—Thanks, Bec!

C C C

H H H

〈S〉 〈/S〉

3 1 3

o1 o2 o3

H H H〈 〉

P (H|S
)P (3|H

)

0.8 ∗
0.4

P (C|S)P (3|C)
0.2 ∗ 0.1

P (H|H)P (1|H)
0.6 ∗ 0.2

P (C|H)P (1|C)

0.2 ∗ 0.5

P
(H
|C

)P
(1|

H
)

0.3
∗ 0.2

P (C|C)P (1|C)
0.5 ∗ 0.5

P (H|H)P (3|H)
0.6 ∗ 0.4P (C|H)P (3|C)

0.2 ∗ 0.1

P
(H
|C

)P
(3|

H
)

0.3
∗ 0.4

P (C|C)P (3|C)
0.5 ∗ 0.1

P (〈/S〉|H)0.2

P (〈/
S〉|

C)

0.2

v1(H) = 0.32

v1(C) = 0.02

v2(H) =
max(.32 ∗ .12, .02 ∗ .06)

= .0384

v2(C) =
max(.32 ∗ .1, .02 ∗ .25)

= .032

v3(H) =
max(.0384 ∗ .24, .032 ∗ .12)

= .0092

v3(C) =
max(.0384 ∗ .02, .032 ∗ .05)

= .0016

vf (〈/S〉) =
max(.0092 ∗ .2,

.0016 ∗ .2)
= .0018

5

Recap: Viterbi Decoding—Thanks, Bec!

C C C

H H H

〈S〉 〈/S〉

3 1 3

o1 o2 o3

H H H〈 〉

P (H|S
)P (3|H

)

0.8 ∗
0.4

P (C|S)P (3|C)
0.2 ∗ 0.1

P (H|H)P (1|H)
0.6 ∗ 0.2P (C|H)P (1|C)

0.2 ∗ 0.5

P
(H
|C

)P
(1|

H
)

0.3
∗ 0.2

P (C|C)P (1|C)
0.5 ∗ 0.5

P (H|H)P (3|H)
0.6 ∗ 0.4P (C|H)P (3|C)

0.2 ∗ 0.1

P
(H
|C

)P
(3|

H
)

0.3
∗ 0.4

P (C|C)P (3|C)
0.5 ∗ 0.1

P (〈/S〉|H)0.2

P (〈/
S〉|

C)

0.2

v1(H) = 0.32

v1(C) = 0.02

v2(H) =
max(.32 ∗ .12, .02 ∗ .06)

= .0384

v2(C) =
max(.32 ∗ .1, .02 ∗ .25)

= .032

v3(H) =
max(.0384 ∗ .24, .032 ∗ .12)

= .0092

v3(C) =
max(.0384 ∗ .02, .032 ∗ .05)

= .0016

vf (〈/S〉) =
max(.0092 ∗ .2,

.0016 ∗ .2)
= .0018

5

Recap: Viterbi Decoding—Thanks, Bec!

C C C

H H H

〈S〉 〈/S〉

3 1 3

o1 o2 o3

H H H〈 〉

P (H|S
)P (3|H

)

0.8 ∗
0.4

P (C|S)P (3|C)
0.2 ∗ 0.1

P (H|H)P (1|H)
0.6 ∗ 0.2P (C|H)P (1|C)

0.2 ∗ 0.5

P
(H
|C

)P
(1|

H
)

0.3
∗ 0.2

P (C|C)P (1|C)
0.5 ∗ 0.5

P (H|H)P (3|H)
0.6 ∗ 0.4P (C|H)P (3|C)

0.2 ∗ 0.1

P
(H
|C

)P
(3|

H
)

0.3
∗ 0.4

P (C|C)P (3|C)
0.5 ∗ 0.1

P (〈/S〉|H)0.2

P (〈/
S〉|

C)

0.2

v1(H) = 0.32

v1(C) = 0.02

v2(H) =
max(.32 ∗ .12, .02 ∗ .06)

= .0384

v2(C) =
max(.32 ∗ .1, .02 ∗ .25)

= .032

v3(H) =
max(.0384 ∗ .24, .032 ∗ .12)

= .0092

v3(C) =
max(.0384 ∗ .02, .032 ∗ .05)

= .0016

vf (〈/S〉) =
max(.0092 ∗ .2,

.0016 ∗ .2)
= .0018

5

Recap: Viterbi Decoding—Thanks, Bec!

C C C

H H H

〈S〉 〈/S〉

3 1 3

o1 o2 o3

H H H〈 〉

P (H|S
)P (3|H

)

0.8 ∗
0.4

P (C|S)P (3|C)
0.2 ∗ 0.1

P (H|H)P (1|H)
0.6 ∗ 0.2P (C|H)P (1|C)

0.2 ∗ 0.5

P
(H
|C

)P
(1|

H
)

0.3
∗ 0.2

P (C|C)P (1|C)
0.5 ∗ 0.5

P (H|H)P (3|H)
0.6 ∗ 0.4

P (C|H)P (3|C)

0.2 ∗ 0.1

P
(H
|C

)P
(3|

H
)

0.3
∗ 0.4

P (C|C)P (3|C)
0.5 ∗ 0.1

P (〈/S〉|H)0.2

P (〈/
S〉|

C)

0.2

v1(H) = 0.32

v1(C) = 0.02

v2(H) =
max(.32 ∗ .12, .02 ∗ .06)

= .0384

v2(C) =
max(.32 ∗ .1, .02 ∗ .25)

= .032

v3(H) =
max(.0384 ∗ .24, .032 ∗ .12)

= .0092

v3(C) =
max(.0384 ∗ .02, .032 ∗ .05)

= .0016

vf (〈/S〉) =
max(.0092 ∗ .2,

.0016 ∗ .2)
= .0018

5

Recap: Viterbi Decoding—Thanks, Bec!

