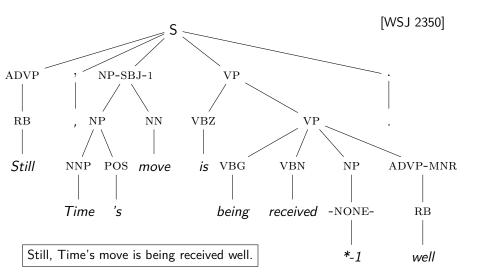
Treebanks

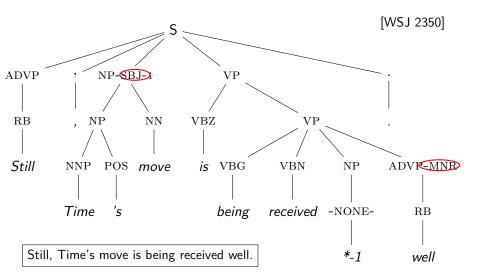
Generally

- A treebank is a corpus paired with 'gold-standard' (syntactico-semantic) analyses
- Created by manual annotation, typically with computational support (e.g. some automated processing plus correction)
- Can provide training data for machine learning (of parsers).

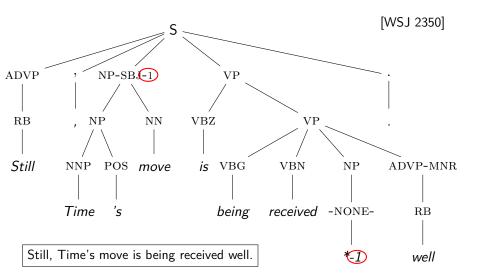
Treebanks

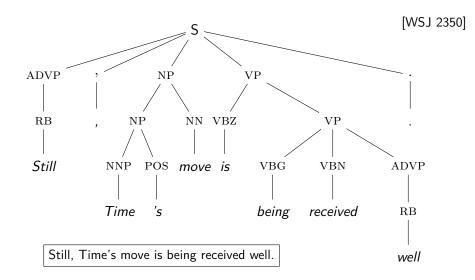

Generally

- A treebank is a corpus paired with 'gold-standard' (syntactico-semantic) analyses
- Created by manual annotation, typically with computational support (e.g. some automated processing plus correction)
- ► Can provide training data for machine learning (of parsers).


Penn Treebank (Marcus et al., 1993)

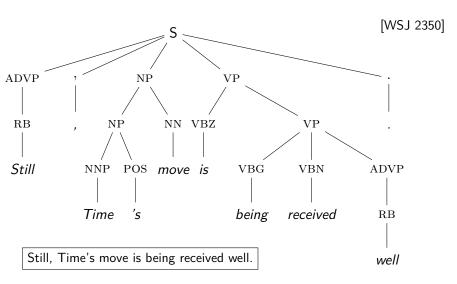
- ► About one million tokens of Wall Street Journal text
- Hand-corrected PoS annotation using 45 word classes
- ► Manual annotation with (somewhat) coarse constituent structure
- ► The 'mother' of all treebanks; still in wide use today.


One Example from the Penn Treebank


One Example from the Penn Treebank

One Example from the Penn Treebank

Elimination of Traces and Functions



Towards statistical parsing: Not just interested in which trees can apply to a sentence, but also which tree is most likely.

- Towards statistical parsing: Not just interested in which trees can apply to a sentence, but also which tree is most likely.
- Probabilistic context-free grammars (PCFGs) augment CFGs by adding probabilities to each production, e.g.
 - $S \rightarrow NP VP$ 0.6
 - $S \rightarrow NP VP PP$ 0.4
- These are conditional probabilities: the probability of the right hand side (RHS), given the left hand side (LHS)
 - ▶ $P(S \rightarrow NP VP) = P(NP VP|S)$

- Towards statistical parsing: Not just interested in which trees can apply to a sentence, but also which tree is most likely.
- Probabilistic context-free grammars (PCFGs) augment CFGs by adding probabilities to each production, e.g.
 - $S \rightarrow NP VP$ 0.6
 - $S \rightarrow NP VP PP$ 0.4
- These are conditional probabilities: the probability of the right hand side (RHS), given the left hand side (LHS)
 - $P(S \rightarrow NP VP) = P(NP VP|S)$
- The probability of a complete tree is the product of rule probabilities

- Towards statistical parsing: Not just interested in which trees can apply to a sentence, but also which tree is most likely.
- Probabilistic context-free grammars (PCFGs) augment CFGs by adding probabilities to each production, e.g.
 - $S \rightarrow NP VP$ 0.6
 - $S \rightarrow NP VP PP$ 0.4
- These are conditional probabilities: the probability of the right hand side (RHS), given the left hand side (LHS)
 - ▶ $P(S \rightarrow NP VP) = P(NP VP|S)$
- The probability of a complete tree is the product of rule probabilities
- We can learn these probabilities from a treebank, much like the estimation of HMM probabilities: Maximum Likelihood Estimation.


```
(ន
```

```
(ADVP (RB "Still"))
(, ",")
(NP
   (NP (NNP "Time") (POS "'s"))
   (NN "move"))
(VP
   (VBZ "is")
   (VP
      (VBG "being")
      (VP
        (VBN "received")
        (ADVP (RB "well")))))
(. "."))
```

 $\mathsf{RB}\to\mathsf{Still}$

```
(S
   (ADVP (RB "Still"))
   (, ",")
   (NP
      (NP (NNP "Time") (POS "'s"))
      (NN "move"))
   (VP
      (VBZ "is")
      (VP
         (VBG "being")
         (VP
           (VBN "received")
           (ADVP (RB "well")))))
   (. "."))
```

 $\begin{array}{l} \mathsf{RB} \to \mathsf{Still} \\ \mathsf{ADVP} \to \mathsf{RB} \end{array}$

(S

```
(ADVP (RB "Still"))
(, ",")
(NP
   (NP (NNP "Time") (POS "'s"))
   (NN "move"))
(VP
   (VBZ "is")
   (VP
      (VBG "being")
      (VP
        (VBN "received")
        (ADVP (RB "well")))))
(. "."))
```

 $\begin{array}{l} \mathsf{RB} \rightarrow \mathsf{Still} \\ \mathsf{ADVP} \rightarrow \mathsf{RB} \\ , \rightarrow , \end{array}$

(S

```
(ADVP (RB "Still"))
(, ",")
(NP
   (NP (NNP "Time") (POS "'s"))
   (NN "move"))
(VP
   (VBZ "is")
   (VP
      (VBG "being")
      (VP
        (VBN "received")
        (ADVP (RB "well")))))
(. "."))
```

1 1

```
\begin{array}{l} \mathsf{RB} \rightarrow \mathsf{Still} \\ \mathsf{ADVP} \rightarrow \mathsf{RB} \\ , \rightarrow , \\ \mathsf{NNP} \rightarrow \mathsf{Time} \end{array}
```

(S

```
(ADVP (RB "Still"))
(, ",")
(NP
   (NP (NNP "Time") (POS "'s"))
   (NN "move"))
(VP
   (VBZ "is")
   (VP
      (VBG "being")
      (VP
        (VBN "received")
        (ADVP (RB "well")))))
(. "."))
```

