
Treebanks

Generally

◮ A treebank is a corpus paired with ‘gold-standard’
(syntactico-semantic) analyses

◮ Created by manual annotation, typically with computational support
(e.g. some automated processing plus correction)

◮ Can provide training data for machine learning (of parsers).

1

Treebanks

Generally

◮ A treebank is a corpus paired with ‘gold-standard’
(syntactico-semantic) analyses

◮ Created by manual annotation, typically with computational support
(e.g. some automated processing plus correction)

◮ Can provide training data for machine learning (of parsers).

Penn Treebank (Marcus et al., 1993)

◮ About one million tokens of Wall Street Journal text

◮ Hand-corrected PoS annotation using 45 word classes

◮ Manual annotation with (somewhat) coarse constituent structure

◮ The ‘mother’ of all treebanks; still in wide use today.

1

One Example from the Penn Treebank

S

advp

rb

Still

,

,

np-sbj-1

np

nnp

Time

pos

’s

nn

move

vp

vbz

is

vp

vbg

being

vbn

received

np

-none-

*-1

advp-mnr

rb

well

.

.

Still, Time’s move is being received well.

[WSJ 2350]

2

One Example from the Penn Treebank

S

advp

rb

Still

,

,

np-sbj-1

np

nnp

Time

pos

’s

nn

move

vp

vbz

is

vp

vbg

being

vbn

received

np

-none-

*-1

advp-mnr

rb

well

.

.

Still, Time’s move is being received well.

[WSJ 2350]

2

One Example from the Penn Treebank

S

advp

rb

Still

,

,

np-sbj-1

np

nnp

Time

pos

’s

nn

move

vp

vbz

is

vp

vbg

being

vbn

received

np

-none-

*-1

advp-mnr

rb

well

.

.

Still, Time’s move is being received well.

[WSJ 2350]

2

Elimination of Traces and Functions

S

advp

rb

Still

,

,

np

np

nnp

Time

pos

’s

nn

move

vp

vbz

is

vp

vbg

being

vbn

received

advp

rb

well

.

.

Still, Time’s move is being received well.

[WSJ 2350]

3

Probabilistic Context-Free Grammars

◮ Towards statistical parsing: Not just interested in which trees can apply
to a sentence, but also which tree is most likely.

4

Probabilistic Context-Free Grammars

◮ Towards statistical parsing: Not just interested in which trees can apply
to a sentence, but also which tree is most likely.

◮ Probabilistic context-free grammars (PCFGs) augment CFGs by adding
probabilities to each production, e.g.
◮ S → NP VP 0.6
◮ S → NP VP PP 0.4

◮ These are conditional probabilities: the probability of the right hand
side (RHS), given the left hand side (LHS)
◮ P(S → NP VP) = P(NP VP|S)

4

Probabilistic Context-Free Grammars

◮ Towards statistical parsing: Not just interested in which trees can apply
to a sentence, but also which tree is most likely.

◮ Probabilistic context-free grammars (PCFGs) augment CFGs by adding
probabilities to each production, e.g.
◮ S → NP VP 0.6
◮ S → NP VP PP 0.4

◮ These are conditional probabilities: the probability of the right hand
side (RHS), given the left hand side (LHS)
◮ P(S → NP VP) = P(NP VP|S)

◮ The probability of a complete tree is the product of rule probabilities

4

Probabilistic Context-Free Grammars

◮ Towards statistical parsing: Not just interested in which trees can apply
to a sentence, but also which tree is most likely.

◮ Probabilistic context-free grammars (PCFGs) augment CFGs by adding
probabilities to each production, e.g.
◮ S → NP VP 0.6
◮ S → NP VP PP 0.4

◮ These are conditional probabilities: the probability of the right hand
side (RHS), given the left hand side (LHS)
◮ P(S → NP VP) = P(NP VP|S)

◮ The probability of a complete tree is the product of rule probabilities

◮ We can learn these probabilities from a treebank, much like the
estimation of HMM probabilities: Maximum Likelihood Estimation.

4

Estimating PCFGs (1/3)

S

advp

rb

Still

,

,

np

np

nnp

Time

pos

’s

nn

move

vp

vbz

is

vp

vbg

being

vbn

received

advp

rb

well

.

.

Still, Time’s move is being received well.

[WSJ 2350]

5

Estimating PCFGs (2/3)

(S

(ADVP (RB "Still"))

(, ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(. "."))

6

Estimating PCFGs (2/3)

(S

(ADVP (RB "Still"))

(, ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(. "."))

