
IN2110: Methods in Language Technology
Grammatical Structure Wrap-Up

Stephan Oepen

Language Technology Group (LTG)

May 7, 2019

Topics for Today

I Short recap:
I Universal Dependencies
I Transition-based dependency parsing

I Dependency Parser Evaluation

I Variants on data-driven dependency parsing
I Graph-based dependency parsing
I Arc-standard transition system
I Semantic dependency graphs

I Syntactic structure in negation resolution

I Sample exam questions

2

Topics for Today

I Short recap:
I Universal Dependencies
I Transition-based dependency parsing

I Dependency Parser Evaluation

I Variants on data-driven dependency parsing
I Graph-based dependency parsing
I Arc-standard transition system
I Semantic dependency graphs

I Syntactic structure in negation resolution

I Sample exam questions

2

Topics for Today

I Short recap:
I Universal Dependencies
I Transition-based dependency parsing

I Dependency Parser Evaluation

I Variants on data-driven dependency parsing
I Graph-based dependency parsing
I Arc-standard transition system
I Semantic dependency graphs

I Syntactic structure in negation resolution

I Sample exam questions

2

Topics for Today

I Short recap:
I Universal Dependencies
I Transition-based dependency parsing

I Dependency Parser Evaluation

I Variants on data-driven dependency parsing
I Graph-based dependency parsing
I Arc-standard transition system
I Semantic dependency graphs

I Syntactic structure in negation resolution

I Sample exam questions

2

Topics for Today

I Short recap:
I Universal Dependencies
I Transition-based dependency parsing

I Dependency Parser Evaluation

I Variants on data-driven dependency parsing
I Graph-based dependency parsing
I Arc-standard transition system
I Semantic dependency graphs

I Syntactic structure in negation resolution

I Sample exam questions

2

Recap: ‘Universal’ Dependency Types

nsubj nominal subject She arrived.
csubj clausal subject That she arrived surprised me.
obj (direct) object My mother called me.
iobj indirect object She teaches my daughter maths.

ccomp clausal complement She knew that she arrived.
xcomp open clausal complement She promised to sing.
obl oblique nominal She arrived on Monday
obl oblique nominal She depends on me.

nmod nominal modifier the office of the chair is empty.
amod adjectival modifier the fierce dog barks.
acl adjectival clause the dog that barks arrived.
conj conjunct Kim and Sandy arrived.
cc coordinating conjunction Kim and Sandy arrived.

3

Recap: Cross-Linguistic Consistency

The dog was chased by the cat .

aux

nsubj

det

obl

det

case

punct

Hunden jagades av katten .

nsubj

obl

case

punct

Pes byl honěn kočkou .

nsubj

aux obl

punct

I Capitalize on content words, e.g. demote case-marking prepositions.

4

Recap: Cross-Linguistic Consistency

The dog was chased by the cat .

aux

nsubj

det

obl

det

case

punct

Hunden jagades av katten .

nsubj

obl

case

punct

Pes byl honěn kočkou .

nsubj

aux obl

punct

I Capitalize on content words, e.g. demote case-marking prepositions.

4

Recap: Cross-Linguistic Consistency

The dog was chased by the cat .

aux

nsubj

det

obl

det

case

punct

Hunden jagades av katten .

nsubj

obl

case

punct

Pes byl honěn kočkou .

nsubj

aux obl

punct

I Capitalize on content words, e.g. demote case-marking prepositions.