1 1

1

```
\begin{array}{l} \mathsf{RB} \rightarrow \mathsf{Still} \\ \mathsf{ADVP} \rightarrow \mathsf{RB} \\ , \rightarrow , \\ \mathsf{NNP} \rightarrow \mathsf{Time} \\ \mathsf{POS} \rightarrow \mathsf{'s} \end{array}
```

(S

```
(ADVP (RB "Still"))
(, ",")
(NP
   (NP (NNP "Time") (POS "'s"))
   (NN "move"))
(VP
   (VBZ "is")
   (VP
      (VBG "being")
      (VP
        (VBN "received")
        (ADVP (RB "well")))))
(. "."))
```

1

1

1

1

(S

```
(ADVP (RB "Still"))
(, ",")
(NP
   (NP (NNP "Time") (POS "'s"))
   (NN "move"))
(VP
   (VBZ "is")
   (VP
      (VBG "being")
      (VP
        (VBN "received")
        (ADVP (RB "well")))))
(. "."))
```

```
\begin{array}{l} \mathsf{RB} \rightarrow \mathsf{Still} \\ \mathsf{ADVP} \rightarrow \mathsf{RB} \\ , \rightarrow , \\ \mathsf{NNP} \rightarrow \mathsf{Time} \\ \mathsf{POS} \rightarrow \mathsf{'s} \\ \mathsf{NP} \rightarrow \mathsf{NNP} \ \mathsf{POS} \end{array}
```

1

1

1

1

1

```
\begin{array}{l} \mathsf{RB} \rightarrow \mathsf{Still} \\ \mathsf{ADVP} \rightarrow \mathsf{RB} \\ \text{,} \rightarrow \text{,} \\ \mathsf{NNP} \rightarrow \mathsf{Time} \\ \mathsf{POS} \rightarrow \mathsf{'s} \\ \mathsf{NP} \rightarrow \mathsf{NNP} \ \mathsf{POS} \\ \mathsf{NN} \rightarrow \mathsf{move} \end{array}
```

(S

```
(ADVP (RB "Still"))
(, ",")
(NP
   (NP (NNP "Time") (POS "'s"))
   (NN "move"))
(VP
   (VBZ "is")
   (VP
      (VBG "being")
      (VP
        (VBN "received")
        (ADVP (RB "well")))))
(. "."))
```

1

1

1

1

1

(S

```
(ADVP (RB "Still"))
(, ",")
(NP
   (NP (NNP "Time") (POS "'s"))
   (NN "move"))
(VP
   (VBZ "is")
   (VP
      (VBG "being")
      (VP
        (VBN "received")
        (ADVP (RB "well")))))
(. "."))
```

```
\begin{array}{l} \mathsf{RB} \rightarrow \mathsf{Still} \\ \mathsf{ADVP} \rightarrow \mathsf{RB} \\ , \rightarrow , \\ \mathsf{NNP} \rightarrow \mathsf{Time} \\ \mathsf{POS} \rightarrow \mathsf{'s} \\ \mathsf{NP} \rightarrow \mathsf{NNP} \ \mathsf{POS} \\ \mathsf{NN} \rightarrow \mathsf{move} \\ \mathsf{NP} \rightarrow \mathsf{NP} \ \mathsf{NN} \end{array}
```

1

1

1

1

1

1

(S

```
(ADVP (RB "Still"))
(, ",")
(NP
   (NP (NNP "Time") (POS "'s"))
   (NN "move"))
(VP
   (VBZ "is")
   (VP
      (VBG "being")
      (VP
        (VBN "received")
        (ADVP (RB "well")))))
(. "."))
```

```
\begin{array}{l} \mathsf{RB} \rightarrow \mathsf{Still} \\ \mathsf{ADVP} \rightarrow \mathsf{RB} \\ , \rightarrow , \\ \mathsf{NNP} \rightarrow \mathsf{Time} \\ \mathsf{POS} \rightarrow \mathsf{'s} \\ \mathsf{NP} \rightarrow \mathsf{NNP} \ \mathsf{POS} \\ \mathsf{NN} \rightarrow \mathsf{move} \\ \mathsf{NP} \rightarrow \mathsf{NP} \ \mathsf{NN} \\ \mathsf{VBZ} \rightarrow \mathsf{is} \end{array}
```

1

1

1

1

1

1

(S

```
(ADVP (RB "Still"))
(, ",")
(NP
   (NP (NNP "Time") (POS "'s"))
   (NN "move"))
(VP
   (VBZ "is")
   (VP
      (VBG "being")
      (VP
        (VBN "received")
        (ADVP (RB "well")))))
(. "."))
```

```
\begin{array}{l} \mathsf{RB} \rightarrow \mathsf{Still} \\ \mathsf{ADVP} \rightarrow \mathsf{RB} \\ , \rightarrow , \\ \mathsf{NNP} \rightarrow \mathsf{Time} \\ \mathsf{POS} \rightarrow \mathsf{'s} \\ \mathsf{NP} \rightarrow \mathsf{NNP} \ \mathsf{POS} \\ \mathsf{NP} \rightarrow \mathsf{NNP} \ \mathsf{POS} \\ \mathsf{NN} \rightarrow \mathsf{move} \\ \mathsf{NP} \rightarrow \mathsf{NP} \ \mathsf{NN} \\ \mathsf{VBZ} \rightarrow \mathsf{is} \\ \mathsf{VBG} \rightarrow \mathsf{being} \end{array}
```

1

1

1

1

1

1

(S

```
(ADVP (RB "Still"))
(, ",")
(NP
   (NP (NNP "Time") (POS "'s"))
   (NN "move"))
(VP
   (VBZ "is")
   (VP
      (VBG "being")
      (VP
        (VBN "received")
        (ADVP (RB "well")))))
(. "."))
```

```
\begin{array}{l} \mathsf{RB} \rightarrow \mathsf{Still} \\ \mathsf{ADVP} \rightarrow \mathsf{RB} \\ \mathsf{,} \rightarrow \mathsf{,} \\ \mathsf{NNP} \rightarrow \mathsf{Time} \\ \mathsf{POS} \rightarrow \mathsf{'s} \\ \mathsf{NP} \rightarrow \mathsf{NNP} \ \mathsf{POS} \\ \mathsf{NP} \rightarrow \mathsf{NNP} \ \mathsf{POS} \\ \mathsf{NN} \rightarrow \mathsf{move} \\ \mathsf{NP} \rightarrow \mathsf{NP} \ \mathsf{NN} \\ \mathsf{VBZ} \rightarrow \mathsf{is} \\ \mathsf{VBG} \rightarrow \mathsf{being} \\ \mathsf{VBN} \rightarrow \mathsf{received} \end{array}
```

1

1

1

1

1

1

(S

```
(ADVP (RB "Still"))
(, ",")
(NP
   (NP (NNP "Time") (POS "'s"))
   (NN "move"))
(VP
   (VBZ "is")
   (VP
      (VBG "being")
      (VP
        (VBN "received")
        (ADVP (RB "well")))))
(. "."))
```

```
RB \rightarrow Still
ADVP \rightarrow RB
, \rightarrow,
NNP \rightarrow Time
POS \rightarrow 's
NP \rightarrow NNP POS
NN \rightarrow move
NP \rightarrow NP NN
VBZ \rightarrow is
VBG \rightarrow being
VBN \rightarrow received
RB \rightarrow well
```