C C C

H H H

〈S〉 〈/S〉

3 1 3

o1 o2 o3

H H H〈 〉

P (H|S
)P (3|H

)

0.8 ∗
0.4

P (C|S)P (3|C)
0.2 ∗ 0.1

P (H|H)P (1|H)
0.6 ∗ 0.2P (C|H)P (1|C)

0.2 ∗ 0.5

P
(H
|C

)P
(1|

H
)

0.3
∗ 0.2

P (C|C)P (1|C)
0.5 ∗ 0.5

P (H|H)P (3|H)
0.6 ∗ 0.4

P (C|H)P (3|C)

0.2 ∗ 0.1

P
(H
|C

)P
(3|

H
)

0.3
∗ 0.4

P (C|C)P (3|C)
0.5 ∗ 0.1

P (〈/S〉|H)0.2

P (〈/
S〉|

C)

0.2

v1(H) = 0.32

v1(C) = 0.02

v2(H) =
max(.32 ∗ .12, .02 ∗ .06)

= .0384

v2(C) =
max(.32 ∗ .1, .02 ∗ .25)

= .032

v3(H) =
max(.0384 ∗ .24, .032 ∗ .12)

= .0092

v3(C) =
max(.0384 ∗ .02, .032 ∗ .05)

= .0016

vf (〈/S〉) =
max(.0092 ∗ .2,

.0016 ∗ .2)
= .0018

5

Recap: Viterbi Decoding—Thanks, Bec!

C C C

H H H

〈S〉 〈/S〉

3 1 3

o1 o2 o3

H H H〈 〉

P (H|S
)P (3|H

)

0.8 ∗
0.4

P (C|S)P (3|C)
0.2 ∗ 0.1

P (H|H)P (1|H)
0.6 ∗ 0.2P (C|H)P (1|C)

0.2 ∗ 0.5

P
(H
|C

)P
(1|

H
)

0.3
∗ 0.2

P (C|C)P (1|C)
0.5 ∗ 0.5

P (H|H)P (3|H)
0.6 ∗ 0.4P (C|H)P (3|C)

0.2 ∗ 0.1

P
(H
|C

)P
(3|

H
)

0.3
∗ 0.4

P (C|C)P (3|C)
0.5 ∗ 0.1

P (〈/S〉|H)0.2

P (〈/
S〉|

C)

0.2

v1(H) = 0.32

v1(C) = 0.02

v2(H) =
max(.32 ∗ .12, .02 ∗ .06)

= .0384

v2(C) =
max(.32 ∗ .1, .02 ∗ .25)

= .032

v3(H) =
max(.0384 ∗ .24, .032 ∗ .12)

= .0092

v3(C) =
max(.0384 ∗ .02, .032 ∗ .05)

= .0016

vf (〈/S〉) =
max(.0092 ∗ .2,

.0016 ∗ .2)
= .0018

5

Recap: Viterbi Decoding—Thanks, Bec!

C C C

H H H

〈S〉 〈/S〉

3 1 3

o1 o2 o3

H H H〈 〉

P (H|S
)P (3|H

)

0.8 ∗
0.4

P (C|S)P (3|C)
0.2 ∗ 0.1

P (H|H)P (1|H)
0.6 ∗ 0.2P (C|H)P (1|C)

0.2 ∗ 0.5

P
(H
|C

)P
(1|

H
)

0.3
∗ 0.2

P (C|C)P (1|C)
0.5 ∗ 0.5

P (H|H)P (3|H)
0.6 ∗ 0.4P (C|H)P (3|C)

0.2 ∗ 0.1

P
(H
|C

)P
(3|

H
)

0.3
∗ 0.4

P (C|C)P (3|C)
0.5 ∗ 0.1

P (〈/S〉|H)0.2

P (〈/
S〉|

C)

0.2

v1(H) = 0.32

v1(C) = 0.02

v2(H) =
max(.32 ∗ .12, .02 ∗ .06)

= .0384

v2(C) =
max(.32 ∗ .1, .02 ∗ .25)

= .032

v3(H) =
max(.0384 ∗ .24, .032 ∗ .12)

= .0092

v3(C) =
max(.0384 ∗ .02, .032 ∗ .05)

= .0016

vf (〈/S〉) =
max(.0092 ∗ .2,

.0016 ∗ .2)
= .0018

5

Recap: Viterbi Decoding—Thanks, Bec!