4

Recap: Cross-Linguistic Consistency

The dog was chased by the cat .

aux

nsubj

det

obl

det

case

punct

Hunden jagades av katten .

nsubj

obl

case

punct

Pes byl honěn kočkou .

nsubj

aux obl

punct

I Capitalize on content words, e.g. demote case-marking prepositions. 4

Functional vs. Content Heads
Co

NL
L

A similar technique is almost impossible to apply to other crops .
DT JJ NN VBZ RB JJ TO VB TO JJ NNS P

NMOD

NMOD SBJ

P

AMOD

PRD

AMOD IM ADV NMOD

PMOD

root

SB A similar technique is almost impossible to apply to other crops .
DT JJ NN VBZ RB JJ TO VB TO JJ NNS .

root

det

amod

nsubj

cop

advmod aux

dep

prep amod

pobj

punct

UD A similar technique is almost impossible to apply to other crops .
DET ADJ NOUN AUX ADV ADJ PART VERB ADP ADJ NOUN PUNCT

root

det

amod

nsubj

cop

advmod

punct

mark

ccomp

obl

amod

case

5

Consistency Can be Evasive

She teaches my daughter maths .

nsubj

iobj

det

obj

She teaches maths .

nsubj obj

She teaches my daughter .

nsubj

obj

det

I UD guidelines: [...] if there is just one object, it should be labeled obj.

6

Consistency Can be Evasive

She teaches my daughter maths .

nsubj

iobj

det

obj

She teaches maths .

nsubj obj

She teaches my daughter .

nsubj

obj

det

I UD guidelines: [...] if there is just one object, it should be labeled obj.

6

Consistency Can be Evasive

She teaches my daughter maths .

nsubj

iobj

det

obj

She teaches maths .

nsubj obj

She teaches my daughter .

nsubj

obj

det

I UD guidelines: [...] if there is just one object, it should be labeled obj.

6

Consistency Can be Evasive

She teaches my daughter maths .

nsubj

iobj

det

obj

She teaches maths .

nsubj obj

She teaches my daughter .

nsubj

obj

det

I UD guidelines: [...] if there is just one object, it should be labeled obj.

6

UD: The Big Picture

7

Dependency Evaluation Metrics

General Ideas
I Similar to ParsEval, want to award partial credit: granular evaluation.

I Fixed number of tokens: per-token accuracy scores (like in tagging).

I Can consider just tree topology or topology plus dependency types.

I Punctuation tokens (e.g. by Unicode property) are often excluded.

UAS: Unlabeled Attachment Score
I For each token, does it have correct head (source of incoming edge)?

LAS: Labeled Attachment Score
I In addition to the head, is the dependency type (edge label) correct?

8

Dependency Evaluation Metrics

General Ideas
I Similar to ParsEval, want to award partial credit: granular evaluation.

I Fixed number of tokens: per-token accuracy scores (like in tagging).

I Can consider just tree topology or topology plus dependency types.

I Punctuation tokens (e.g. by Unicode property) are often excluded.

UAS: Unlabeled Attachment Score
I For each token, does it have correct head (source of incoming edge)?

LAS: Labeled Attachment Score
I In addition to the head, is the dependency type (edge label) correct?

8

Dependency Evaluation Metrics

General Ideas
I Similar to ParsEval, want to award partial credit: granular evaluation.

I Fixed number of tokens: per-token accuracy scores (like in tagging).

I Can consider just tree topology or topology plus dependency types.

I Punctuation tokens (e.g. by Unicode property) are often excluded.

UAS: Unlabeled Attachment Score
I For each token, does it have correct head (source of incoming edge)?

LAS: Labeled Attachment Score
I In addition to the head, is the dependency type (edge label) correct?

8

Dependency Evaluation Metrics

General Ideas
I Similar to ParsEval, want to award partial credit: granular evaluation.

I Fixed number of tokens: per-token accuracy scores (like in tagging).

I Can consider just tree topology or topology plus dependency types.

I Punctuation tokens (e.g. by Unicode property) are often excluded.

UAS: Unlabeled Attachment Score
I For each token, does it have correct head (source of incoming edge)?

LAS: Labeled Attachment Score
I In addition to the head, is the dependency type (edge label) correct?

8

Dependency Evaluation Metrics

General Ideas
I Similar to ParsEval, want to award partial credit: granular evaluation.

I Fixed number of tokens: per-token accuracy scores (like in tagging).

I Can consider just tree topology or topology plus dependency types.

I Punctuation tokens (e.g. by Unicode property) are often excluded.

