— IN2110 — Methods in Language Technology

Summing up Exam preparations

Stephan Oepen & Erik Velldal

Language Technology Group (LTG)

May 21, 2019

- High-level summary
- Practical details regarding the final exam
- Sample exam questions (though not a sample exam)

- Both the lecture notes (slides) and the background reading specified in the lecture schedule (at the course page) are obligatory reading.
- We also expect that you have looked at the provided model solutions for the exercises.

Final Written Examination

When / where:

- 14 June at 09:00 (4 hours)
- ► Sal 3D Silurveien 2 (double-check with StudentWeb)
- Digital exam, Inspera

The exam

- When writing your answers, remember...
 - Less more is more! (As long as it's relevant.)
 - ► Aim for high recall *and* precision.
 - Don't just list keywords; spell out what you think.
 - ► If you see an opportunity to show off terminology, seize it.
 - Each question will have points attached (summing to 100) to give you an idea of how they will be weighted in the grading.

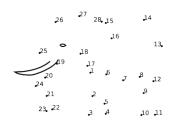
Inventory

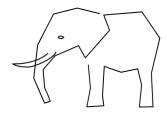
Main areas

- Vector space models; representing words and documents
- Classification
- Clustering
- Sequence modeling
- Syntax and parsing
- Evaluation methodology (metrics and data splits)

Progression

- Representation
- From geometric to probabilistic models
- \blacktriangleright From 'point-wise' to sequential and finally hierarchical modeling \longrightarrow


Problems we have dealt with



- How to model similarity relations between point-wise observations, and how to represent and predict group membership.
- E.g. vector space models and classification over words and documents.
- Sequences
 - Probabilities over strings: Markov chains and *n*-gram models: Linear and surface oriented.
 - Sequence classification: HMMs and CRF add one layer of abstraction; class labels as hidden variables. But still only linear.
- Grammar; adds hierarchical structure
 - ► Shift focus from 'sequences' to 'sentences'.
 - Identifying underlying structure using formal rules.
 - Phrase structure and dependency grammars
 - Declarative aspect: formal grammar.
 - Procedural aspect: parsing strategy.
 - Learn probability distributions over trees or transition sequences.

Connecting the dots...

What have we been doing?

- Data-driven learning
- by counting observations
- ► in context;
 - context words in vector space models; bag-of-words, etc.
 - previous *n*-1 words in *n*-gram models
 - ▶ previous *n*-1 states in HMMs
 - ► local sub-trees in PCFGs
 - features of configurations in dependency parsing

▶ ++

Finally, Some Statistics

- ▶ 62 submitted for oblig 1a, 44 for oblig 2b
- ▶ all survivors qualified for the final exam ...
- ▶ ... some with a larger margin than others
- Three of you stand out in terms of points throughout the term
- ► A total of 39 points (of 40), we think, is no small accomplishment
- ► And the 'winners' are:
 - Magnus Holm (magho)
 - Yauhen Khutarniuk (yauhenk)
 - Kristian Løseth (krislos)
- Great work Congratulations!

After IN2110

- ▶ Please remember to participate in the course evaluation hosted by FUI.
 - Even if this means just repeating the comments you already gave for the midterm evaluation.
 - While the midterm evaluation was only read by us, the FUI course evaluation is distributed department-wide.
- Some other courses of potential interest:
- IN3120/IN4120 Search technology
 - ► Fall 2019
 - Also based on the book by Manning, Raghavan, & Schütze (2008), Introduction to Information Retrieval
- IN3050/IN4050 Introduction to AI and machine learning (spring 2020)
- We also hope to see many of you in IN2040 Functional programming in the fall!

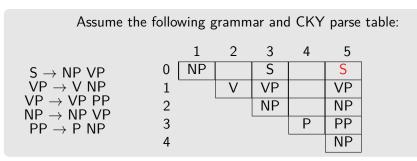
- The following are questions that are representative of what you might get at the exam,
- though not a sample exam.

- What is the distributional hypothesis?
- Explain what we mean by a *bag-of-words representation* of text (e.g. sentences and documents). Discuss some of the weaknesses of this representation.
- Discuss some high-level differences and similarities between traditional 'count-based' word vectors and 'prediction-based' representations like those computed using more recent approaches like word2vec.
- Discuss similarities and differences between Euclidean distance and the cosine measure.

- Explain the difference between supervised and unsupervised learning. For both approaches, mention examples of models that we've touched on throughout the course.
- What are the differences and similarities between K-means and Rocchio?
- In the context of model evaluation, briefly describe what 'micro-averaging' and 'macro-averaging' means, including their differences.

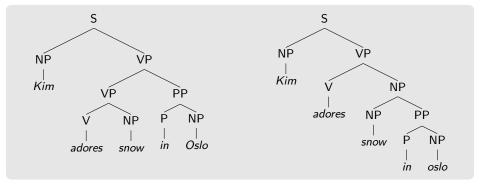
- Abstractly, NER is a sequence segmentation task, but in practise it is still approached as a word-by-word sequence-labeling task. How can we represent the labels to facilitate this?
- What is the *Markov assumption*, both generally and in the specific context of HMMs for PoS-tagging?
- What is dynamic programming? Name some of the dynamic programming algorithms we have encountered in the course and what they are used for.

Exercise (1): Natural Language Ambiguity


Assume the following 'toy' grammar of English:

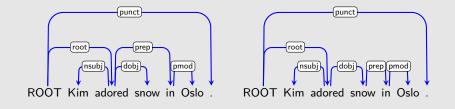
 $\begin{array}{c} \mathsf{S} \to \mathsf{NP} \\ \mathsf{NP} \to \mathsf{Det} \; \mathsf{N} \\ \mathsf{N} \to \mathsf{N} \; \mathsf{N} \\ \\ \mathsf{Det} \to \textit{the} \\ \mathsf{N} \to \textit{kitchen} \mid \textit{gold} \mid \textit{towel} \mid \textit{rack} \end{array}$

(1) How many different syntactic analyses, if any, does the grammar assign to the following strings?


(a) the kitchen towel rack(b) the kitchen gold towel rack

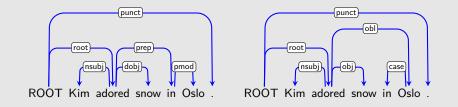
Exercise (2): CKY Parsing

(2) Which pair(s) of 'input' cells and which production(s) give rise to the derivation of category S in 'target' cell (0, 5)?

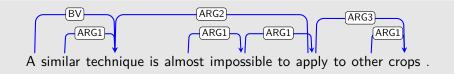

Exercise (4): Dependency Syntaxx

(4) Draw the dependency trees for the two readings. Where does the attachment ambiguity manifest itself?

Exercise (5): Dependency Evaluation



(5) What are the LAS and UAS scores for the two trees? Gold standard on the left, system prediction on the right.


Exercise (6): More Dependency Evaluation

(6) What are the LAS and UAS scores for the two trees?

(7) Which of the following formal properties hold for this dependency graph:
(a) Connectedness, (b) Acyclicity,
(c) Single-Headedness, and (d) Projectivity? Explain your answers.