C C C

H H H

〈S〉 〈/S〉

3 1 3

o1 o2 o3

H H H〈 〉

P (H|S
)P (3|H

)

0.8 ∗
0.4

P (C|S)P (3|C)
0.2 ∗ 0.1

P (H|H)P (1|H)
0.6 ∗ 0.2P (C|H)P (1|C)

0.2 ∗ 0.5

P
(H
|C

)P
(1|

H
)

0.3
∗ 0.2

P (C|C)P (1|C)
0.5 ∗ 0.5

P (H|H)P (3|H)
0.6 ∗ 0.4P (C|H)P (3|C)

0.2 ∗ 0.1

P
(H
|C

)P
(3|

H
)

0.3
∗ 0.4

P (C|C)P (3|C)
0.5 ∗ 0.1

P (〈/S〉|H)0.2

P (〈/
S〉|

C)

0.2

v1(H) = 0.32

v1(C) = 0.02

v2(H) =
max(.32 ∗ .12, .02 ∗ .06)

= .0384

v2(C) =
max(.32 ∗ .1, .02 ∗ .25)

= .032

v3(H) =
max(.0384 ∗ .24, .032 ∗ .12)

= .0092

v3(C) =
max(.0384 ∗ .02, .032 ∗ .05)

= .0016

vf (〈/S〉) =
max(.0092 ∗ .2,

.0016 ∗ .2)
= .0018

5

Recap: Viterbi Decoding—Thanks, Bec!

C C C

H H H

〈S〉 〈/S〉

3 1 3

o1 o2 o3

H H

H

〈 〉

P (H|S
)P (3|H

)

0.8 ∗
0.4

P (C|S)P (3|C)
0.2 ∗ 0.1

P (H|H)P (1|H)
0.6 ∗ 0.2P (C|H)P (1|C)

0.2 ∗ 0.5

P
(H
|C

)P
(1|

H
)

0.3
∗ 0.2

P (C|C)P (1|C)
0.5 ∗ 0.5

P (H|H)P (3|H)
0.6 ∗ 0.4P (C|H)P (3|C)

0.2 ∗ 0.1

P
(H
|C

)P
(3|

H
)

0.3
∗ 0.4

P (C|C)P (3|C)
0.5 ∗ 0.1

P (〈/S〉|H)0.2

P (〈/
S〉|

C)

0.2

v1(H) = 0.32

v1(C) = 0.02

v2(H) =
max(.32 ∗ .12, .02 ∗ .06)

= .0384

v2(C) =
max(.32 ∗ .1, .02 ∗ .25)

= .032

v3(H) =
max(.0384 ∗ .24, .032 ∗ .12)

= .0092

v3(C) =
max(.0384 ∗ .02, .032 ∗ .05)

= .0016

vf (〈/S〉) =
max(.0092 ∗ .2,

.0016 ∗ .2)
= .0018

5

Recap: Viterbi Decoding—Thanks, Bec!

C C C

H H H

〈S〉 〈/S〉

3 1 3

o1 o2 o3

H

H H

〈 〉

P (H|S
)P (3|H

)

0.8 ∗
0.4

P (C|S)P (3|C)
0.2 ∗ 0.1

P (H|H)P (1|H)
0.6 ∗ 0.2P (C|H)P (1|C)

0.2 ∗ 0.5

P
(H
|C

)P
(1|

H
)

0.3
∗ 0.2

P (C|C)P (1|C)
0.5 ∗ 0.5

P (H|H)P (3|H)
0.6 ∗ 0.4P (C|H)P (3|C)

0.2 ∗ 0.1

P
(H
|C

)P
(3|

H
)

0.3
∗ 0.4

P (C|C)P (3|C)
0.5 ∗ 0.1

P (〈/S〉|H)0.2

P (〈/
S〉|

C)

0.2

v1(H) = 0.32

v1(C) = 0.02

v2(H) =
max(.32 ∗ .12, .02 ∗ .06)

= .0384

v2(C) =
max(.32 ∗ .1, .02 ∗ .25)

= .032

v3(H) =
max(.0384 ∗ .24, .032 ∗ .12)

= .0092

v3(C) =
max(.0384 ∗ .02, .032 ∗ .05)

= .0016

vf (〈/S〉) =
max(.0092 ∗ .2,

.0016 ∗ .2)
= .0018

5

Recap: Viterbi Decoding—Thanks, Bec!

C C C

H H H

〈S〉 〈/S〉

3 1 3

o1 o2 o3

H H H

〈 〉

P (H|S
)P (3|H

)

0.8 ∗
0.4

P (C|S)P (3|C)
0.2 ∗ 0.1

P (H|H)P (1|H)
0.6 ∗ 0.2P (C|H)P (1|C)

0.2 ∗ 0.5

P
(H
|C

)P
(1|

H
)

0.3
∗ 0.2

P (C|C)P (1|C)
0.5 ∗ 0.5

P (H|H)P (3|H)
0.6 ∗ 0.4P (C|H)P (3|C)

0.2 ∗ 0.1

P
(H
|C

)P
(3|

H
)

0.3
∗ 0.4

P (C|C)P (3|C)
0.5 ∗ 0.1

P (〈/S〉|H)0.2

P (〈/
S〉|

C)

0.2

v1(H) = 0.32

v1(C) = 0.02

v2(H) =
max(.32 ∗ .12, .02 ∗ .06)

= .0384

v2(C) =
max(.32 ∗ .1, .02 ∗ .25)

= .032

v3(H) =
max(.0384 ∗ .24, .032 ∗ .12)

= .0092

v3(C) =
max(.0384 ∗ .02, .032 ∗ .05)

= .0016

vf (〈/S〉) =
max(.0092 ∗ .2,

.0016 ∗ .2)
= .0018

5

Recap: Viterbi Decoding—Thanks, Bec!

