IN2110 SPRING 2022

 SPRÅKTEKNOLOGISKE METODEREriv Velldal \& Jan Tore Lønning

Lectures 2-5

\square How to represent (language) data in a mathematical model.
\square Vector space models.
\square Representing
\square Documents (today)

- Words (week 5)
\square Vector-based machine learning
\square Classification (week 3)
- Clustering (week 5)

Today

\square Examples
\square Features (no: "trekk")
\square Geometrical views:
\square Vector space models
\square Application to documents and Information retrieval

Disclaimer

\square I am only a substitute teacher for Erik Velldal
\square The slides will be a mixture
\square Erik's slides from last year
\square My slides from IN3050 and IN4080
\square Some new slides (like this one)

Similarity

Supervised learning (Veiledet læring)

- Requires training data; pre-defined examples of what we want the algorithm to learn.
- Learning from labeled data.

\square We classify the image from how similar it is to the training images in the two classes
\square But how do we measure similarity?

Features

\square To classify cats and dogs, we (as humans) will typically consider attributes or features like:
\square color
\square size
\square fur
\square ears

- ...
\square For a machine to classify images of cats and dogs it has to consider features of the image (pixels)

Numerical features and geometry

(Arbitrary) example:

\square Countries
\square many possible features
\square choose by purpose
\square With two numerical features
\square Plot the numbers
\square See which country is similar to which other countries

- use this to predict other properties (ML)
\square Compare countries with respect to one feature given the other
- Vectors

Example data set: email spam

	spam	chars	lines breaks	'dollar' occurs. numbers	'winner' occurs?	format	number	Data are typically represented in
1	no	21,705	551	0	no	html	small	
2	no	7,011	183	0	no	html	big	Each column one attribute (feature)
3	yes	631	28	0	no	text	none	
4	no	2,454	61	0	no	tex \dagger	small	
5	no	41,623	1088	9	no	html	small	
\cdots								Each row an observation (n-tuple, vector)
50	no	15,829	242	0	no	html	small	
From OpenIntro Statistics Creative Commons license				There are more variables (attributes) in the data set				(cf. Data base)

Example data set: email spam

	spam	chars	lines breaks	'dollar' occurs. numbers	'winner' occurs?	format	number	
1	no	21,705	551	0	no	html	small	
2	no	7,011	183	0	no	html	big	50 observations, rows
3	yes	631	28	0	no	text	none	7 Variables, columns
4	no	2,454	61	0	no	text	small	4 categorical variables
5	no	41,623	1088	9	no	html	small	3 numerical variables
\ldots								
50	no	15,829	242	0	no	html	small	

The larger picture

\square This is how data sets are presented in texts on statistics or machine learning.
\square But in real life, you want to apply ML to new tasks, then there is a lot of work before you have a data set like that:

1. Data Collection and Preparation
2. Feature Selection and extraction
\square And for supervised learning, in particular
3. Label the data, e.g., whether an x-ray shows cancer

Transforming the classification task

\square The task of predicting from an e-mail

yes/no
\square is transformed to the task of predicting from some features
(Chars: 21,705 , Lines: 551 , 'dollar': 0,
'winner': no, format: html, number: small)

- is transformed to the task of predicting from a numerical vector to a number

$$
\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

$$
y \in\{0,1\}
$$

Types of features (and statistical variables)

Categorical

\square Person: Name
\square Word: Part of Speech (POS)
$\square\{$ Verb, Noun, Adi, ...\}
\square Noun: Gender
\square \{Mask, Fem, Neut $\}$
\square Sequence of words: Grammatical English sentence or not?

Numerical

\square Person: Years of age, Weight, Height
\square Word: length
\square Text: number of occurrences of great, (42)
\square Relative frequency of a word in a text: (0.0186\%)

A binary categorical feature can be considered numerical: 0 or 1
Other categorical features can be represented by several binary features

The Bag of Words Representation

I love this movie! It's sweet, but with satirical humor. The dialogue is great and the adventure scenes are fun... It manages to be whimsical and romantic while laughing at the conventions of the fairy tale genre. I would recommend it to just about anyone. I've seen it several times, and I'm always happy to see it again whenever I have a friend who hasn't seen it yet!

Term-document matrix

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

\square Example of a co-occurrence matrix
\square More specifically, a $m \times n$ term-document matrix
$\square m$ terms, n documents
\square Count the number of occurrences of the terms in each document
\square Each column represent a document
\square Each row represents a term (word, feature)
\square With 4 key words each document is represented as a 4-d vector
\square (We could use any set of key words)

Shakespeare (from J \& M)

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	14	80	62	89
fool	36	58	1	4
wit	20	15	2	3

\square Vectors are similar for the two comedies
\square Different than the historical dramas
\square Comedies have more fools and wit and fewer battles.