1

1

1

1

1

1

(S

```
(ADVP (RB "Still"))
(, ",")
(NP
   (NP (NNP "Time") (POS "'s"))
   (NN "move"))
(VP
   (VBZ "is")
   (VP
      (VBG "being")
      (VP
        (VBN "received")
        (ADVP (RB "well")))))
(. "."))
```

```
RB \rightarrow Still
ADVP \rightarrow RB
, \rightarrow,
NNP \rightarrow Time
POS \rightarrow 's
NP \rightarrow NNP POS
NN \rightarrow move
NP \rightarrow NP NN
VBZ \rightarrow is
VBG \rightarrow being
VBN \rightarrow received
RB \rightarrow well
```

1 2

1

1

1

1

1

1

1

(S

```
(ADVP (RB "Still"))
(, ",")
(NP
   (NP (NNP "Time") (POS "'s"))
   (NN "move"))
(VP
   (VBZ "is")
   (VP
      (VBG "being")
      (VP
        (VBN "received")
        (ADVP (RB "well")))))
(. "."))
```

```
RB \rightarrow Still
ADVP \rightarrow RB
                                      2
, \rightarrow,
NNP \rightarrow Time
POS \rightarrow 's
NP \rightarrow NNP POS
NN \rightarrow move
NP \rightarrow NP NN
VBZ \rightarrow is
VBG \rightarrow being
VBN \rightarrow received
                                      1
RB \rightarrow well
VP \rightarrow VBN ADVP
```

1

1

1

1

(S

```
(ADVP (RB "Still"))
(, ",")
(NP
   (NP (NNP "Time") (POS "'s"))
   (NN "move"))
(VP
   (VBZ "is")
   (VP
      (VBG "being")
      (VP
        (VBN "received")
        (ADVP (RB "well")))))
(. "."))
```

```
\mathsf{RB} \rightarrow \mathsf{Still}
ADVP \rightarrow RB
, \rightarrow,
NNP \rightarrow Time
POS \rightarrow s
NP \rightarrow NNP POS
NN \rightarrow move
NP \rightarrow NP NN
VBZ \rightarrow is
VBG \rightarrow being
VBN \rightarrow received
\mathsf{RB} \rightarrow \mathsf{well}
VP \rightarrow VBN ADVP
VP \rightarrow VBG VP
```

2

1

1

1

1

(S

```
(ADVP (RB "Still"))
(, ",")
(NP
   (NP (NNP "Time") (POS "'s"))
   (NN "move"))
(VP
   (VBZ "is")
   (VP
      (VBG "being")
      (VP
        (VBN "received")
        (ADVP (RB "well")))))
(. "."))
```

```
\mathsf{RB} \rightarrow \mathsf{Still}
ADVP \rightarrow RB
, \rightarrow,
NNP \rightarrow Time
POS \rightarrow s
NP \rightarrow NNP POS
NN \rightarrow move
NP \rightarrow NP NN
VBZ \rightarrow is
VBG \rightarrow being
VBN \rightarrow received
\mathsf{RB} \rightarrow \mathsf{well}
VP \rightarrow VBN ADVP
VP \rightarrow VBG VP
. \rightarrow .
```

2

1

1

1

1

1

(S

```
(ADVP (RB "Still"))
(, ",")
(NP
   (NP (NNP "Time") (POS "'s"))
   (NN "move"))
(VP
   (VBZ "is")
   (VP
      (VBG "being")
      (VP
        (VBN "received")
        (ADVP (RB "well")))))
(. "."))
```

```
\mathsf{RB} \rightarrow \mathsf{Still}
ADVP \rightarrow RB
                                             2
, \rightarrow,
NNP \rightarrow Time
POS \rightarrow s
NP \rightarrow NNP POS
NN \rightarrow move
NP \rightarrow NP NN
VBZ \rightarrow is
VBG \rightarrow being
VBN \rightarrow received
                                             1
\mathsf{RB} \rightarrow \mathsf{well}
VP \rightarrow VBN ADVP
VP \rightarrow VBG VP
. \rightarrow .
\mathsf{S}\to\mathsf{ADVP} , \mathsf{NP} \mathsf{VP} .
```

(S

```
(ADVP (RB "Still"))
(, ",")
(NP
   (NP (NNP "Time") (POS "'s"))
   (NN "move"))
(VP
   (VBZ "is")
   (VP
      (VBG "being")
      (VP
        (VBN "received")
        (ADVP (RB "well")))))
(. "."))
```

 $\mathsf{RB} \to \mathsf{Still}$ $ADVP \rightarrow RB$ 2 $. \rightarrow .$ $NNP \rightarrow Time$ $POS \rightarrow s$ $NP \rightarrow NNP POS$ $NN \rightarrow move$ $NP \rightarrow NP NN$ $VBZ \rightarrow is$ $VBG \rightarrow being$ $VBN \rightarrow received$ 1 $\mathsf{RB} \rightarrow \mathsf{well}$ $VP \rightarrow VBN ADVP$ $VP \rightarrow VBG VP$ $. \rightarrow .$ $S \rightarrow ADVP$, NP VP . 1 START \rightarrow S

Once we have counts of all the rules, we turn them into probabilities.

Once we have counts of all the rules, we turn them into probabilities.

$S\toADVP$, NP VP .	50	$S\toNP\;VP$.	400
$S \to NP \ VP \ PP$.	350	$S \to VP ~!$	100
$S \to NP \; VP \; S$.	200	$S\toNP\;VP$	50

Once we have counts of all the rules, we turn them into probabilities.

$$P(S \to ADVP, NPVP.) \approx \frac{C(S \to ADVP, NPVP.)}{C(S)}$$

Once we have counts of all the rules, we turn them into probabilities.

$$P(S \to ADVP, NPVP.) \approx \frac{C(S \to ADVP, NPVP.)}{C(S)}$$
$$= \frac{50}{1150}$$
$$= 0.0435$$

Viterbi Decoding over the Parse Forest

Recall the Viterbi algorithm for HMMs

$$v_i(s) = \max_{k=1}^{L} [v_{i-1}(k) \cdot P(s|k) \cdot P(o_i|s)]$$

Viterbi Decoding over the Parse Forest

Recall the Viterbi algorithm for HMMs

$$v_i(s) = \max_{k=1}^{L} [v_{i-1}(k) \cdot P(s|k) \cdot P(o_i|s)]$$

Over the (result edges from the) parse forest, compute Viterbi scores for sub-trees of increasing size:

$$v(\alpha) = \max\left[P(\beta_1, \dots, \beta_n | \alpha) \times \prod_{i=1}^n v(\beta_i)\right]$$

Viterbi Decoding over the Parse Forest

Recall the Viterbi algorithm for HMMs

$$v_i(s) = \max_{k=1}^{L} [v_{i-1}(k) \cdot P(s|k) \cdot P(o_i|s)]$$

Over the (result edges from the) parse forest, compute Viterbi scores for sub-trees of increasing size:

$$v(\alpha) = \max\left[P(\beta_1, \dots, \beta_n | \alpha) \times \prod_{i=1}^n v(\beta_i)\right]$$

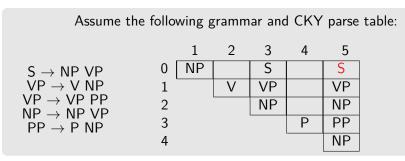
Similar to HMM decoding, we also need to keep track of the set of daughters that led to the maximum probability.