RB → Still 1

6

Estimating PCFGs (2/3)

(S

(ADVP (RB "Still"))

(, ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(. "."))

RB → Still 1
ADVP → RB 1

6

Estimating PCFGs (2/3)

(S

(ADVP (RB "Still"))

(, ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(. "."))

RB → Still 1
ADVP → RB 1
, → , 1

6

Estimating PCFGs (2/3)

(S

(ADVP (RB "Still"))

(, ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(. "."))

RB → Still 1
ADVP → RB 1
, → , 1
NNP → Time 1

6

Estimating PCFGs (2/3)

(S

(ADVP (RB "Still"))

(, ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(. "."))

RB → Still 1
ADVP → RB 1
, → , 1
NNP → Time 1
POS → ’s 1

6

Estimating PCFGs (2/3)

(S

(ADVP (RB "Still"))

(, ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(. "."))

RB → Still 1
ADVP → RB 1
, → , 1
NNP → Time 1
POS → ’s 1
NP → NNP POS 1

6

Estimating PCFGs (2/3)

(S

(ADVP (RB "Still"))

(, ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(. "."))

RB → Still 1
ADVP → RB 1
, → , 1
NNP → Time 1
POS → ’s 1
NP → NNP POS 1
NN → move 1

6

Estimating PCFGs (2/3)

(S

(ADVP (RB "Still"))

(, ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(. "."))

RB → Still 1
ADVP → RB 1
, → , 1
NNP → Time 1
POS → ’s 1
NP → NNP POS 1
NN → move 1
NP → NP NN 1

6

Estimating PCFGs (2/3)

(S

(ADVP (RB "Still"))

(, ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(. "."))

RB → Still 1
ADVP → RB 1
, → , 1
NNP → Time 1
POS → ’s 1
NP → NNP POS 1
NN → move 1
NP → NP NN 1
VBZ → is 1

6

Estimating PCFGs (2/3)

(S

(ADVP (RB "Still"))

(, ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(. "."))

RB → Still 1
ADVP → RB 1
, → , 1
NNP → Time 1
POS → ’s 1
NP → NNP POS 1
NN → move 1
NP → NP NN 1
VBZ → is 1
VBG → being 1

6

Estimating PCFGs (2/3)

(S

(ADVP (RB "Still"))

(, ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(. "."))

RB → Still 1
ADVP → RB 1
, → , 1
NNP → Time 1
POS → ’s 1
NP → NNP POS 1
NN → move 1
NP → NP NN 1
VBZ → is 1
VBG → being 1
VBN → received 1

6

Estimating PCFGs (2/3)

(S

(ADVP (RB "Still"))

(, ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(. "."))

RB → Still 1
ADVP → RB 1
, → , 1
NNP → Time 1
POS → ’s 1
NP → NNP POS 1
NN → move 1
NP → NP NN 1
VBZ → is 1
VBG → being 1
VBN → received 1
RB → well 1

6

Estimating PCFGs (2/3)

(S

(ADVP (RB "Still"))

(, ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(. "."))

RB → Still 1
ADVP → RB 2
, → , 1
NNP → Time 1
POS → ’s 1
NP → NNP POS 1
NN → move 1
NP → NP NN 1
VBZ → is 1
VBG → being 1
VBN → received 1
RB → well 1

6

Estimating PCFGs (2/3)

(S

(ADVP (RB "Still"))

(, ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(. "."))

RB → Still 1
ADVP → RB 2
, → , 1
NNP → Time 1
POS → ’s 1
NP → NNP POS 1
NN → move 1
NP → NP NN 1
VBZ → is 1
VBG → being 1
VBN → received 1
RB → well 1
VP → VBN ADVP 1

6

Estimating PCFGs (2/3)

(S

(ADVP (RB "Still"))

(, ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(. "."))

RB → Still 1
ADVP → RB 2
, → , 1
NNP → Time 1
POS → ’s 1
NP → NNP POS 1
NN → move 1
NP → NP NN 1
VBZ → is 1
VBG → being 1
VBN → received 1
RB → well 1
VP → VBN ADVP 1
VP → VBG VP 1

6

Estimating PCFGs (2/3)

(S

(ADVP (RB "Still"))

(, ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(. "."))

RB → Still 1
ADVP → RB 2
, → , 1
NNP → Time 1
POS → ’s 1
NP → NNP POS 1
NN → move 1
NP → NP NN 1
VBZ → is 1
VBG → being 1
VBN → received 1
RB → well 1
VP → VBN ADVP 1
VP → VBG VP 1
. → . 1

6

Estimating PCFGs (2/3)

(S

(ADVP (RB "Still"))

(, ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(. "."))