C C C

H H H

〈S〉 〈/S〉

3 1 3

o1 o2 o3

H H H〈 〉

P (H|S
)P (3|H

)

0.8 ∗
0.4

P (C|S)P (3|C)
0.2 ∗ 0.1

P (H|H)P (1|H)
0.6 ∗ 0.2P (C|H)P (1|C)

0.2 ∗ 0.5

P
(H
|C

)P
(1|

H
)

0.3
∗ 0.2

P (C|C)P (1|C)
0.5 ∗ 0.5

P (H|H)P (3|H)
0.6 ∗ 0.4P (C|H)P (3|C)

0.2 ∗ 0.1

P
(H
|C

)P
(3|

H
)

0.3
∗ 0.4

P (C|C)P (3|C)
0.5 ∗ 0.1

P (〈/S〉|H)0.2

P (〈/
S〉|

C)

0.2

v1(H) = 0.32

v1(C) = 0.02

v2(H) =
max(.32 ∗ .12, .02 ∗ .06)

= .0384

v2(C) =
max(.32 ∗ .1, .02 ∗ .25)

= .032

v3(H) =
max(.0384 ∗ .24, .032 ∗ .12)

= .0092

v3(C) =
max(.0384 ∗ .02, .032 ∗ .05)

= .0016

vf (〈/S〉) =
max(.0092 ∗ .2,

.0016 ∗ .2)
= .0018

5

Recap: Dynamic Programming

Abstract problem: Find the tag sequence s1 . . . sn that maximizes

P (s1 . . . sn|o1 . . . on) = P (s1|s0)P (o1|s1)P (s2|s1)P (o2|s2) . . .

The Viterbi algorithm uses decomposition into recursive sub-problems:

vi(x) = Lmax
k=1

[vi−1(k) · P (x|k) · P (oi|x)]

Each trellis cell vi(x) represents the maximum probability that the i-th
state is x, given that we have seen the observation prefix o1 . . . oi.

At each step, we also record backpointers (in a separate matrix), showing
which previous state led to the maximum probability.

6

Recap: Dynamic Programming

Abstract problem: Find the tag sequence s1 . . . sn that maximizes

P (s1 . . . sn|o1 . . . on) = P (s1|s0)P (o1|s1)P (s2|s1)P (o2|s2) . . .

The Viterbi algorithm uses decomposition into recursive sub-problems:

vi(x) = Lmax
k=1

[vi−1(k) · P (x|k) · P (oi|x)]

Each trellis cell vi(x) represents the maximum probability that the i-th
state is x, given that we have seen the observation prefix o1 . . . oi.

At each step, we also record backpointers (in a separate matrix), showing
which previous state led to the maximum probability.

6

Recap: Dynamic Programming

Abstract problem: Find the tag sequence s1 . . . sn that maximizes

P (s1 . . . sn|o1 . . . on) = P (s1|s0)P (o1|s1)P (s2|s1)P (o2|s2) . . .

The Viterbi algorithm uses decomposition into recursive sub-problems:

vi(x) = Lmax
k=1

[vi−1(k) · P (x|k) · P (oi|x)]

Each trellis cell vi(x) represents the maximum probability that the i-th
state is x, given that we have seen the observation prefix o1 . . . oi.

At each step, we also record backpointers (in a separate matrix), showing
which previous state led to the maximum probability.

6

Recap: Dynamic Programming

Abstract problem: Find the tag sequence s1 . . . sn that maximizes

P (s1 . . . sn|o1 . . . on) = P (s1|s0)P (o1|s1)P (s2|s1)P (o2|s2) . . .

The Viterbi algorithm uses decomposition into recursive sub-problems:

vi(x) = Lmax
k=1

[vi−1(k) · P (x|k) · P (oi|x)]

Each trellis cell vi(x) represents the maximum probability that the i-th
state is x, given that we have seen the observation prefix o1 . . . oi.

At each step, we also record backpointers (in a separate matrix), showing
which previous state led to the maximum probability.

6

From Linear Order to Hierarchical Structure

I NLP approaches we have considered this far:
I Distributional representations of documents or words:

Cisco acquired Tandberg ≡ Tandberg acquired Cisco
I n-gram language models (Markov chains).

I Purely linear (sequential) and surface-oriented.
I sequence labeling: HMMs.

I One layer of abstraction: PoS as hidden states.
I Still only sequential in nature.

I Syntax adds hierarchical structure:
I In NLP, being a sub-discipline of AI, we want our programs to

‘understand’ natural language (on some level).
I Finding the grammatical structure of sentences is an important step

towards ‘understanding’.
I Shift focus from bags or sequences to hierarchical structure.

7

From Linear Order to Hierarchical Structure

I NLP approaches we have considered this far:
I Distributional representations of documents or words:

Cisco acquired Tandberg ≡ Tandberg acquired Cisco
I n-gram language models (Markov chains).

I Purely linear (sequential) and surface-oriented.
I sequence labeling: HMMs.

I One layer of abstraction: PoS as hidden states.
I Still only sequential in nature.

I Syntax adds hierarchical structure:
I In NLP, being a sub-discipline of AI, we want our programs to

‘understand’ natural language (on some level).
I Finding the grammatical structure of sentences is an important step

towards ‘understanding’.
I Shift focus from bags or sequences to hierarchical structure.