UAS: Unlabeled Attachment Score
I For each token, does it have correct head (source of incoming edge)?

LAS: Labeled Attachment Score
I In addition to the head, is the dependency type (edge label) correct?

8

Exercise (5): Dependency Evaluation

ROOT Kim adored snow in Oslo .

root

nsubj dobj

prep

pmod

punct

ROOT Kim adored snow in Oslo .

root

nsubj dobj prep pmod

punct

(5) What are the LAS and UAS scores for the two trees?
Gold standard on the left, system prediction on the right.

9

Exercise (5): Dependency Evaluation

ROOT Kim adored snow in Oslo .

root

nsubj dobj

prep

pmod

punct

ROOT Kim adored snow in Oslo .

root

nsubj dobj prep pmod

punct

(5) What are the LAS and UAS scores for the two trees?
Gold standard on the left, system prediction on the right.

9

Exercise (6): More Dependency Evaluation

ROOT Kim adored snow in Oslo .

root

nsubj dobj

prep

pmod

punct

ROOT Kim adored snow in Oslo .

root

nsubj obj

obl

case

punct

(6) What are the LAS and UAS scores for the two trees?

10

Exercise (6): More Dependency Evaluation

ROOT Kim adored snow in Oslo .

root

nsubj dobj

prep

pmod

punct

ROOT Kim adored snow in Oslo .

root

nsubj obj

obl

case

punct

(6) What are the LAS and UAS scores for the two trees?

10

Recap: Dependency Parsing Summary

Transition-Based Dependency Parsing

I Transition system ensures formal wellformedness of dependency trees;
I A specific sequence of transitions determines the final parsing result.

I Much room for experimentation: Feature models and types of classifiers;
I decent results with Maximum Entropy or Support Vector Machines.

Variants on Data-Driven Dependency Parsing

I Other transition systems (e.g. arc-standard; like ‘classic’ shift-reduce);
I different techniques for non-projective trees; e.g. swap transitions;
I can relax transition system further, to output general, non-tree graphs.
I Beam search: exploring the top-n transitions out of each configuration.
I So-called graph-based dependency parsing: somewhat similar to CKY.
I Multi-stratal (multi-layer) representations: MTT, FGD, enhanced UD.

11

Recap: Dependency Parsing Summary

Transition-Based Dependency Parsing

I Transition system ensures formal wellformedness of dependency trees;
I A specific sequence of transitions determines the final parsing result.
I Much room for experimentation: Feature models and types of classifiers;
I decent results with Maximum Entropy or Support Vector Machines.

Variants on Data-Driven Dependency Parsing

I Other transition systems (e.g. arc-standard; like ‘classic’ shift-reduce);
I different techniques for non-projective trees; e.g. swap transitions;
I can relax transition system further, to output general, non-tree graphs.
I Beam search: exploring the top-n transitions out of each configuration.
I So-called graph-based dependency parsing: somewhat similar to CKY.
I Multi-stratal (multi-layer) representations: MTT, FGD, enhanced UD.

11

Recap: Dependency Parsing Summary

Transition-Based Dependency Parsing

I Transition system ensures formal wellformedness of dependency trees;
I A specific sequence of transitions determines the final parsing result.
I Much room for experimentation: Feature models and types of classifiers;
I decent results with Maximum Entropy or Support Vector Machines.

Variants on Data-Driven Dependency Parsing

I Other transition systems (e.g. arc-standard; like ‘classic’ shift-reduce);
I different techniques for non-projective trees; e.g. swap transitions;
I can relax transition system further, to output general, non-tree graphs.

I Beam search: exploring the top-n transitions out of each configuration.
I So-called graph-based dependency parsing: somewhat similar to CKY.
I Multi-stratal (multi-layer) representations: MTT, FGD, enhanced UD.

11

Recap: Dependency Parsing Summary

Transition-Based Dependency Parsing

I Transition system ensures formal wellformedness of dependency trees;
I A specific sequence of transitions determines the final parsing result.
I Much room for experimentation: Feature models and types of classifiers;
I decent results with Maximum Entropy or Support Vector Machines.