Exercise (1): Natural Language Ambiguity

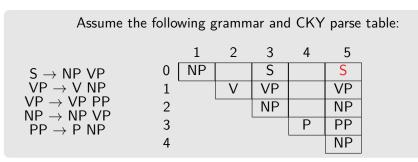
Assume the following 'toy' grammar of English:

 $\begin{array}{c} \mathsf{S} \rightarrow \mathsf{NP} \\ \mathsf{NP} \rightarrow \mathsf{Det} \ \mathsf{N} \\ \mathsf{N} \rightarrow \mathsf{N} \ \mathsf{N} \\ \\ \mathsf{Det} \rightarrow \textit{the} \\ \mathsf{N} \rightarrow \textit{kitchen} \mid \textit{gold} \mid \textit{towel} \mid \textit{rack} \end{array}$

Exercise (1): Natural Language Ambiguity


Assume the following 'toy' grammar of English:

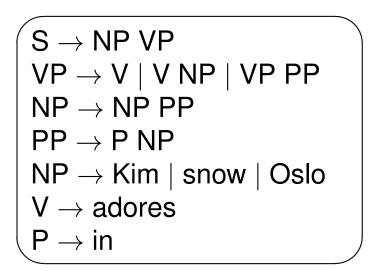
 $\begin{array}{c} \mathsf{S} \to \mathsf{NP} \\ \mathsf{NP} \to \mathsf{Det} \; \mathsf{N} \\ \mathsf{N} \to \mathsf{N} \; \mathsf{N} \\ \\ \mathsf{Det} \to \mathit{the} \\ \mathsf{N} \to \mathit{kitchen} \mid \mathit{gold} \mid \mathit{towel} \mid \mathit{rack} \end{array}$


(1) How many different syntactic analyses, if any, does the grammar assign to the following strings?

(a) the kitchen towel rack(b) the kitchen gold towel rack

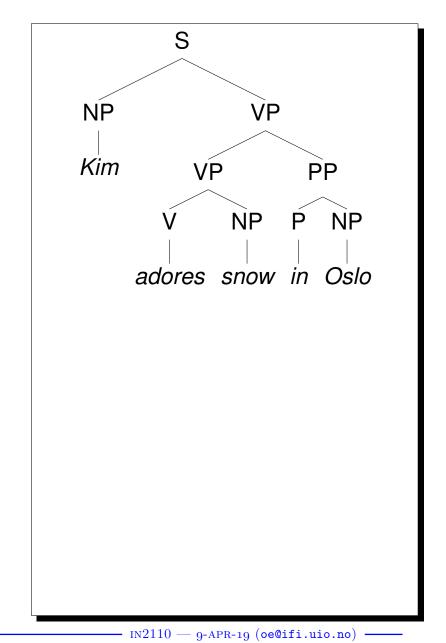
Exercise (2): CKY Parsing

Exercise (2): CKY Parsing



(2) Which pair(s) of 'input' cells and which production(s) give rise to the derivation of category S in 'target' cell (0, 5)?

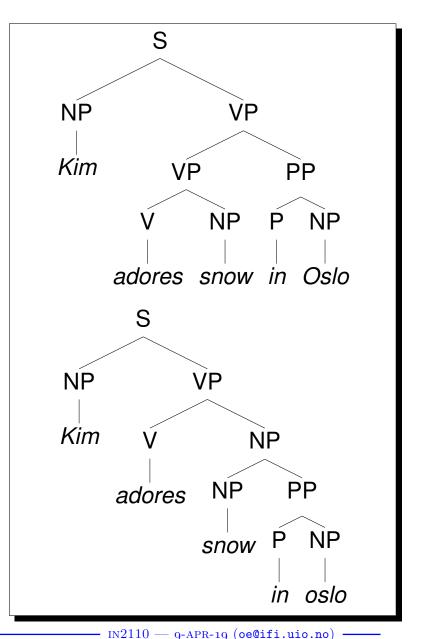
After the Easter Break


- Dependency syntax
- Transition-based dependency parsing
- Using syntactic structure

Parsing with CFGs: Moving to a Procedural View

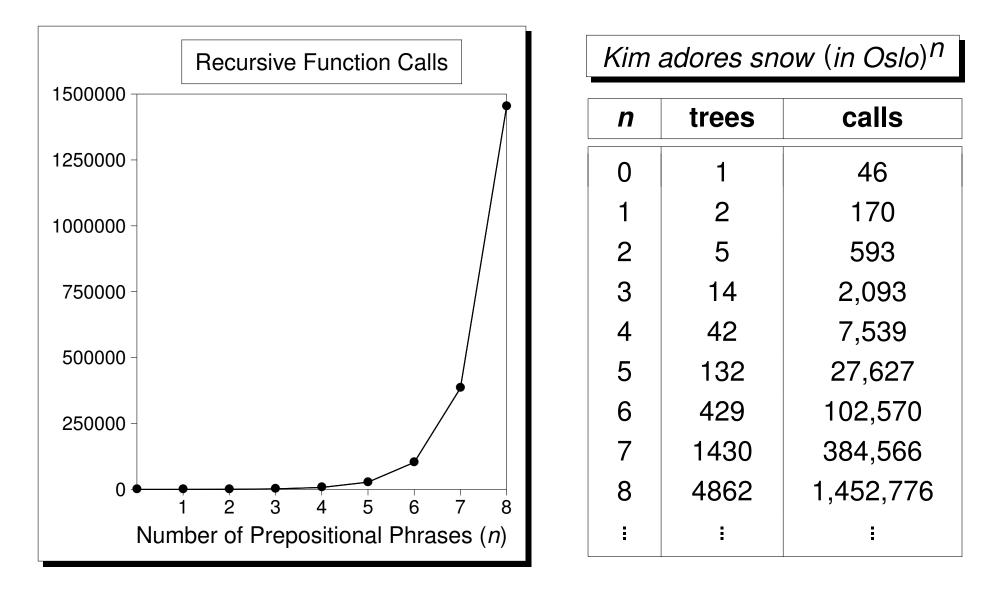
All Complete Derivations

- \bullet are rooted in the start symbol S;
- label internal nodes with categories $\in C$, leafs with words $\in \Sigma$;
- instantiate a grammar rule $\in P$ at each local subtree of depth one.

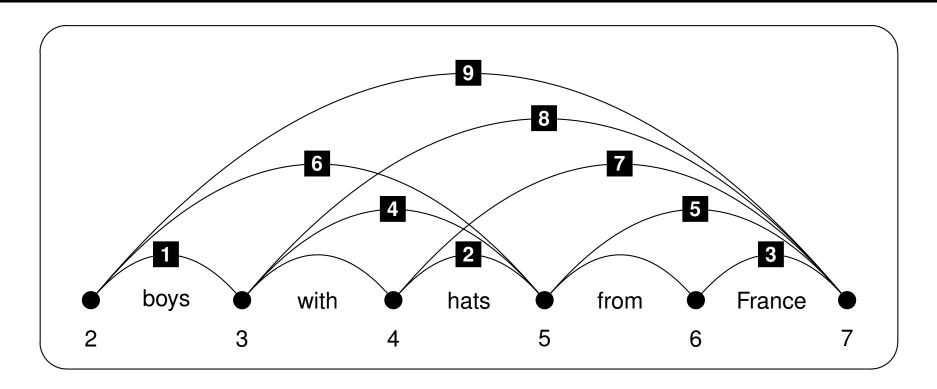


Parsing with CFGs: Moving to a Procedural View

$$\begin{array}{c} S \rightarrow \mathsf{NP} \ \mathsf{VP} \\ \mathsf{VP} \rightarrow \mathsf{V} \mid \mathsf{V} \ \mathsf{NP} \mid \mathsf{VP} \ \mathsf{PP} \\ \mathsf{NP} \rightarrow \mathsf{NP} \ \mathsf{PP} \\ \mathsf{PP} \rightarrow \mathsf{P} \ \mathsf{NP} \\ \mathsf{NP} \rightarrow \mathsf{Kim} \mid \mathsf{snow} \mid \mathsf{Oslo} \\ \mathsf{V} \rightarrow \mathsf{adores} \\ \mathsf{P} \rightarrow \mathsf{in} \end{array}$$


All Complete Derivations

- are rooted in the start symbol S;
- label internal nodes with categories $\in C$, leafs with words $\in \Sigma$;
- instantiate a grammar rule $\in P$ at each local subtree of depth one.