7

The Case for Structure (1/3)

Constituency
I Words can ‘lump together’ into groups that behave like single units;

these are called constituents.
I Constituency tests give evidence for syntactic structure:

I interchangeable in similar syntactic environments.
I can be co-ordinated (e.g. using and and or)
I can be ‘moved around’ in a sentence as one unit

(1) Kim read [a very interesting book about grammar]NP .
Kim read [it]NP .

(2) Kim [read a book]V P , [gave it to Sandy]V P , and [left]V P .
(3) [Read the book]V P I really meant to this week.

Examples from Linguistic Fundamentals for NLP: 100 Essentials from Morphology and Syntax. Bender (2013)

8

The Case for Structure (1/3)

Constituency
I Words can ‘lump together’ into groups that behave like single units;

these are called constituents.
I Constituency tests give evidence for syntactic structure:

I interchangeable in similar syntactic environments.
I can be co-ordinated (e.g. using and and or)
I can be ‘moved around’ in a sentence as one unit

(4) Kim read [a very interesting book about grammar]NP .
Kim read [it]NP .

(5) Kim [read a book]V P , [gave it to Sandy]V P , and [left]V P .
(6) [Read the book]V P I really meant to this week.

Examples from Linguistic Fundamentals for NLP: 100 Essentials from Morphology and Syntax. Bender (2013)

8

The Case for Structure (2/3)

Constituency
I Constituents as basic ‘building blocks’ of grammatical structure.

I Rules of grammar are sensitive to constituents.

I A constituent usually has one head daughter, and is often named
according to the type of its head:

I A noun phrase (NP) has a nominal head:
(This is) [a book]NP

(This is) [a very interesting book about grammar]NP

I A verb phrase (VP) has a verbal head:
(She) [eats]V P

(She) [gives books to students]V P

(She) [bet me ten bucks that it would rain]V P

9

The Case for Structure (2/3)

Constituency
I Constituents as basic ‘building blocks’ of grammatical structure.

I Rules of grammar are sensitive to constituents.

I A constituent usually has one head daughter, and is often named
according to the type of its head:

I A noun phrase (NP) has a nominal head:
(This is) [a book]NP

(This is) [a very interesting book about grammar]NP

I A verb phrase (VP) has a verbal head:
(She) [eats]V P

(She) [gives books to students]V P

(She) [bet me ten bucks that it would rain]V P

9

The Case for Structure (3/3)

Relations among Constituents
I Notions such as subject and object describe the grammatical function

of a constituent in a larger structure.

I Agreement establishes a symmetric relationship between properties of
two constituents.

I Government allows one constituent to require a certain property of
another constituent.

I The decision of the committee members surprises most of us.

I Why would a purely linear model have problems predicting this
phenomenon?

I Verb agreement has to reflect the grammatical structure of the
sentence, not merely the sequential order of words.

10

The Case for Structure (3/3)

Relations among Constituents
I Notions such as subject and object describe the grammatical function

of a constituent in a larger structure.

I Agreement establishes a symmetric relationship between properties of
two constituents.

I Government allows one constituent to require a certain property of
another constituent.

I The decision of the committee members surprises most of us.

I Why would a purely linear model have problems predicting this
phenomenon?

I Verb agreement has to reflect the grammatical structure of the
sentence, not merely the sequential order of words.

10

The Case for Structure (3/3)

Relations among Constituents
I Notions such as subject and object describe the grammatical function

of a constituent in a larger structure.

I Agreement establishes a symmetric relationship between properties of
two constituents.

I Government allows one constituent to require a certain property of
another constituent.

I The decision of the committee members surprises most of us.

I Why would a purely linear model have problems predicting this
phenomenon?

I Verb agreement has to reflect the grammatical structure of the
sentence, not merely the sequential order of words.

10

Grammars: A Tool to Aid Understanding

Formal grammars describe a language, providing key notions of:

Wellformedness
I Kim was happy because passed the exam.
I Kim was happy because final grade was an A.
I Kim was happy when she saw on television.

Meaning
I Kim gave Sandy the book.
I Kim gave the book to Sandy.
I Sandy was given the book by Kim.

Ambiguity
I Kim ate sushi with chopsticks.
I Have her report on my desk by Friday!

11

Grammars: A Tool to Aid Understanding

Formal grammars describe a language, providing key notions of:

Wellformedness
I Kim was happy because passed the exam.
I Kim was happy because final grade was an A.
I Kim was happy when she saw on television.

Meaning
I Kim gave Sandy the book.
I Kim gave the book to Sandy.
I Sandy was given the book by Kim.

Ambiguity
I Kim ate sushi with chopsticks.
I Have her report on my desk by Friday!

11

Grammars: A Tool to Aid Understanding

Formal grammars describe a language, providing key notions of:

Wellformedness
I Kim was happy because passed the exam.
I Kim was happy because final grade was an A.
I Kim was happy when she saw on television.

Meaning
I Kim gave Sandy the book.
I Kim gave the book to Sandy.
I Sandy was given the book by Kim.

Ambiguity
I Kim ate sushi with chopsticks.
I Have her report on my desk by Friday!