Variants on Data-Driven Dependency Parsing

I Other transition systems (e.g. arc-standard; like ‘classic’ shift-reduce);
I different techniques for non-projective trees; e.g. swap transitions;
I can relax transition system further, to output general, non-tree graphs.
I Beam search: exploring the top-n transitions out of each configuration.

I So-called graph-based dependency parsing: somewhat similar to CKY.
I Multi-stratal (multi-layer) representations: MTT, FGD, enhanced UD.

11

Recap: Dependency Parsing Summary

Transition-Based Dependency Parsing

I Transition system ensures formal wellformedness of dependency trees;
I A specific sequence of transitions determines the final parsing result.
I Much room for experimentation: Feature models and types of classifiers;
I decent results with Maximum Entropy or Support Vector Machines.

Variants on Data-Driven Dependency Parsing

I Other transition systems (e.g. arc-standard; like ‘classic’ shift-reduce);
I different techniques for non-projective trees; e.g. swap transitions;
I can relax transition system further, to output general, non-tree graphs.
I Beam search: exploring the top-n transitions out of each configuration.
I So-called graph-based dependency parsing: somewhat similar to CKY.

I Multi-stratal (multi-layer) representations: MTT, FGD, enhanced UD.

11

Recap: Dependency Parsing Summary

Transition-Based Dependency Parsing

I Transition system ensures formal wellformedness of dependency trees;
I A specific sequence of transitions determines the final parsing result.
I Much room for experimentation: Feature models and types of classifiers;
I decent results with Maximum Entropy or Support Vector Machines.

Variants on Data-Driven Dependency Parsing

I Other transition systems (e.g. arc-standard; like ‘classic’ shift-reduce);
I different techniques for non-projective trees; e.g. swap transitions;
I can relax transition system further, to output general, non-tree graphs.
I Beam search: exploring the top-n transitions out of each configuration.
I So-called graph-based dependency parsing: somewhat similar to CKY.
I Multi-stratal (multi-layer) representations: MTT, FGD, enhanced UD.

11

The Transition Oracle as a Classifier

12

Recap: Adapting Shift–Reduce Parsing

I Originally developed for non-ambiguous languages: deterministic.

I Shift (‘read’) tokens from input buffer, one at a time, left-to-right;

I compare top n symbols on stack against rule RHS: reduce to LHS.

I Dependencies: create arcs between top of stack and front of buffer.

shift move from front of buffer to top of stack
reduce pop the top of stack (requires existing head)

left-arc(k) leftward dependency of type k; reduce
right-arc(k) rightward dependency of type k; shift

I At reduce, token should be fully processed (head and dependents).

I left-arc must respect single-head constraint and unique root node.

13

Recap: Adapting Shift–Reduce Parsing

I Originally developed for non-ambiguous languages: deterministic.

I Shift (‘read’) tokens from input buffer, one at a time, left-to-right;

I compare top n symbols on stack against rule RHS: reduce to LHS.

I Dependencies: create arcs between top of stack and front of buffer.

shift move from front of buffer to top of stack
reduce pop the top of stack (requires existing head)

left-arc(k) leftward dependency of type k; reduce
right-arc(k) rightward dependency of type k; shift

I At reduce, token should be fully processed (head and dependents).

I left-arc must respect single-head constraint and unique root node.

13

Recap: Adapting Shift–Reduce Parsing

I Originally developed for non-ambiguous languages: deterministic.

I Shift (‘read’) tokens from input buffer, one at a time, left-to-right;

I compare top n symbols on stack against rule RHS: reduce to LHS.

I Dependencies: create arcs between top of stack and front of buffer.

shift move from front of buffer to top of stack
reduce pop the top of stack (requires existing head)

left-arc(k) leftward dependency of type k; reduce
right-arc(k) rightward dependency of type k; shift

I At reduce, token should be fully processed (head and dependents).