Quantifying the Complexity of the Parsing Task

A Key Insight: Local Ambiguity

- For many substrings, more than one way of deriving the same category;
- NPs: 1 | 2 | 3 | 6 | 7 | 9; PPs: 4 | 5 | 8; 9 \equiv 1 + 8 | 6 + 5;
- parse forest a single item represents multiple trees [Billot & Lang, 89].

The CKY (Cocke, Kasami, & Younger) Algorithm

Kim adored snow in Oslo

	1	2	3	4	5
0	NP		S		S
1		V	VP		VP
2			NP		NP
3				Ρ	PP
4					NP

- IN2110 - 9-APR-19 (oe@ifi.uio.no)

(Statistical) CFG Parsing (6)

The CKY (Cocke, Kasami, & Younger) Algorithm

Kim adored snow in Oslo

	1	2	3	4	5
0	NP		S		S
1		V	VP		VP
2			NP		NP
3				Ρ	PP
4					NP

(Statistical) CFG Parsing (6)

- IN2110 - 9-APR-19 (oe@ifi.uio.no)

The CKY (Cocke, Kasami, & Younger) Algorithm

```
for (0 \le i < |input|) do

chart_{[i,i+1]} \leftarrow \{\alpha \mid \alpha \rightarrow input_i \in P\};

for (1 \le l < |input|) do

for (0 \le i < |input| - l) do

for (1 \le j \le l) do

if (\alpha \rightarrow \beta_1 \beta_2 \in P \land \beta_1 \in chart_{[i,i+j]} \land \beta_2 \in chart_{[i+j,i+l+1]}) then

chart_{[i,i+l+1]} \leftarrow chart_{[i,i+l+1]} \cup \{\alpha\};
```

	1	2	3	4	5	
0	NP		S		S	
1		V	VP		VP	
2			NP		NP	
3				Ρ	PP	
4					NP	

Kim adored snow in Oslo

(Statistical) CFG Parsing (6)

Chart Parsing — Specialized Dynamic Programming

Basic Notions

- Use *chart* to record partial analyses, indexing them by string positions;
- count inter-word vertices; CKY: chart row is *start*, column *end* vertex;
- treat multiple ways of deriving the same category for some substring as *equivalent*; pursue only once when combining with other constituents.

Chart Parsing — Specialized Dynamic Programming

Basic Notions

- Use *chart* to record partial analyses, indexing them by string positions;
- count inter-word vertices; CKY: chart row is *start*, column *end* vertex;
- treat multiple ways of deriving the same category for some substring as *equivalent*; pursue only once when combining with other constituents.

Key Benefits

- Dynamic programming (memoization): avoid recomputation of results;
- efficient indexing of constituents: no search by start or end positions;
- compute *parse forest* with exponential 'extension' in *polynomial* time.

In Conclusion—What Happened this Far

Syntactic Structure

- Languages (formal or natural) exhibit complex, hierarchical structures;
- grammars encode rules of the language: dominance and sequencing;
- context-free grammar 'generates' a language: strings and derivations;
- ambiguity in natural language grows exponentially: a search problem;
- bounding (or 'packing') of local ambiguity is mandatory for tractability;
- chart parsing uses dynamic programming: free order of computation.

In Conclusion—What Happened this Far

Syntactic Structure

- Languages (formal or natural) exhibit complex, hierarchical structures;
- grammars encode rules of the language: dominance and sequencing;
- context-free grammar 'generates' a language: strings and derivations;
- ambiguity in natural language grows exponentially: a search problem;
- bounding (or 'packing') of local ambiguity is mandatory for tractability;
- chart parsing uses dynamic programming: free order of computation.

Coming up Next

• Treebank parsing; Viterbi adaptation on parse forest; parser evaluation.

Ambiguity Resolution is a (Major) Challenge

The Problem

- Even moderately complex sentences often have (very) many analyses;
- in most applications, computing all possible readings is hardly helpful;
- identifying the 'correct' (intended) analysis is an 'AI-complete' problem.

Ambiguity Resolution is a (Major) Challenge

The Problem

- Even moderately complex sentences often have (very) *many* analyses;
- in most applications, computing all possible readings is hardly helpful;
- identifying the 'correct' (intended) analysis is an 'AI-complete' problem.

Once Again: Probabilities to the Rescue

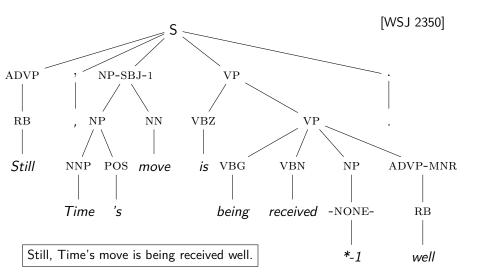
- Design and use statistical models to select among competing analyses;
- for string S, some analyses T_i are more or less likely: maximize $P(T_i|S)$;
- \rightarrow Probabilistic Context Free Grammar (PCFG) is a CFG plus probabilities.

Treebanks

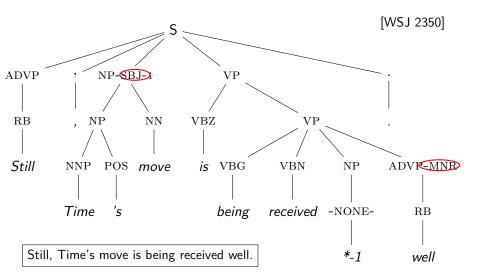
Generally

- A treebank is a corpus paired with 'gold-standard' (syntactico-semantic) analyses
- Created by manual annotation, typically with computational support (e.g. some automated processing plus correction)
- Can provide training data for machine learning (of parsers).

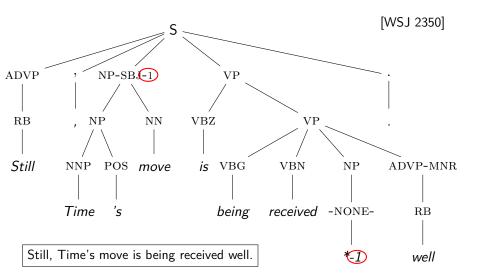
Treebanks

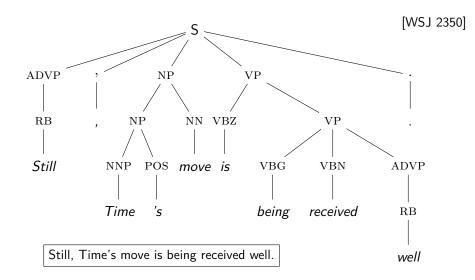

Generally

- A treebank is a corpus paired with 'gold-standard' (syntactico-semantic) analyses
- Created by manual annotation, typically with computational support (e.g. some automated processing plus correction)
- ► Can provide training data for machine learning (of parsers).