11

A Simplified Example

The Grammar of Spanish'

&

$

%

S → NP VP

{VP (NP) }

VP → V NP

{V (NP) }

VP → VP PP

{PP (VP) }

PP → P NP

{P (NP) }

NP → “nieve”

{ snow }

NP → “Juan”

{ John }

NP → “Oslo”

{Oslo }

V → “amó”

{λbλa adore (a, b) }

P → “en”

{λdλc in (c, d) }

S

NP

Juan

VP

VP

V

amó

NP

nieve

PP

P

en

NP

Oslo�� ��Juan amó nieve en Oslo

12

A Simplified Example

The Grammar of Spanish'

&

$

%

S → NP VP

{VP (NP) }

VP → V NP

{V (NP) }

VP → VP PP

{PP (VP) }

PP → P NP

{P (NP) }

NP → “nieve”

{ snow }

NP → “Juan”

{ John }

NP → “Oslo”

{Oslo }

V → “amó”

{λbλa adore (a, b) }

P → “en”

{λdλc in (c, d) }

S

NP

Juan

VP

VP

V

amó

NP

nieve

PP

P

en

NP

Oslo�� ��Juan amó nieve en Oslo

12

A Simplified Example

The Grammar of Spanish'

&

$

%

S → NP VP

{VP (NP) }

VP → V NP

{V (NP) }

VP → VP PP

{PP (VP) }

PP → P NP

{P (NP) }

NP → “nieve”

{ snow }

NP → “Juan”

{ John }

NP → “Oslo”

{Oslo }

V → “amó”

{λbλa adore (a, b) }

P → “en”

{λdλc in (c, d) }

S

NP

Juan

VP

VP

V

amó

NP

nieve

PP

P

en

NP

Oslo�� ��Juan amó nieve en Oslo

12

A Simplified Example

The Grammar of Spanish'

&

$

%

S → NP VP

{VP (NP) }

VP → V NP

{V (NP) }

VP → VP PP

{PP (VP) }

PP → P NP

{P (NP) }

NP → “nieve”

{ snow }

NP → “Juan”

{ John }

NP → “Oslo”

{Oslo }

V → “amó”

{λbλa adore (a, b) }

P → “en”

{λdλc in (c, d) }

S

NP

Juan

VP

VP

V

amó

NP

nieve

PP

P

en

NP

Oslo�� ��Juan amó nieve en Oslo

12

A Simplified Example

The Grammar of Spanish'

&

$

%

S → NP VP

{VP (NP) }

VP → V NP

{V (NP) }

VP → VP PP

{PP (VP) }

PP → P NP

{P (NP) }

NP → “nieve”

{ snow }

NP → “Juan”

{ John }

NP → “Oslo”

{Oslo }

V → “amó”

{λbλa adore (a, b) }

P → “en”

{λdλc in (c, d) }

S

NP

Juan

VP

VP

V

amó

NP

nieve

PP

P

en

NP

Oslo�� ��Juan amó nieve en Oslo

12

A Simplified Example

The Grammar of Spanish'

&

$

%

S → NP VP

{VP (NP) }

VP → V NP

{V (NP) }

VP → VP PP

{PP (VP) }

PP → P NP

{P (NP) }

NP → “nieve”

{ snow }

NP → “Juan”

{ John }

NP → “Oslo”

{Oslo }

V → “amó”

{λbλa adore (a, b) }

P → “en”

{λdλc in (c, d) }

S

NP

Juan

VP

VP

V

amó

NP

nieve

PP

P

en

NP

Oslo�� ��Juan amó nieve en Oslo

12

A Simplified Example

The Grammar of Spanish'

&

$

%

S → NP VP

{VP (NP) }

VP → V NP

{V (NP) }

VP → VP PP

{PP (VP) }

PP → P NP

{P (NP) }

NP → “nieve”

{ snow }

NP → “Juan”

{ John }

NP → “Oslo”

{Oslo }

V → “amó”

{λbλa adore (a, b) }

P → “en”

{λdλc in (c, d) }

S

NP

Juan

VP

VP

V

amó

NP

nieve

PP

P

en

NP

Oslo�� ��Juan amó nieve en Oslo

12

A Simplified Example

The Grammar of Spanish'

&

$

%

S → NP VP

{VP (NP) }

VP → V NP

{V (NP) }

VP → VP PP

{PP (VP) }

PP → P NP

{P (NP) }

NP → “nieve”

{ snow }

NP → “Juan”

{ John }

NP → “Oslo”

{Oslo }

V → “amó”

{λbλa adore (a, b) }

P → “en”

{λdλc in (c, d) }

S

NP

Juan

VP

VP

V

amó

NP

nieve

PP

P

en

NP

Oslo�� ��Juan amó nieve en Oslo

12

A Simplified Example

The Grammar of Spanish'

&

$

%

S → NP VP

{VP (NP) }

VP → V NP

{V (NP) }

VP → VP PP

{PP (VP) }

PP → P NP

{P (NP) }

NP → “nieve”

{ snow }

NP → “Juan”

{ John }

NP → “Oslo”

{Oslo }

V → “amó”

{λbλa adore (a, b) }

P → “en”

{λdλc in (c, d) }

S

NP

Juan

VP

VP

V

amó

NP

nieve

PP

P

en

NP

Oslo�� ��Juan amó nieve en Oslo

12

A Simplified Example

The Grammar of Spanish'

&

$

%

S → NP VP

{VP (NP) }

VP → V NP

{V (NP) }

VP → VP PP

{PP (VP) }

PP → P NP

{P (NP) }

NP → “nieve”

{ snow }

NP → “Juan”

{ John }

NP → “Oslo”

{Oslo }

V → “amó”

{λbλa adore (a, b) }

P → “en”