I left-arc must respect single-head constraint and unique root node.

13

Recap: Adapting Shift–Reduce Parsing

I Originally developed for non-ambiguous languages: deterministic.

I Shift (‘read’) tokens from input buffer, one at a time, left-to-right;

I compare top n symbols on stack against rule RHS: reduce to LHS.

I Dependencies: create arcs between top of stack and front of buffer.

shift move from front of buffer to top of stack
reduce pop the top of stack (requires existing head)

left-arc(k) leftward dependency of type k; reduce
right-arc(k) rightward dependency of type k; shift

I At reduce, token should be fully processed (head and dependents).

I left-arc must respect single-head constraint and unique root node.

13

Recent Advances in Dependency Parsing

Tutorial, EACL, April 27th, 2014

Ryan McDonald1 Joakim Nivre2

1Google Inc., USA/UK
E-mail: ryanmcd@google.com

2Uppsala University, Sweden
E-mail: joakim.nivre@lingfil.uu.se

Recent Advances in Dependency Parsing 1(54)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT]S [news, had, little, effect, on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod

nsubj

dobj

amod prep

pmod

amod

proot

Recent Advances in Dependency Parsing 7(54)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, news]S [had, little, effect, on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod

nsubj

dobj

amod prep

pmod

amod

proot

Recent Advances in Dependency Parsing 7(54)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT]S [had, little, effect, on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

proot

Recent Advances in Dependency Parsing 7(54)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had]S [little, effect, on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Recent Advances in Dependency Parsing 7(54)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had, little]S [effect, on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Recent Advances in Dependency Parsing 7(54)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had]S [effect, on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod

prep

pmod

amod

p

root

Recent Advances in Dependency Parsing 7(54)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had, effect]S [on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod

prep

pmod

amod

p

root

Recent Advances in Dependency Parsing 7(54)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had, effect, on]S [financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Recent Advances in Dependency Parsing 7(54)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had, effect, on, financial]S [markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Recent Advances in Dependency Parsing 7(54)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had, effect, on]S [markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Recent Advances in Dependency Parsing 7(54)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had, effect, on, markets]S [.]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Recent Advances in Dependency Parsing 7(54)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had, effect, on]S [.]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Recent Advances in Dependency Parsing 7(54)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had, effect]S [.]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Recent Advances in Dependency Parsing 7(54)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had]S [.]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Recent Advances in Dependency Parsing 7(54)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had, .]S []B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

proot

Recent Advances in Dependency Parsing 7(54)

Transition-Based Dependency Parsing

Arc-Standard Transition System [Nivre 2004]

Configuration: (S ,B,A) [S = Stack, B = Buffer, A = Arcs]

Initial: ([], [0, 1, . . . , n], { })
Terminal: ([0], [],A)

Shift: (S , i |B,A) ⇒ (S |i ,B,A)

Right-Arc(k): (S |i |j ,B,A) ⇒ (S |i ,B,A ∪ {(i , j , k)})
Left-Arc(k): (S |i |j ,B,A) ⇒ (S |j ,B,A ∪ {(j , i , k)}) i 6= 0

Recent Advances in Dependency Parsing 8(54)

Arc-Standard More Like ‘Classic’ Shift–Reduce

14

Using the Arc-Standard Transition System

ROOT Economic news had little effect on financial markets .

root

nsubjamod

dobj

amod prep

pmod

amod

p

15

In Comparison

shift shift shift
left-arc(amod)

shift left-arc(nsubj)
shift shift left-arc(amod)

shift shift shift
left-arc(amod)
right-arc(pmod)
right-arc(prep)
right-arc(dobj)

shift right-arc(p)
right-arc(root)

shift shift left-arc(amod)
shift left-arc(nsubj)

right-arc(root)
shift left-arc(amod)

right-arc(dobj)
right-arc(prep)

shift left-arc(amod)
right-arc(pmod)

reduce reduce reduce
right-arc(p)

