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Topics for today

I High-level summary

I Practical details regarding the final exam

I Sample exam questions (though not a sample exam)
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Reading List

I Both the lecture notes (slides) and the background reading specified in
the lecture schedule (at the course page) are obligatory reading.

I We also expect that you have looked at the provided model solutions
for the exercises.
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Final Written Examination

When / where:
I 14 June at 09:00 (4 hours)

I Sal 3D Silurveien 2 (double-check with StudentWeb)

I Digital exam, Inspera

The exam
I When writing your answers, remember. . .

I Less more is more! (As long as it’s relevant.)
I Aim for high recall and precision.
I Don’t just list keywords; spell out what you think.
I If you see an opportunity to show off terminology, seize it.
I Each question will have points attached (summing to 100) to give you an

idea of how they will be weighted in the grading.

4



Final Written Examination

When / where:
I 14 June at 09:00 (4 hours)

I Sal 3D Silurveien 2 (double-check with StudentWeb)

I Digital exam, Inspera

The exam
I When writing your answers, remember. . .

I Less more is more! (As long as it’s relevant.)
I Aim for high recall and precision.
I Don’t just list keywords; spell out what you think.
I If you see an opportunity to show off terminology, seize it.
I Each question will have points attached (summing to 100) to give you an

idea of how they will be weighted in the grading.

4



Inventory

Main areas
I Vector space models; representing words and documents
I Classification
I Clustering
I Sequence modeling
I Syntax and parsing
I Evaluation methodology (metrics and data splits)

Progression
I Representation
I From geometric to probabilistic models
I From ‘point-wise’ to sequential and finally hierarchical modeling −→
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Problems we have dealt with

I How to model similarity relations between point-wise observations, and
how to represent and predict group membership.

I E.g. vector space models and classification over words and documents.

I Sequences
I Probabilities over strings: Markov chains and n-gram models: Linear and

surface oriented.
I Sequence classification: HMMs and CRF add one layer of abstraction;

class labels as hidden variables. But still only linear.
I Grammar; adds hierarchical structure

I Shift focus from ‘sequences’ to ‘sentences’.
I Identifying underlying structure using formal rules.
I Phrase structure and dependency grammars

I Declarative aspect: formal grammar.
I Procedural aspect: parsing strategy.

I Learn probability distributions over trees or transition sequences.
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Connecting the dots. . .

What have we been doing?

I Data-driven learning

I by counting observations
I in context;

I context words in vector space
models; bag-of-words, etc.

I previous n-1 words in n-gram
models

I previous n-1 states in HMMs
I local sub-trees in PCFGs
I features of configurations in

dependency parsing
I ++
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Finally, Some Statistics

I 62 submitted for oblig 1a, 44 for oblig 2b

I all survivors qualified for the final exam ...

I ... some with a larger margin than others

I Three of you stand out in terms of points throughout the term

I A total of 39 points (of 40), we think, is no small accomplishment
I And the ‘winners’ are:

I Magnus Holm (magho)
I Yauhen Khutarniuk (yauhenk)
I Kristian Løseth (krislos)

I Great work — Congratulations!

8



Finally, Some Statistics

I 62 submitted for oblig 1a, 44 for oblig 2b

I all survivors qualified for the final exam ...

I ... some with a larger margin than others

I Three of you stand out in terms of points throughout the term

I A total of 39 points (of 40), we think, is no small accomplishment
I And the ‘winners’ are:

I Magnus Holm (magho)
I Yauhen Khutarniuk (yauhenk)
I Kristian Løseth (krislos)

I Great work — Congratulations!

8



Finally, Some Statistics

I 62 submitted for oblig 1a, 44 for oblig 2b

I all survivors qualified for the final exam ...

I ... some with a larger margin than others

I Three of you stand out in terms of points throughout the term

I A total of 39 points (of 40), we think, is no small accomplishment
I And the ‘winners’ are:

I Magnus Holm (magho)
I Yauhen Khutarniuk (yauhenk)
I Kristian Løseth (krislos)

I Great work — Congratulations!

8



Finally, Some Statistics

I 62 submitted for oblig 1a, 44 for oblig 2b

I all survivors qualified for the final exam ...

I ... some with a larger margin than others

I Three of you stand out in terms of points throughout the term

I A total of 39 points (of 40), we think, is no small accomplishment
I And the ‘winners’ are:

I Magnus Holm (magho)
I Yauhen Khutarniuk (yauhenk)
I Kristian Løseth (krislos)

I Great work — Congratulations!

8



Finally, Some Statistics

I 62 submitted for oblig 1a, 44 for oblig 2b

I all survivors qualified for the final exam ...

I ... some with a larger margin than others

I Three of you stand out in terms of points throughout the term

I A total of 39 points (of 40), we think, is no small accomplishment

I And the ‘winners’ are:
I Magnus Holm (magho)
I Yauhen Khutarniuk (yauhenk)
I Kristian Løseth (krislos)

I Great work — Congratulations!