{λdλc in (c, d) }

S

NP

Juan

VP

VP

V

amó

NP

nieve

PP

P

en

NP

Oslo�� ��Juan amó nieve en Oslo

12

A Simplified Example

The Grammar of Spanish'

&

$

%

S → NP VP

{VP (NP) }

VP → V NP

{V (NP) }

VP → VP PP

{PP (VP) }

PP → P NP

{P (NP) }

NP → “nieve”

{ snow }

NP → “Juan”

{ John }

NP → “Oslo”

{Oslo }

V → “amó”

{λbλa adore (a, b) }

P → “en”

{λdλc in (c, d) }

S

NP

Juan

VP

VP

V

amó

NP

nieve

PP

P

en

NP

Oslo�� ��Juan amó nieve en Oslo

12

A Simplified Example

The Grammar of Spanish'

&

$

%

S → NP VP

{VP (NP) }

VP → V NP

{V (NP) }

VP → VP PP

{PP (VP) }

PP → P NP

{P (NP) }

NP → “nieve”

{ snow }

NP → “Juan”

{ John }

NP → “Oslo”

{Oslo }

V → “amó”

{λbλa adore (a, b) }

P → “en”

{λdλc in (c, d) }

S

NP

Juan

VP

VP

V

amó

NP

nieve

PP

P

en

NP

Oslo�� ��Juan amó nieve en Oslo

12

A Simplified Example

The Grammar of Spanish'

&

$

%

S → NP VP

{VP (NP) }

VP → V NP

{V (NP) }

VP → VP PP

{PP (VP) }

PP → P NP

{P (NP) }

NP → “nieve”

{ snow }

NP → “Juan”

{ John }

NP → “Oslo”

{Oslo }

V → “amó”

{λbλa adore (a, b) }

P → “en”

{λdλc in (c, d) }

S

NP

Juan

VP

VP

V

amó

NP

nieve

PP

P

en

NP

Oslo�� ��Juan amó nieve en Oslo

12

A Simplified Example

The Grammar of Spanish'

&

$

%

S → NP VP {VP (NP) }
VP → V NP {V (NP) }
VP → VP PP {PP (VP) }
PP → P NP {P (NP) }
NP → “nieve” { snow }
NP → “Juan” { John }
NP → “Oslo” {Oslo }
V → “amó” {λbλa adore (a, b) }
P → “en” {λdλc in (c, d) }

S

NP

Juan

VP

VP

V

amó

NP

nieve

PP

P

en

NP

Oslo�� ��Juan amó nieve en Oslo

12

Meaning Composition (Still Very Simplified)

S: {in (adore (John , snow) , Oslo)}

NP: {John}

Juan

VP: {λa in (adore (a, snow) , Oslo)}

VP: {λa adore (a, snow)}

V:{λbλa adore (a, b)}

amó

NP:{snow}

nieve

PP:{λc in (c,Oslo)}

P:{λdλc in (c, d)}

en

NP:{Oslo}

Oslo�
�

�
VP → V NP { V (NP) }

13

Another Interpretation

S: {adore (John, in (snow ,Oslo)}

NP: {John}

Juan

VP: {λa adore (a, in (snow,Oslo)}

V:{λbλa adore (a, b)}

amó

NP:{in (snow,Oslo)}

NP:{snow}

nieve

PP:{λc in (c,Oslo)}

P:{λdλc in (c, d)}

en

NP:{Oslo}

Oslo�
�

�
NP → NP PP { PP (NP) }

14

Context Free Grammars (CFGs)

I Formal system for modeling constituent structure.

I Defined in terms of a lexicon and a set of rewrite rules.

I Precise, abstract models of ‘language’ in a broad sense
I natural languages, programming languages, communication protocols, . . .

I Can be expressed in the ‘meta-syntax’ of the Backus-Naur Form (BNF)
formalism.
I The standard Python documentation (or much other technical writing)

often uses BNF.

I Powerful enough to express sophisticated relations among words and
constituents, yet computationally tractable.

15

Context Free Grammars (CFGs)

I Formal system for modeling constituent structure.

I Defined in terms of a lexicon and a set of rewrite rules.

I Precise, abstract models of ‘language’ in a broad sense
I natural languages, programming languages, communication protocols, . . .

I Can be expressed in the ‘meta-syntax’ of the Backus-Naur Form (BNF)
formalism.
I The standard Python documentation (or much other technical writing)

often uses BNF.

I Powerful enough to express sophisticated relations among words and
constituents, yet computationally tractable.

15

Context Free Grammars (CFGs)

I Formal system for modeling constituent structure.

I Defined in terms of a lexicon and a set of rewrite rules.

I Precise, abstract models of ‘language’ in a broad sense
I natural languages, programming languages, communication protocols, . . .

I Can be expressed in the ‘meta-syntax’ of the Backus-Naur Form (BNF)
formalism.
I The standard Python documentation (or much other technical writing)

often uses BNF.

I Powerful enough to express sophisticated relations among words and
constituents, yet computationally tractable.

15

Context Free Grammars (CFGs)

I Formal system for modeling constituent structure.

I Defined in terms of a lexicon and a set of rewrite rules.

I Precise, abstract models of ‘language’ in a broad sense
I natural languages, programming languages, communication protocols, . . .

I Can be expressed in the ‘meta-syntax’ of the Backus-Naur Form (BNF)
formalism.
I The standard Python documentation (or much other technical writing)

often uses BNF.