RB → Still 1
ADVP → RB 2
, → , 1
NNP → Time 1
POS → ’s 1
NP → NNP POS 1
NN → move 1
NP → NP NN 1
VBZ → is 1
VBG → being 1
VBN → received 1
RB → well 1
VP → VBN ADVP 1
VP → VBG VP 1
. → . 1
S → ADVP , NP VP . 1

6

Estimating PCFGs (2/3)

(S

(ADVP (RB "Still"))

(, ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(. "."))

RB → Still 1
ADVP → RB 2
, → , 1
NNP → Time 1
POS → ’s 1
NP → NNP POS 1
NN → move 1
NP → NP NN 1
VBZ → is 1
VBG → being 1
VBN → received 1
RB → well 1
VP → VBN ADVP 1
VP → VBG VP 1
. → . 1
S → ADVP , NP VP . 1
START → S 1

6

Estimating PCFGs (3/3)

Once we have counts of all the rules, we turn them into probabilities.

7

Estimating PCFGs (3/3)

Once we have counts of all the rules, we turn them into probabilities.

S → ADVP , NP VP . 50 S → NP VP . 400
S → NP VP PP . 350 S → VP ! 100
S → NP VP S . 200 S → NP VP 50

7

Estimating PCFGs (3/3)

Once we have counts of all the rules, we turn them into probabilities.

S → ADVP , NP VP . 50 S → NP VP . 400
S → NP VP PP . 350 S → VP ! 100
S → NP VP S . 200 S → NP VP 50

P (S → ADV P , NP V P .) ≈
C(S → ADV P , NP V P .)

C(S)

7

Estimating PCFGs (3/3)

Once we have counts of all the rules, we turn them into probabilities.

S → ADVP , NP VP . 50 S → NP VP . 400
S → NP VP PP . 350 S → VP ! 100
S → NP VP S . 200 S → NP VP 50

P (S → ADV P , NP V P .) ≈
C(S → ADV P , NP V P .)

C(S)

=
50

1150

= 0.0435

7

Viterbi Decoding over the Parse Forest

◮ Recall the Viterbi algorithm for HMMs

vi(s) =
L

max
k=1

[vi−1(k) · P (s|k) · P (oi|s)]

8

Viterbi Decoding over the Parse Forest

◮ Recall the Viterbi algorithm for HMMs

vi(s) =
L

max
k=1

[vi−1(k) · P (s|k) · P (oi|s)]

◮ Over the (result edges from the) parse forest, compute Viterbi scores
for sub-trees of increasing size:

v(α) = max

[

P (β1, . . . βn|α) ×
n

∏

i=1

v(βi)

]

8

Viterbi Decoding over the Parse Forest

◮ Recall the Viterbi algorithm for HMMs

vi(s) =
L

max
k=1

[vi−1(k) · P (s|k) · P (oi|s)]

◮ Over the (result edges from the) parse forest, compute Viterbi scores
for sub-trees of increasing size:

v(α) = max

[

P (β1, . . . βn|α) ×
n

∏

i=1

v(βi)

]

◮ Similar to HMM decoding, we also need to keep track of the set of
daughters that led to the maximum probability.

8

Exercise (1): Natural Language Ambiguity

Assume the following ‘toy’ grammar of English:

S → NP
NP → Det N

N → N N

Det → the

N → kitchen | gold | towel | rack

9

Exercise (1): Natural Language Ambiguity

Assume the following ‘toy’ grammar of English:

S → NP
NP → Det N

N → N N

Det → the

N → kitchen | gold | towel | rack

(1) How many different syntactic analyses, if any, does the grammar
assign to the following strings?

(a) the kitchen towel rack

(b) the kitchen gold towel rack

9

Exercise (2): CKY Parsing

Assume the following grammar and CKY parse table:

S → NP VP
VP → V NP

VP → VP PP
NP → NP VP
PP → P NP

1 2 3 4 5
0 NP S S
1 V VP VP
2 NP NP
3 P PP
4 NP

10

Exercise (2): CKY Parsing

Assume the following grammar and CKY parse table:

S → NP VP
VP → V NP

VP → VP PP
NP → NP VP
PP → P NP

1 2 3 4 5
0 NP S S
1 V VP VP
2 NP NP
3 P PP
4 NP

(2) Which pair(s) of ‘input’ cells and which production(s) give rise
to the derivation of category S in ‘target’ cell 〈0, 5〉?