Penn Treebank (Marcus et al., 1993)

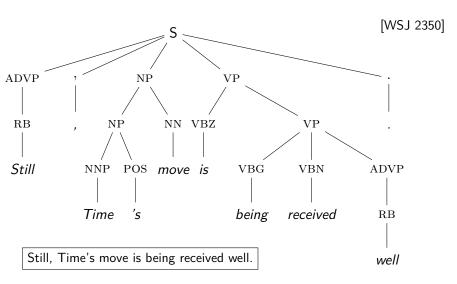
- ► About one million tokens of Wall Street Journal text
- Hand-corrected PoS annotation using 45 word classes
- ► Manual annotation with (somewhat) coarse constituent structure
- ► The 'mother' of all treebanks; still in wide use today.


One Example from the Penn Treebank


One Example from the Penn Treebank

One Example from the Penn Treebank

Elimination of Traces and Functions



Towards statistical parsing: Not just interested in which trees can apply to a sentence, but also which tree is most likely.

- Towards statistical parsing: Not just interested in which trees can apply to a sentence, but also which tree is most likely.
- Probabilistic context-free grammars (PCFGs) augment CFGs by adding probabilities to each production, e.g.
 - $S \rightarrow NP VP$ 0.6
 - $S \rightarrow NP VP PP$ 0.4
- These are conditional probabilities: the probability of the right hand side (RHS), given the left hand side (LHS)
 - ▶ $P(S \rightarrow NP VP) = P(NP VP|S)$

- Towards statistical parsing: Not just interested in which trees can apply to a sentence, but also which tree is most likely.
- Probabilistic context-free grammars (PCFGs) augment CFGs by adding probabilities to each production, e.g.
 - $S \rightarrow NP VP$ 0.6
 - $S \rightarrow NP VP PP$ 0.4
- These are conditional probabilities: the probability of the right hand side (RHS), given the left hand side (LHS)
 - $P(S \rightarrow NP VP) = P(NP VP|S)$
- The probability of a complete tree is the product of rule probabilities

- Towards statistical parsing: Not just interested in which trees can apply to a sentence, but also which tree is most likely.
- Probabilistic context-free grammars (PCFGs) augment CFGs by adding probabilities to each production, e.g.
 - $S \rightarrow NP VP$ 0.6
 - $S \rightarrow NP VP PP$ 0.4
- These are conditional probabilities: the probability of the right hand side (RHS), given the left hand side (LHS)
 - ▶ $P(S \rightarrow NP VP) = P(NP VP|S)$
- The probability of a complete tree is the product of rule probabilities
- We can learn these probabilities from a treebank, much like the estimation of HMM probabilities: Maximum Likelihood Estimation.


```
(S
```

```
(ADVP (RB "Still"))
(, ",")
(NP
   (NP (NNP "Time") (POS "'s"))
   (NN "move"))
(VP
   (VBZ "is")
   (VP
      (VBG "being")
      (VP
        (VBN "received")
        (ADVP (RB "well")))))
(. "."))
```

 $\mathsf{RB}\to\mathsf{Still}$

```
(S
   (ADVP (RB "Still"))
   (, ",")
   (NP
      (NP (NNP "Time") (POS "'s"))
      (NN "move"))
   (VP
      (VBZ "is")
      (VP
         (VBG "being")
         (VP
           (VBN "received")
           (ADVP (RB "well")))))
   (. "."))
```

 $\begin{array}{l} \mathsf{RB} \to \mathsf{Still} \\ \mathsf{ADVP} \to \mathsf{RB} \end{array}$

(S

```
(ADVP (RB "Still"))
(, ",")
(NP
   (NP (NNP "Time") (POS "'s"))
   (NN "move"))
(VP
   (VBZ "is")
   (VP
      (VBG "being")
      (VP
        (VBN "received")
        (ADVP (RB "well")))))
(. "."))
```

 $\begin{array}{l} \mathsf{RB} \rightarrow \mathsf{Still} \\ \mathsf{ADVP} \rightarrow \mathsf{RB} \\ , \rightarrow , \end{array}$

(S

```
(ADVP (RB "Still"))
(, ",")
(NP
   (NP (NNP "Time") (POS "'s"))
   (NN "move"))
(VP
   (VBZ "is")
   (VP
      (VBG "being")
      (VP
        (VBN "received")
        (ADVP (RB "well")))))
(. "."))
```

1 1

```
\begin{array}{l} \mathsf{RB} \rightarrow \mathsf{Still} \\ \mathsf{ADVP} \rightarrow \mathsf{RB} \\ , \rightarrow , \\ \mathsf{NNP} \rightarrow \mathsf{Time} \end{array}
```

(S

```
(ADVP (RB "Still"))
(, ",")
(NP
   (NP (NNP "Time") (POS "'s"))
   (NN "move"))
(VP
   (VBZ "is")
   (VP
      (VBG "being")
      (VP
        (VBN "received")
        (ADVP (RB "well")))))
(. "."))
```

1 1

1

```
\begin{array}{l} \mathsf{RB} \rightarrow \mathsf{Still} \\ \mathsf{ADVP} \rightarrow \mathsf{RB} \\ , \rightarrow , \\ \mathsf{NNP} \rightarrow \mathsf{Time} \\ \mathsf{POS} \rightarrow \mathsf{'s} \end{array}
```

(S

```
(ADVP (RB "Still"))
(, ",")
(NP
   (NP (NNP "Time") (POS "'s"))
   (NN "move"))
(VP
   (VBZ "is")
   (VP
      (VBG "being")
      (VP
        (VBN "received")
        (ADVP (RB "well")))))
(. "."))
```

1

1

1

1

(S

```
(ADVP (RB "Still"))
(, ",")
(NP
   (NP (NNP "Time") (POS "'s"))
   (NN "move"))
(VP
   (VBZ "is")
   (VP
      (VBG "being")
      (VP
        (VBN "received")
        (ADVP (RB "well")))))
(. "."))
```

```
\begin{array}{l} \mathsf{RB} \rightarrow \mathsf{Still} \\ \mathsf{ADVP} \rightarrow \mathsf{RB} \\ , \rightarrow , \\ \mathsf{NNP} \rightarrow \mathsf{Time} \\ \mathsf{POS} \rightarrow \mathsf{'s} \\ \mathsf{NP} \rightarrow \mathsf{NNP} \ \mathsf{POS} \end{array}
```

1

1

1

1

1

```
\begin{array}{l} \mathsf{RB} \rightarrow \mathsf{Still} \\ \mathsf{ADVP} \rightarrow \mathsf{RB} \\ \text{,} \rightarrow \text{,} \\ \mathsf{NNP} \rightarrow \mathsf{Time} \\ \mathsf{POS} \rightarrow \mathsf{'s} \\ \mathsf{NP} \rightarrow \mathsf{NNP} \ \mathsf{POS} \\ \mathsf{NN} \rightarrow \mathsf{move} \end{array}
```