I Powerful enough to express sophisticated relations among words and
constituents, yet computationally tractable.

15

CFGs (Formally, this Time)

Formally, a CFG is a quadruple: G = 〈C,Σ, P, S〉

I C is the set of categories (aka non-terminals),
I {S,NP,VP,V}

I Σ is the vocabulary (aka terminals),
I {Kim, snow, adores, in}

I P is a set of category rewrite rules (aka productions)
S → NP VP NP → Kim
VP → V NP NP → snow

V → adores

I S ∈ C is the start symbol, a filter on complete results;

I for each rule α → β1, β2, ..., βn ∈ P : α ∈ C and βi ∈ C ∪ Σ

16

CFGs (Formally, this Time)

Formally, a CFG is a quadruple: G = 〈C,Σ, P, S〉
I C is the set of categories (aka non-terminals),

I {S,NP,VP,V}

I Σ is the vocabulary (aka terminals),
I {Kim, snow, adores, in}

I P is a set of category rewrite rules (aka productions)
S → NP VP NP → Kim
VP → V NP NP → snow

V → adores

I S ∈ C is the start symbol, a filter on complete results;

I for each rule α → β1, β2, ..., βn ∈ P : α ∈ C and βi ∈ C ∪ Σ

16

CFGs (Formally, this Time)

Formally, a CFG is a quadruple: G = 〈C,Σ, P, S〉
I C is the set of categories (aka non-terminals),

I {S,NP,VP,V}

I Σ is the vocabulary (aka terminals),
I {Kim, snow, adores, in}

I P is a set of category rewrite rules (aka productions)
S → NP VP NP → Kim
VP → V NP NP → snow

V → adores

I S ∈ C is the start symbol, a filter on complete results;

I for each rule α → β1, β2, ..., βn ∈ P : α ∈ C and βi ∈ C ∪ Σ

16

CFGs (Formally, this Time)

Formally, a CFG is a quadruple: G = 〈C,Σ, P, S〉
I C is the set of categories (aka non-terminals),

I {S,NP,VP,V}

I Σ is the vocabulary (aka terminals),
I {Kim, snow, adores, in}

I P is a set of category rewrite rules (aka productions)
S → NP VP NP → Kim
VP → V NP NP → snow

V → adores

I S ∈ C is the start symbol, a filter on complete results;

I for each rule α → β1, β2, ..., βn ∈ P : α ∈ C and βi ∈ C ∪ Σ

16

CFGs (Formally, this Time)

Formally, a CFG is a quadruple: G = 〈C,Σ, P, S〉
I C is the set of categories (aka non-terminals),

I {S,NP,VP,V}

I Σ is the vocabulary (aka terminals),
I {Kim, snow, adores, in}

I P is a set of category rewrite rules (aka productions)
S → NP VP NP → Kim
VP → V NP NP → snow

V → adores

I S ∈ C is the start symbol, a filter on complete results;

I for each rule α → β1, β2, ..., βn ∈ P : α ∈ C and βi ∈ C ∪ Σ

16

CFGs (Formally, this Time)

Formally, a CFG is a quadruple: G = 〈C,Σ, P, S〉
I C is the set of categories (aka non-terminals),

I {S,NP,VP,V}

I Σ is the vocabulary (aka terminals),
I {Kim, snow, adores, in}

I P is a set of category rewrite rules (aka productions)
S → NP VP NP → Kim
VP → V NP NP → snow

V → adores

I S ∈ C is the start symbol, a filter on complete results;

I for each rule α → β1, β2, ..., βn ∈ P : α ∈ C and βi ∈ C ∪ Σ

16

Generative Grammar

Foundations of formal language theory:

I For a grammar G, the language LG is defined as the set of strings that
can be derived from S.

I To derive wn
1 from S, we use the rules in P to recursively rewrite S into

the sequence wn
1 (where each wi ∈ Σ)

I The grammar can be seen as generating strings.

I Grammatical strings are defined as terminal sequences that can be
generated by the grammar.

I The ‘context-freeness’ of CFGs refers to the fact that we rewrite
non-terminals without regard to the overall context in which they occur.

17

Generative Grammar

Foundations of formal language theory:

I For a grammar G, the language LG is defined as the set of strings that
can be derived from S.

I To derive wn
1 from S, we use the rules in P to recursively rewrite S into

the sequence wn
1 (where each wi ∈ Σ)

I The grammar can be seen as generating strings.

I Grammatical strings are defined as terminal sequences that can be
generated by the grammar.

I The ‘context-freeness’ of CFGs refers to the fact that we rewrite
non-terminals without regard to the overall context in which they occur.

17

Generative Grammar

Foundations of formal language theory:

I For a grammar G, the language LG is defined as the set of strings that
can be derived from S.

I To derive wn
1 from S, we use the rules in P to recursively rewrite S into

the sequence wn
1 (where each wi ∈ Σ)

I The grammar can be seen as generating strings.

I Grammatical strings are defined as terminal sequences that can be
generated by the grammar.

I The ‘context-freeness’ of CFGs refers to the fact that we rewrite
non-terminals without regard to the overall context in which they occur.

17

Outlook

Next week

I Parsing: Computing the language of a CFG

I (More on) Statistical parsing

I Dependency Syntax

I Transition-based dependency parsing

18

	Viterbi Algorithm