10

Outlook

After the Easter Break

◮ Dependency syntax

◮ Transition-based dependency parsing

◮ Using syntactic structure

11

Parsing with CFGs: Moving to a Procedural View

✬

✫

✩

✪

S→ NP VP

VP→ V | V NP | VP PP

NP→ NP PP

PP→ P NP

NP→ Kim | snow | Oslo

V→ adores

P→ in

All Complete Derivations

• are rooted in the start symbol S;

• label internal nodes with cate-

gories ∈ C, leafs with words ∈ Σ;

• instantiate a grammar rule ∈ P at

each local subtree of depth one.

S

NP

Kim

VP

VP

V

adores

NP

snow

PP

P

in

NP

Oslo

S

NP

Kim

VP

V

adores

NP

NP

snow

PP

P

in

NP

oslo

in2110 — -apr- (oe@ifi.uio.no)

(Statistical) CFG Parsing (3)

Parsing with CFGs: Moving to a Procedural View

✬

✫

✩

✪

S→ NP VP

VP→ V | V NP | VP PP

NP→ NP PP

PP→ P NP

NP→ Kim | snow | Oslo

V→ adores

P→ in

All Complete Derivations

• are rooted in the start symbol S;

• label internal nodes with cate-

gories ∈ C, leafs with words ∈ Σ;

• instantiate a grammar rule ∈ P at

each local subtree of depth one.

S

NP

Kim

VP

VP

V

adores

NP

snow

PP

P

in

NP

Oslo

S

NP

Kim

VP

V

adores

NP

NP

snow

PP

P

in

NP

oslo

in2110 — -apr- (oe@ifi.uio.no)

(Statistical) CFG Parsing (3)

Quantifying the Complexity of the Parsing Task

1 2 3 4 5 6 7 8

Number of Prepositional Phrases (n)

0

250000

500000

750000

1000000

1250000

1500000

Recursive Function Calls

• • • • • •
•

•

•

Kim adores snow (in Oslo)n

n trees calls

0 1 46

1 2 170

2 5 593

3 14 2,093

4 42 7,539

5 132 27,627

6 429 102,570

7 1430 384,566

8 4862 1,452,776
...

in2110 — -apr- (oe@ifi.uio.no)

(Statistical) CFG Parsing (4)

A Key Insight: Local Ambiguity

• For many substrings, more than one way of deriving the same category;

• NPs: 1 | 2 | 3 | 6 | 7 | 9 ; PPs: 4 | 5 | 8 ; 9 ≡ 1 + 8 | 6 + 5 ;

• parse forest — a single item represents multiple trees [Billot & Lang, 89].

✬

✫

✩

✪2 3 4 5 6 7

boys with hats from France

1 2 3

4 5

6 7

8

9

in2110 — -apr- (oe@ifi.uio.no)

(Statistical) CFG Parsing (5)

The CKY (Cocke, Kasami, & Younger) Algorithm

for (0 ≤ i < |input |) do

chart [i,i+1] ← {α |α→ input i ∈ P};
for (1 ≤ l < |input |) do

for (0 ≤ i < |input | − l) do

for (1 ≤ j ≤ l) do

if (α→ β1 β2 ∈ P ∧ β1 ∈ chart [i,i+j] ∧ β2 ∈ chart [i+j,i+l+1]) then

chart [i,i+l+1] ← chart [i,i+l+1] ∪ {α};

✎
✍

☞
✌Kim adored snow in Oslo

1 2 3 4 5

0 NP S S

1 V VP VP

2 NP NP

3 P PP

4 NP

in2110 — -apr- (oe@ifi.uio.no)

(Statistical) CFG Parsing (6)

The CKY (Cocke, Kasami, & Younger) Algorithm

for (0 ≤ i < |input |) do

chart [i,i+1] ← {α |α→ input i ∈ P};
for (1 ≤ l < |input |) do

for (0 ≤ i < |input | − l) do

for (1 ≤ j ≤ l) do

if (α→ β1 β2 ∈ P ∧ β1 ∈ chart [i,i+j] ∧ β2 ∈ chart [i+j,i+l+1]) then

chart [i,i+l+1] ← chart [i,i+l+1] ∪ {α};

✎
✍

☞
✌Kim adored snow in Oslo

1 2 3 4 5

0 NP S S

1 V VP VP

2 NP NP

3 P PP

4 NP

in2110 — -apr- (oe@ifi.uio.no)

(Statistical) CFG Parsing (6)