8



Finally, Some Statistics

I 62 submitted for oblig 1a, 44 for oblig 2b

I all survivors qualified for the final exam ...

I ... some with a larger margin than others

I Three of you stand out in terms of points throughout the term

I A total of 39 points (of 40), we think, is no small accomplishment
I And the ‘winners’ are:

I Magnus Holm (magho)
I Yauhen Khutarniuk (yauhenk)
I Kristian Løseth (krislos)

I Great work — Congratulations!

8



Finally, Some Statistics

I 62 submitted for oblig 1a, 44 for oblig 2b

I all survivors qualified for the final exam ...

I ... some with a larger margin than others

I Three of you stand out in terms of points throughout the term

I A total of 39 points (of 40), we think, is no small accomplishment
I And the ‘winners’ are:

I Magnus Holm (magho)
I Yauhen Khutarniuk (yauhenk)
I Kristian Løseth (krislos)

I Great work — Congratulations!

8



After IN2110

I Please remember to participate in the course evaluation hosted by FUI.
I Even if this means just repeating the comments you already gave for the

midterm evaluation.
I While the midterm evaluation was only read by us, the FUI course

evaluation is distributed department-wide.

I Some other courses of potential interest:
I IN3120/IN4120 – Search technology

I Fall 2019
I Also based on the book by Manning, Raghavan, & Schütze (2008),

Introduction to Information Retrieval

I IN3050/IN4050 – Introduction to AI and machine learning (spring 2020)

I We also hope to see many of you in IN2040 – Functional programming
in the fall!
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Exam prep

I The following are questions that are representative of what you might
get at the exam,

I though not a sample exam.
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Vector representations

I What is the distributional hypothesis?

I Explain what we mean by a bag-of-words representation of text (e.g.
sentences and documents). Discuss some of the weaknesses of this
representation.

I Discuss some high-level differences and similarities between traditional
‘count-based’ word vectors and ‘prediction-based’ representations like
those computed using more recent approaches like word2vec.

I Discuss similarities and differences between Euclidean distance and the
cosine measure.
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Classification, clustering and ML at large

I Explain the difference between supervised and unsupervised learning.
For both approaches, mention examples of models that we’ve touched
on throughout the course.

I What are the differences and similarities between K-means and
Rocchio?

I In the context of model evaluation, briefly describe what
‘micro-averaging’ and ‘macro-averaging’ means, including their
differences.
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Sequences and structured prediction

I Abstractly, NER is a sequence segmentation task, but in practise it is
still approached as a word-by-word sequence-labeling task. How can we
represent the labels to facilitate this?

I What is the Markov assumption, both generally and in the specific
context of HMMs for PoS-tagging?

I What is dynamic programming? Name some of the dynamic
programming algorithms we have encountered in the course and what
they are used for.
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Exercise (1): Natural Language Ambiguity

Assume the following ‘toy’ grammar of English:

S → NP
NP → Det N
N → N N
Det → the

N → kitchen | gold | towel | rack

(1) How many different syntactic analyses, if any, does the grammar
assign to the following strings?

(a) the kitchen towel rack
(b) the kitchen gold towel rack
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Exercise (2): CKY Parsing

Assume the following grammar and CKY parse table:

S → NP VP
VP → V NP
VP → VP PP
NP → NP VP
PP → P NP

1 2 3 4 5
0 NP S S
1 V VP VP
2 NP NP
3 P PP
4 NP

(2) Which pair(s) of ‘input’ cells and which production(s) give rise
to the derivation of category S in ‘target’ cell 〈0, 5〉?
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Exercise (4): Dependency Syntaxx

S

NP

Kim

VP

VP

V

adores

NP

snow

PP

P

in

NP

Oslo

S

NP

Kim

VP

V

adores

NP

NP

snow

PP

P

in

NP

oslo

(4) Draw the dependency trees for the two readings.
Where does the attachment ambiguity manifest itself?
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Exercise (5): Dependency Evaluation

ROOT Kim adored snow in Oslo .

root

nsubj dobj

prep

pmod

punct

ROOT Kim adored snow in Oslo .

root

nsubj dobj prep pmod

punct

(5) What are the LAS and UAS scores for the two trees?
Gold standard on the left, system prediction on the right.
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Exercise (6): More Dependency Evaluation
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Exercise (7): Properties of Dependency Graphs

A similar technique is almost impossible to apply to other crops .

ARG2 ARG3
ARG1ARG1

BV

ARG1 ARG1

(7) Which of the following formal properties
hold for this dependency graph:
(a) Connectedness, (b) Acyclicity,

(c) Single-Headedness, and (d) Projectivity?
Explain your answers.
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