(S

```
(ADVP (RB "Still"))
(, ",")
(NP
   (NP (NNP "Time") (POS "'s"))
   (NN "move"))
(VP
   (VBZ "is")
   (VP
      (VBG "being")
      (VP
        (VBN "received")
        (ADVP (RB "well")))))
(. "."))
```

1

1

1

1

1

(S

```
(ADVP (RB "Still"))
(, ",")
(NP
   (NP (NNP "Time") (POS "'s"))
   (NN "move"))
(VP
   (VBZ "is")
   (VP
      (VBG "being")
      (VP
        (VBN "received")
        (ADVP (RB "well")))))
(. "."))
```

```
\begin{array}{l} \mathsf{RB} \rightarrow \mathsf{Still} \\ \mathsf{ADVP} \rightarrow \mathsf{RB} \\ , \rightarrow , \\ \mathsf{NNP} \rightarrow \mathsf{Time} \\ \mathsf{POS} \rightarrow \mathsf{'s} \\ \mathsf{NP} \rightarrow \mathsf{NNP} \ \mathsf{POS} \\ \mathsf{NN} \rightarrow \mathsf{move} \\ \mathsf{NP} \rightarrow \mathsf{NP} \ \mathsf{NN} \end{array}
```

1

1

1

1

1

1

(S

```
(ADVP (RB "Still"))
(, ",")
(NP
   (NP (NNP "Time") (POS "'s"))
   (NN "move"))
(VP
   (VBZ "is")
   (VP
      (VBG "being")
      (VP
        (VBN "received")
        (ADVP (RB "well")))))
(. "."))
```

```
\begin{array}{l} \mathsf{RB} \rightarrow \mathsf{Still} \\ \mathsf{ADVP} \rightarrow \mathsf{RB} \\ , \rightarrow , \\ \mathsf{NNP} \rightarrow \mathsf{Time} \\ \mathsf{POS} \rightarrow \mathsf{'s} \\ \mathsf{NP} \rightarrow \mathsf{NNP} \ \mathsf{POS} \\ \mathsf{NN} \rightarrow \mathsf{move} \\ \mathsf{NP} \rightarrow \mathsf{NP} \ \mathsf{NN} \\ \mathsf{VBZ} \rightarrow \mathsf{is} \end{array}
```

1

1

1

1

1

1

(S

```
(ADVP (RB "Still"))
(, ",")
(NP
   (NP (NNP "Time") (POS "'s"))
   (NN "move"))
(VP
   (VBZ "is")
   (VP
      (VBG "being")
      (VP
        (VBN "received")
        (ADVP (RB "well")))))
(. "."))
```

```
\begin{array}{l} \mathsf{RB} \rightarrow \mathsf{Still} \\ \mathsf{ADVP} \rightarrow \mathsf{RB} \\ , \rightarrow , \\ \mathsf{NNP} \rightarrow \mathsf{Time} \\ \mathsf{POS} \rightarrow \mathsf{'s} \\ \mathsf{NP} \rightarrow \mathsf{NNP} \ \mathsf{POS} \\ \mathsf{NP} \rightarrow \mathsf{NNP} \ \mathsf{POS} \\ \mathsf{NN} \rightarrow \mathsf{move} \\ \mathsf{NP} \rightarrow \mathsf{NP} \ \mathsf{NN} \\ \mathsf{VBZ} \rightarrow \mathsf{is} \\ \mathsf{VBG} \rightarrow \mathsf{being} \end{array}
```

1

1

1

1

1

1

(S

```
(ADVP (RB "Still"))
(, ",")
(NP
   (NP (NNP "Time") (POS "'s"))
   (NN "move"))
(VP
   (VBZ "is")
   (VP
      (VBG "being")
      (VP
        (VBN "received")
        (ADVP (RB "well")))))
(. "."))
```

```
\begin{array}{l} \mathsf{RB} \rightarrow \mathsf{Still} \\ \mathsf{ADVP} \rightarrow \mathsf{RB} \\ \mathsf{,} \rightarrow \mathsf{,} \\ \mathsf{NNP} \rightarrow \mathsf{Time} \\ \mathsf{POS} \rightarrow \mathsf{'s} \\ \mathsf{NP} \rightarrow \mathsf{NNP} \ \mathsf{POS} \\ \mathsf{NP} \rightarrow \mathsf{NNP} \ \mathsf{POS} \\ \mathsf{NN} \rightarrow \mathsf{move} \\ \mathsf{NP} \rightarrow \mathsf{NP} \ \mathsf{NN} \\ \mathsf{VBZ} \rightarrow \mathsf{is} \\ \mathsf{VBG} \rightarrow \mathsf{being} \\ \mathsf{VBN} \rightarrow \mathsf{received} \end{array}
```

1

1

1

1

1

1

(S

```
(ADVP (RB "Still"))
(, ",")
(NP
   (NP (NNP "Time") (POS "'s"))
   (NN "move"))
(VP
   (VBZ "is")
   (VP
      (VBG "being")
      (VP
        (VBN "received")
        (ADVP (RB "well")))))
(. "."))
```

```
RB \rightarrow Still
ADVP \rightarrow RB
, \rightarrow,
NNP \rightarrow Time
POS \rightarrow 's
NP \rightarrow NNP POS
NN \rightarrow move
NP \rightarrow NP NN
VBZ \rightarrow is
VBG \rightarrow being
VBN \rightarrow received
RB \rightarrow well
```

1

1

1

1

1

1

(S

```
(ADVP (RB "Still"))
(, ",")
(NP
   (NP (NNP "Time") (POS "'s"))
   (NN "move"))
(VP
   (VBZ "is")
   (VP
      (VBG "being")
      (VP
        (VBN "received")
        (ADVP (RB "well")))))
(. "."))
```

```
RB \rightarrow Still
ADVP \rightarrow RB
, \rightarrow,
NNP \rightarrow Time
POS \rightarrow 's
NP \rightarrow NNP POS
NN \rightarrow move
NP \rightarrow NP NN
VBZ \rightarrow is
VBG \rightarrow being
VBN \rightarrow received
RB \rightarrow well
```

1 2

1

1

1

1

1

1

1

(S

```
(ADVP (RB "Still"))
(, ",")
(NP
   (NP (NNP "Time") (POS "'s"))
   (NN "move"))
(VP
   (VBZ "is")
   (VP
      (VBG "being")
      (VP
        (VBN "received")
        (ADVP (RB "well")))))
(. "."))
```

```
RB \rightarrow Still
ADVP \rightarrow RB
                                      2
, \rightarrow,
NNP \rightarrow Time
POS \rightarrow 's
NP \rightarrow NNP POS
NN \rightarrow move
NP \rightarrow NP NN
VBZ \rightarrow is
VBG \rightarrow being
VBN \rightarrow received
                                      1
RB \rightarrow well
VP \rightarrow VBN ADVP
```