The CKY (Cocke, Kasami, & Younger) Algorithm

for (0 ≤ i < |input |) do

chart [i,i+1] ← {α |α→ input i ∈ P};
for (1 ≤ l < |input |) do

for (0 ≤ i < |input | − l) do

for (1 ≤ j ≤ l) do

if (α→ β1 β2 ∈ P ∧ β1 ∈ chart [i,i+j] ∧ β2 ∈ chart [i+j,i+l+1]) then

chart [i,i+l+1] ← chart [i,i+l+1] ∪ {α};

✎
✍

☞
✌Kim adored snow in Oslo

1 2 3 4 5

0 NP S S

1 V VP VP

2 NP NP

3 P PP

4 NP

in2110 — -apr- (oe@ifi.uio.no)

(Statistical) CFG Parsing (6)

Chart Parsing — Specialized Dynamic Programming

Basic Notions

• Use chart to record partial analyses, indexing them by string positions;

• count inter-word vertices; CKY: chart row is start, column end vertex;

• treat multiple ways of deriving the same category for some substring as

equivalent ; pursue only once when combining with other constituents.

Key Benefits

• Dynamic programming (memoization): avoid recomputation of results;

• efficient indexing of constituents: no search by start or end positions;

• compute parse forest with exponential ‘extension’ in polynomial time.

in2110 — -apr- (oe@ifi.uio.no)

(Statistical) CFG Parsing (7)

Chart Parsing — Specialized Dynamic Programming

Basic Notions

• Use chart to record partial analyses, indexing them by string positions;

• count inter-word vertices; CKY: chart row is start, column end vertex;

• treat multiple ways of deriving the same category for some substring as

equivalent ; pursue only once when combining with other constituents.

Key Benefits

• Dynamic programming (memoization): avoid recomputation of results;

• efficient indexing of constituents: no search by start or end positions;

• compute parse forest with exponential ‘extension’ in polynomial time.

in2110 — -apr- (oe@ifi.uio.no)

(Statistical) CFG Parsing (7)

In Conclusion—What Happened this Far

Syntactic Structure

• Languages (formal or natural) exhibit complex, hierarchical structures;

• grammars encode rules of the language: dominance and sequencing;

• context-free grammar ‘generates’ a language: strings and derivations;

• ambiguity in natural language grows exponentially: a search problem;

• bounding (or ‘packing’) of local ambiguity is mandatory for tractability;

• chart parsing uses dynamic programming: free order of computation.

Coming up Next

• Treebank parsing; Viterbi adaptation on parse forest; parser evaluation.

in2110 — -apr- (oe@ifi.uio.no)

(Statistical) CFG Parsing (8)

In Conclusion—What Happened this Far

Syntactic Structure

• Languages (formal or natural) exhibit complex, hierarchical structures;

• grammars encode rules of the language: dominance and sequencing;

• context-free grammar ‘generates’ a language: strings and derivations;

• ambiguity in natural language grows exponentially: a search problem;

• bounding (or ‘packing’) of local ambiguity is mandatory for tractability;

• chart parsing uses dynamic programming: free order of computation.

Coming up Next

• Treebank parsing; Viterbi adaptation on parse forest; parser evaluation.

in2110 — -apr- (oe@ifi.uio.no)

(Statistical) CFG Parsing (8)

Ambiguity Resolution is a (Major) Challenge

The Problem

• Even moderately complex sentences often have (very) many analyses;

• in most applications, computing all possible readings is hardly helpful;

• identifying the ‘correct’ (intended) analysis is an ‘AI-complete’ problem.

Once Again: Probabilities to the Rescue

• Design and use statistical models to select among competing analyses;

• for string S, some analyses Ti are more or less likely: maximize P (Ti|S);

→ Probabilistic Context Free Grammar (PCFG) is a CFG plus probabilities.

in2110 — -apr- (oe@ifi.uio.no)

(Statistical) CFG Parsing (9)

Ambiguity Resolution is a (Major) Challenge

The Problem

• Even moderately complex sentences often have (very) many analyses;

• in most applications, computing all possible readings is hardly helpful;

• identifying the ‘correct’ (intended) analysis is an ‘AI-complete’ problem.

Once Again: Probabilities to the Rescue

• Design and use statistical models to select among competing analyses;

• for string S, some analyses Ti are more or less likely: maximize P (Ti|S);

→ Probabilistic Context Free Grammar (PCFG) is a CFG plus probabilities.

in2110 — -apr- (oe@ifi.uio.no)

(Statistical) CFG Parsing (9)

Treebanks

Generally

◮ A treebank is a corpus paired with ‘gold-standard’
(syntactico-semantic) analyses

◮ Created by manual annotation, typically with computational support
(e.g. some automated processing plus correction)

◮ Can provide training data for machine learning (of parsers).