reduce reduce

16

In Comparison

shift shift shift
left-arc(amod)

shift left-arc(nsubj)
shift shift left-arc(amod)

shift shift shift
left-arc(amod)
right-arc(pmod)
right-arc(prep)
right-arc(dobj)

shift right-arc(p)
right-arc(root)

shift shift left-arc(amod)
shift left-arc(nsubj)

right-arc(root)
shift left-arc(amod)

right-arc(dobj)
right-arc(prep)

shift left-arc(amod)
right-arc(pmod)

reduce reduce reduce
right-arc(p)

reduce reduce

16

In Comparison

shift shift shift
left-arc(amod)

shift left-arc(nsubj)
shift shift left-arc(amod)

shift shift shift
left-arc(amod)
right-arc(pmod)
right-arc(prep)
right-arc(dobj)

shift right-arc(p)
right-arc(root)

shift shift left-arc(amod)
shift left-arc(nsubj)

right-arc(root)
shift left-arc(amod)

right-arc(dobj)
right-arc(prep)

shift left-arc(amod)
right-arc(pmod)

reduce reduce reduce
right-arc(p)

reduce reduce

16

Outlook: Semantics as Dependency Graphs

A similar technique is almost impossible to apply to other crops .

root

det

amod

nsubj

cop

advmod

punct

mark

ccomp

obl

amod

case

A similar technique is almost impossible to apply to other crops .

ARG2 ARG3
ARG1ARG1

BV

ARG1 ARG1

top

I DELPH-IN MRS Dependencies: General graph (beyond rooted trees).
I Argument sharing requires re-entrancy, e.g. control or relative clauses.

17

Outlook: Semantics as Dependency Graphs

A similar technique is almost impossible to apply to other crops .

root

det

amod

nsubj

cop

advmod

punct

mark

ccomp

obl

amod

case

A similar technique is almost impossible to apply to other crops .

ARG2 ARG3
ARG1ARG1

BV

ARG1 ARG1

top

I DELPH-IN MRS Dependencies: General graph (beyond rooted trees).
I Argument sharing requires re-entrancy, e.g. control or relative clauses.

17

Outlook: Semantics as Dependency Graphs

A similar technique is almost impossible to apply to other crops .

root

det

amod

nsubj

cop

advmod

punct

mark

ccomp

obl

amod

case

A similar technique is almost impossible to apply to other crops .

ARG2 ARG3
ARG1ARG1

BV

ARG1 ARG1

top

I DELPH-IN MRS Dependencies: General graph (beyond rooted trees).
I Argument sharing requires re-entrancy, e.g. control or relative clauses.

17

Looking Back: How We had Motivated Syntactic Structure

Formal grammars describe a language, providing key notions of:

Wellformedness
I Kim was happy because passed the exam.
I Kim was happy because final grade was an A.
I Kim was happy when she saw on television.

Meaning
I Kim gave Sandy the book.
I Kim gave the book to Sandy.
I Sandy was given the book by Kim.

Ambiguity
I Kim ate sushi with chopsticks.
I Have her report on my desk by Friday!

18

Looking Back: How We had Motivated Syntactic Structure

Formal grammars describe a language, providing key notions of:

Wellformedness
I Kim was happy because passed the exam.
I Kim was happy because final grade was an A.
I Kim was happy when she saw on television.

Meaning
I Kim gave Sandy the book.
I Kim gave the book to Sandy.
I Sandy was given the book by Kim.

Ambiguity
I Kim ate sushi with chopsticks.
I Have her report on my desk by Friday!

18

Looking Back: How We had Motivated Syntactic Structure

Formal grammars describe a language, providing key notions of:

Wellformedness
I Kim was happy because passed the exam.
I Kim was happy because final grade was an A.
I Kim was happy when she saw on television.

Meaning
I Kim gave Sandy the book.
I Kim gave the book to Sandy.
I Sandy was given the book by Kim.

Ambiguity
I Kim ate sushi with chopsticks.
I Have her report on my desk by Friday!

18