1

1

1

1

(S

```
(ADVP (RB "Still"))
(, ",")
(NP
   (NP (NNP "Time") (POS "'s"))
   (NN "move"))
(VP
   (VBZ "is")
   (VP
      (VBG "being")
      (VP
        (VBN "received")
        (ADVP (RB "well")))))
(. "."))
```

```
\mathsf{RB} \rightarrow \mathsf{Still}
ADVP \rightarrow RB
, \rightarrow,
NNP \rightarrow Time
POS \rightarrow s
NP \rightarrow NNP POS
NN \rightarrow move
NP \rightarrow NP NN
VBZ \rightarrow is
VBG \rightarrow being
VBN \rightarrow received
\mathsf{RB} \rightarrow \mathsf{well}
VP \rightarrow VBN ADVP
VP \rightarrow VBG VP
```

2

1

1

1

1

(S

```
(ADVP (RB "Still"))
(, ",")
(NP
   (NP (NNP "Time") (POS "'s"))
   (NN "move"))
(VP
   (VBZ "is")
   (VP
      (VBG "being")
      (VP
        (VBN "received")
        (ADVP (RB "well")))))
(. "."))
```

```
\mathsf{RB} \rightarrow \mathsf{Still}
ADVP \rightarrow RB
, \rightarrow,
NNP \rightarrow Time
POS \rightarrow s
NP \rightarrow NNP POS
NN \rightarrow move
NP \rightarrow NP NN
VBZ \rightarrow is
VBG \rightarrow being
VBN \rightarrow received
\mathsf{RB} \rightarrow \mathsf{well}
VP \rightarrow VBN ADVP
VP \rightarrow VBG VP
. \rightarrow .
```

2

1

1

1

1

1

(S

```
(ADVP (RB "Still"))
(, ",")
(NP
   (NP (NNP "Time") (POS "'s"))
   (NN "move"))
(VP
   (VBZ "is")
   (VP
      (VBG "being")
      (VP
        (VBN "received")
        (ADVP (RB "well")))))
(. "."))
```

```
\mathsf{RB} \rightarrow \mathsf{Still}
ADVP \rightarrow RB
                                             2
, \rightarrow,
NNP \rightarrow Time
POS \rightarrow s
NP \rightarrow NNP POS
NN \rightarrow move
NP \rightarrow NP NN
VBZ \rightarrow is
VBG \rightarrow being
VBN \rightarrow received
                                             1
\mathsf{RB} \rightarrow \mathsf{well}
VP \rightarrow VBN ADVP
VP \rightarrow VBG VP
. \rightarrow .
\mathsf{S}\to\mathsf{ADVP} , \mathsf{NP} \mathsf{VP} .
```

(S

```
(ADVP (RB "Still"))
(, ",")
(NP
   (NP (NNP "Time") (POS "'s"))
   (NN "move"))
(VP
   (VBZ "is")
   (VP
      (VBG "being")
      (VP
        (VBN "received")
        (ADVP (RB "well")))))
(. "."))
```

 $\mathsf{RB} \to \mathsf{Still}$ $ADVP \rightarrow RB$ 2 $. \rightarrow .$ $NNP \rightarrow Time$ $POS \rightarrow s$ $NP \rightarrow NNP POS$ $NN \rightarrow move$ $NP \rightarrow NP NN$ $VBZ \rightarrow is$ $VBG \rightarrow being$ $VBN \rightarrow received$ 1 $\mathsf{RB} \rightarrow \mathsf{well}$ $VP \rightarrow VBN ADVP$ $VP \rightarrow VBG VP$ $. \rightarrow .$ $S \rightarrow ADVP$, NP VP . 1 START \rightarrow S

Once we have counts of all the rules, we turn them into probabilities.

Once we have counts of all the rules, we turn them into probabilities.

$S\toADVP$, NP VP .	50	$S\toNP\;VP$.	400
$S \to NP \ VP \ PP$.	350	$S \to VP ~!$	100
$S \to NP \; VP \; S$.	200	$S\toNP\;VP$	50

Once we have counts of all the rules, we turn them into probabilities.

$$P(S \to ADVP, NPVP.) \approx \frac{C(S \to ADVP, NPVP.)}{C(S)}$$

Once we have counts of all the rules, we turn them into probabilities.

$$P(S \to ADVP, NPVP.) \approx \frac{C(S \to ADVP, NPVP.)}{C(S)}$$
$$= \frac{50}{1150}$$
$$= 0.0435$$

Viterbi Decoding over the Parse Forest

Recall the Viterbi algorithm for HMMs

$$v_i(s) = \max_{k=1}^{L} [v_{i-1}(k) \cdot P(s|k) \cdot P(o_i|s)]$$

Viterbi Decoding over the Parse Forest

Recall the Viterbi algorithm for HMMs

$$v_i(s) = \max_{k=1}^{L} [v_{i-1}(k) \cdot P(s|k) \cdot P(o_i|s)]$$

Over the (result edges from the) parse forest, compute Viterbi scores for sub-trees of increasing size:

$$v(\alpha) = \max\left[P(\beta_1, \dots, \beta_n | \alpha) \times \prod_{i=1}^n v(\beta_i)\right]$$

Viterbi Decoding over the Parse Forest

Recall the Viterbi algorithm for HMMs

$$v_i(s) = \max_{k=1}^{L} [v_{i-1}(k) \cdot P(s|k) \cdot P(o_i|s)]$$

Over the (result edges from the) parse forest, compute Viterbi scores for sub-trees of increasing size:

$$v(\alpha) = \max\left[P(\beta_1, \dots, \beta_n | \alpha) \times \prod_{i=1}^n v(\beta_i)\right]$$

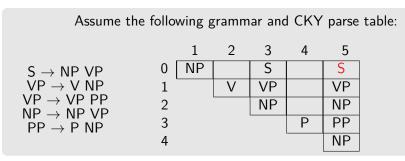
Similar to HMM decoding, we also need to keep track of the set of daughters that led to the maximum probability.

Exercise (1): Natural Language Ambiguity

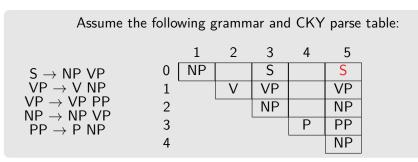
Assume the following 'toy' grammar of English:

 $\begin{array}{c} \mathsf{S} \rightarrow \mathsf{NP} \\ \mathsf{NP} \rightarrow \mathsf{Det} \ \mathsf{N} \\ \mathsf{N} \rightarrow \mathsf{N} \ \mathsf{N} \\ \\ \mathsf{Det} \rightarrow \textit{the} \\ \mathsf{N} \rightarrow \textit{kitchen} \mid \textit{gold} \mid \textit{towel} \mid \textit{rack} \end{array}$

Exercise (1): Natural Language Ambiguity


Assume the following 'toy' grammar of English:

 $\begin{array}{c} \mathsf{S} \to \mathsf{NP} \\ \mathsf{NP} \to \mathsf{Det} \; \mathsf{N} \\ \mathsf{N} \to \mathsf{N} \; \mathsf{N} \\ \\ \mathsf{Det} \to \mathit{the} \\ \mathsf{N} \to \mathit{kitchen} \mid \mathit{gold} \mid \mathit{towel} \mid \mathit{rack} \end{array}$


(1) How many different syntactic analyses, if any, does the grammar assign to the following strings?

(a) the kitchen towel rack(b) the kitchen gold towel rack

Exercise (2): CKY Parsing

Exercise (2): CKY Parsing

(2) Which pair(s) of 'input' cells and which production(s) give rise to the derivation of category S in 'target' cell (0, 5)?

After the Easter Break

- Dependency syntax
- Transition-based dependency parsing
- Using syntactic structure