1

Treebanks

Generally

◮ A treebank is a corpus paired with ‘gold-standard’
(syntactico-semantic) analyses

◮ Created by manual annotation, typically with computational support
(e.g. some automated processing plus correction)

◮ Can provide training data for machine learning (of parsers).

Penn Treebank (Marcus et al., 1993)

◮ About one million tokens of Wall Street Journal text

◮ Hand-corrected PoS annotation using 45 word classes

◮ Manual annotation with (somewhat) coarse constituent structure

◮ The ‘mother’ of all treebanks; still in wide use today.

1

One Example from the Penn Treebank

S

advp

rb

Still

,

,

np-sbj-1

np

nnp

Time

pos

’s

nn

move

vp

vbz

is

vp

vbg

being

vbn

received

np

-none-

*-1

advp-mnr

rb

well

.

.

Still, Time’s move is being received well.

[WSJ 2350]

2

One Example from the Penn Treebank

S

advp

rb

Still

,

,

np-sbj-1

np

nnp

Time

pos

’s

nn

move

vp

vbz

is

vp

vbg

being

vbn

received

np

-none-

*-1

advp-mnr

rb

well

.

.

Still, Time’s move is being received well.

[WSJ 2350]

2

One Example from the Penn Treebank

S

advp

rb

Still

,

,

np-sbj-1

np

nnp

Time

pos

’s

nn

move

vp

vbz

is

vp

vbg

being

vbn

received

np

-none-

*-1

advp-mnr

rb

well

.

.

Still, Time’s move is being received well.

[WSJ 2350]

2

Elimination of Traces and Functions

S

advp

rb

Still

,

,

np

np

nnp

Time

pos

’s

nn

move

vp

vbz

is

vp

vbg

being

vbn

received

advp

rb

well

.

.

Still, Time’s move is being received well.

[WSJ 2350]

3

Probabilistic Context-Free Grammars

◮ Towards statistical parsing: Not just interested in which trees can apply
to a sentence, but also which tree is most likely.

4

Probabilistic Context-Free Grammars

◮ Towards statistical parsing: Not just interested in which trees can apply
to a sentence, but also which tree is most likely.

◮ Probabilistic context-free grammars (PCFGs) augment CFGs by adding
probabilities to each production, e.g.
◮ S → NP VP 0.6
◮ S → NP VP PP 0.4

◮ These are conditional probabilities: the probability of the right hand
side (RHS), given the left hand side (LHS)
◮ P(S → NP VP) = P(NP VP|S)

4

Probabilistic Context-Free Grammars

◮ Towards statistical parsing: Not just interested in which trees can apply
to a sentence, but also which tree is most likely.

◮ Probabilistic context-free grammars (PCFGs) augment CFGs by adding
probabilities to each production, e.g.
◮ S → NP VP 0.6
◮ S → NP VP PP 0.4

◮ These are conditional probabilities: the probability of the right hand
side (RHS), given the left hand side (LHS)
◮ P(S → NP VP) = P(NP VP|S)

◮ The probability of a complete tree is the product of rule probabilities

4

Probabilistic Context-Free Grammars

◮ Towards statistical parsing: Not just interested in which trees can apply
to a sentence, but also which tree is most likely.

◮ Probabilistic context-free grammars (PCFGs) augment CFGs by adding
probabilities to each production, e.g.
◮ S → NP VP 0.6
◮ S → NP VP PP 0.4

◮ These are conditional probabilities: the probability of the right hand
side (RHS), given the left hand side (LHS)
◮ P(S → NP VP) = P(NP VP|S)

◮ The probability of a complete tree is the product of rule probabilities

◮ We can learn these probabilities from a treebank, much like the
estimation of HMM probabilities: Maximum Likelihood Estimation.

4

Estimating PCFGs (1/3)

S

advp

rb

Still

,

,

np

np

nnp

Time

pos

’s

nn

move

vp

vbz

is

vp

vbg

being

vbn

received

advp

rb

well

.

.

Still, Time’s move is being received well.

[WSJ 2350]

5

Estimating PCFGs (2/3)

(S

(ADVP (RB "Still"))

(, ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(. "."))

6

Estimating PCFGs (2/3)

(S

(ADVP (RB "Still"))

(, ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(. "."))

RB → Still 1

6

Estimating PCFGs (2/3)

(S

(ADVP (RB "Still"))

(, ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(. "."))

RB → Still 1
ADVP → RB 1

6

Estimating PCFGs (2/3)

(S

(ADVP (RB "Still"))

(, ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(. "."))

RB → Still 1
ADVP → RB 1
, → , 1

6

Estimating PCFGs (2/3)

(S

(ADVP (RB "Still"))

(, ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(. "."))

RB → Still 1
ADVP → RB 1
, → , 1
NNP → Time 1

6

Estimating PCFGs (2/3)

(S

(ADVP (RB "Still"))

(, ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(. "."))

RB → Still 1
ADVP → RB 1
, → , 1
NNP → Time 1
POS → ’s 1

6

Estimating PCFGs (2/3)

(S

(ADVP (RB "Still"))

(, ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(. "."))

RB → Still 1
ADVP → RB 1
, → , 1
NNP → Time 1
POS → ’s 1
NP → NNP POS 1

6

Estimating PCFGs (2/3)

(S

(ADVP (RB "Still"))

(, ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(. "."))

RB → Still 1
ADVP → RB 1
, → , 1
NNP → Time 1
POS → ’s 1
NP → NNP POS 1
NN → move 1

6

Estimating PCFGs (2/3)

(S

(ADVP (RB "Still"))

(, ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(. "."))

RB → Still 1
ADVP → RB 1
, → , 1
NNP → Time 1
POS → ’s 1
NP → NNP POS 1
NN → move 1
NP → NP NN 1

6

Estimating PCFGs (2/3)

(S

(ADVP (RB "Still"))

(, ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(. "."))

RB → Still 1
ADVP → RB 1
, → , 1
NNP → Time 1
POS → ’s 1
NP → NNP POS 1
NN → move 1
NP → NP NN 1
VBZ → is 1

6

Estimating PCFGs (2/3)

(S

(ADVP (RB "Still"))

(, ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(. "."))

RB → Still 1
ADVP → RB 1
, → , 1
NNP → Time 1
POS → ’s 1
NP → NNP POS 1
NN → move 1
NP → NP NN 1
VBZ → is 1
VBG → being 1

6

Estimating PCFGs (2/3)

(S

(ADVP (RB "Still"))

(, ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(. "."))

RB → Still 1
ADVP → RB 1
, → , 1
NNP → Time 1
POS → ’s 1
NP → NNP POS 1
NN → move 1
NP → NP NN 1
VBZ → is 1
VBG → being 1
VBN → received 1

6

Estimating PCFGs (2/3)

(S

(ADVP (RB "Still"))

(, ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(. "."))

RB → Still 1
ADVP → RB 1
, → , 1
NNP → Time 1
POS → ’s 1
NP → NNP POS 1
NN → move 1
NP → NP NN 1
VBZ → is 1
VBG → being 1
VBN → received 1
RB → well 1

6

Estimating PCFGs (2/3)

(S

(ADVP (RB "Still"))

(, ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(. "."))

RB → Still 1
ADVP → RB 2
, → , 1
NNP → Time 1
POS → ’s 1
NP → NNP POS 1
NN → move 1
NP → NP NN 1
VBZ → is 1
VBG → being 1
VBN → received 1
RB → well 1

6

Estimating PCFGs (2/3)

(S

(ADVP (RB "Still"))

(, ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(. "."))

RB → Still 1
ADVP → RB 2
, → , 1
NNP → Time 1
POS → ’s 1
NP → NNP POS 1
NN → move 1
NP → NP NN 1
VBZ → is 1
VBG → being 1
VBN → received 1
RB → well 1
VP → VBN ADVP 1

6

Estimating PCFGs (2/3)

(S

(ADVP (RB "Still"))

(, ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(. "."))

RB → Still 1
ADVP → RB 2
, → , 1
NNP → Time 1
POS → ’s 1
NP → NNP POS 1
NN → move 1
NP → NP NN 1
VBZ → is 1
VBG → being 1
VBN → received 1
RB → well 1
VP → VBN ADVP 1
VP → VBG VP 1

6

Estimating PCFGs (2/3)

(S

(ADVP (RB "Still"))

(, ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(. "."))

RB → Still 1
ADVP → RB 2
, → , 1
NNP → Time 1
POS → ’s 1
NP → NNP POS 1
NN → move 1
NP → NP NN 1
VBZ → is 1
VBG → being 1
VBN → received 1
RB → well 1
VP → VBN ADVP 1
VP → VBG VP 1
. → . 1

6

Estimating PCFGs (2/3)

(S

(ADVP (RB "Still"))

(, ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(. "."))

RB → Still 1
ADVP → RB 2
, → , 1
NNP → Time 1
POS → ’s 1
NP → NNP POS 1
NN → move 1
NP → NP NN 1
VBZ → is 1
VBG → being 1
VBN → received 1
RB → well 1
VP → VBN ADVP 1
VP → VBG VP 1
. → . 1
S → ADVP , NP VP . 1

6

Estimating PCFGs (2/3)

(S

(ADVP (RB "Still"))

(, ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(. "."))

RB → Still 1
ADVP → RB 2
, → , 1
NNP → Time 1
POS → ’s 1
NP → NNP POS 1
NN → move 1
NP → NP NN 1
VBZ → is 1
VBG → being 1
VBN → received 1
RB → well 1
VP → VBN ADVP 1
VP → VBG VP 1
. → . 1
S → ADVP , NP VP . 1
START → S 1

6

Estimating PCFGs (3/3)

Once we have counts of all the rules, we turn them into probabilities.

7

Estimating PCFGs (3/3)

Once we have counts of all the rules, we turn them into probabilities.

S → ADVP , NP VP . 50 S → NP VP . 400
S → NP VP PP . 350 S → VP ! 100
S → NP VP S . 200 S → NP VP 50

7

Estimating PCFGs (3/3)

Once we have counts of all the rules, we turn them into probabilities.

S → ADVP , NP VP . 50 S → NP VP . 400
S → NP VP PP . 350 S → VP ! 100
S → NP VP S . 200 S → NP VP 50

P (S → ADV P , NP V P .) ≈
C(S → ADV P , NP V P .)

C(S)

7

Estimating PCFGs (3/3)

Once we have counts of all the rules, we turn them into probabilities.

S → ADVP , NP VP . 50 S → NP VP . 400
S → NP VP PP . 350 S → VP ! 100
S → NP VP S . 200 S → NP VP 50

P (S → ADV P , NP V P .) ≈
C(S → ADV P , NP V P .)

C(S)

=
50

1150

= 0.0435

7

Viterbi Decoding over the Parse Forest

◮ Recall the Viterbi algorithm for HMMs

vi(s) =
L

max
k=1

[vi−1(k) · P (s|k) · P (oi|s)]

8

Viterbi Decoding over the Parse Forest

◮ Recall the Viterbi algorithm for HMMs

vi(s) =
L

max
k=1

[vi−1(k) · P (s|k) · P (oi|s)]

◮ Over the (result edges from the) parse forest, compute Viterbi scores
for sub-trees of increasing size:

v(α) = max

[

P (β1, . . . βn|α) ×
n

∏

i=1

v(βi)

]

8

Viterbi Decoding over the Parse Forest

◮ Recall the Viterbi algorithm for HMMs

vi(s) =
L

max
k=1

[vi−1(k) · P (s|k) · P (oi|s)]

◮ Over the (result edges from the) parse forest, compute Viterbi scores
for sub-trees of increasing size:

v(α) = max

[

P (β1, . . . βn|α) ×
n

∏

i=1

v(βi)

]

◮ Similar to HMM decoding, we also need to keep track of the set of
daughters that led to the maximum probability.

8

Exercise (1): Natural Language Ambiguity

Assume the following ‘toy’ grammar of English:

S → NP
NP → Det N

N → N N

Det → the

N → kitchen | gold | towel | rack

9

Exercise (1): Natural Language Ambiguity

Assume the following ‘toy’ grammar of English:

S → NP
NP → Det N

N → N N

Det → the

N → kitchen | gold | towel | rack

(1) How many different syntactic analyses, if any, does the grammar
assign to the following strings?

(a) the kitchen towel rack

(b) the kitchen gold towel rack

9

Exercise (2): CKY Parsing

Assume the following grammar and CKY parse table:

S → NP VP
VP → V NP

VP → VP PP
NP → NP VP
PP → P NP

1 2 3 4 5
0 NP S S
1 V VP VP
2 NP NP
3 P PP
4 NP

10

Exercise (2): CKY Parsing

Assume the following grammar and CKY parse table:

S → NP VP
VP → V NP

VP → VP PP
NP → NP VP
PP → P NP

1 2 3 4 5
0 NP S S
1 V VP VP
2 NP NP
3 P PP
4 NP

(2) Which pair(s) of ‘input’ cells and which production(s) give rise
to the derivation of category S in ‘target’ cell 〈0, 5〉?

10

Outlook

After the Easter Break

◮ Dependency syntax

◮ Transition-based dependency parsing

◮ Using syntactic structure

11