Numerical features understood geometrically

https://www.aploris.com/blog/charts/category/scatter-chart/
\square Features correspond to dimensions
\square Objects correspond to points
\square Similarity by distance
\square Two features
\square a plane
\square Three features

- a 3d space
\square More features:
\square an abstract n -dimensional space, \mathbb{R}^{n}

Plotting the documents with two key words

Distance between points

\square Pythagorean theorem

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

\square General form

$$
d\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots y_{n}\right)\right)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\cdots+\left(x_{n}-y_{n}\right)^{2}}
$$

Shakespeare (from J \& M)

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle good fool wit	$\left[\begin{array}{l}1 \\ 14 \\ 36 \\ 20\end{array}\right.$	0 80	7 62 1	13 89 2

\square Vectors are similar for the two comedies
\square Different than the historical dramas
\square Comedies have more fools and wit and fewer battles.

Plotting the documents with two key words

Information retrieval (IR)

\square We see clear patterns
\square But the (red) points, representing documents, are not necessarily close together for similar documents.
\square One reason is, of course, that documents have different lengths
\square The directions towards the points are more interesting than the location of the points.
\square This is where vectors (blue arrows) come at rescue.

Vectors

\square An n -dimensional vector is an array of n scalars (real numbers)
$\square\left(x_{1}, x_{2}, \ldots x_{n}\right)$
\square Two operations on vectors
\square Scalar multiplication
$\square a\left(x_{1}, x_{2}, \ldots x_{n}\right)=\left(a x_{1}, a x_{2}, \ldots a x_{n}\right)$
\square Addition
$\square\left(x_{1}, x_{2}, \ldots x_{n}\right)+\left(y_{1}, y_{2}, \ldots y_{n}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots x_{n}+y_{n}\right)$

Euclidean vectors

Also called geometric or spatial vectors
$\square 2 \mathrm{D}$ or 3D
\square Characterized by

- length
\square direction
\square Used in physics for e.g.
\square forces, speed, acceleration, etc.

The connection

\square Vectors with the same length and direction are considered equivalent
\square A vector can be described by
\square start- and end-point
$\square \boldsymbol{u}=(A, B)=((2,5),(6,8))$

- $\boldsymbol{w}=((0,0),(4,3))$
\square end-point
- $\boldsymbol{w}=E=(4,3)$
- the numeric form we use for addition and scalar multiplication

Vector operations

```
Sum
```


Difference

Norm of a vector

The norm (length) of a vector
$\square\left\|\left(x_{1}, x_{2}, \ldots x_{n}\right)\right\|=$ $\sqrt{x_{1}{ }^{2}+x_{2}{ }^{2}+\cdots+x_{n}{ }^{2}}$
\square This is called L2-norm
\square Equals the distance between the end
 points.

Euclidean distance between vectors

\square The distance between the two end-points
\square The length of the vector which is the distance between the two
$\square \operatorname{dist}\left(\left(x_{1}, x_{2}, \ldots x_{n}\right),\left(y_{1}, y_{2}, \ldots y_{n}\right)=\right.$ $\left\|\left(x_{1}, x_{2}, \ldots x_{n}\right)-\left(y_{1}, y_{2}, \ldots y_{n}\right)\right\|$

$d\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots y_{n}\right)\right)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\cdots+\left(x_{n}-y_{n}\right)^{2}}$,

\square We have seen that distance does not reflect document similarity
\square One option is to normalize the vector to a vector of length one pointing in the same direction
\square Replace \boldsymbol{u} with $\mathbf{v}=\frac{\boldsymbol{u}}{\|\boldsymbol{u}\|}$
\square (Also other possibilities for documents, e.g., the relative frequency of the terms)

Cosine similarity

\square Several possible ways to define similarity, e.g.,
\square Euclidean

- Manhattan
\square Most common: cosine
\square Do the arrows point in the same direction?
$\cos (\vec{v}, \vec{w})=\frac{\vec{v} \quad \vec{w}}{|\vec{v}||\vec{w}|}=\frac{\vec{v}}{|\vec{v}|} \frac{\vec{w}}{|\vec{w}|}=\frac{i_{i=1} v_{i} w_{i}}{\sqrt{{ }_{i=1}^{N} v_{i}^{2}} \sqrt{{ }_{i=1}^{N} w_{i}^{2}}}$

Cosine

$\square \cos (A)=\frac{b}{h}$
$\sin (A)=\frac{a}{h}$

Cosine

Also defined for obtuse (non-acute) angles:
$\square \cos (u)=C_{1}=0.5$

- $\cos (v)=D_{1}=$

$$
\sqrt{1-0.5^{2}} \approx-0.9
$$

Cosine

Observations:

$\square \cos (0)=1$
$\square \cos (u)=0$ iff $u=\frac{\pi}{2}=90^{\circ}$
$\square 0<\cos (u)<1$ iff $0<u<\frac{\pi}{2}$
$\square \cos (u)<0$ iff $\frac{\pi}{2}<u \leq \pi$

Dot product

$\square\left(x_{1}, x_{2}, \ldots x_{n}\right) \cdot\left(y_{1}, y_{2}, \ldots y_{n}\right)=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}=$ $\sum_{i=1}^{n} x_{i} y_{i}$
\square This is a scalar (real number) - not a vector
$\square \boldsymbol{x} \cdot \boldsymbol{y}=\|\boldsymbol{x}\|\|\boldsymbol{y}\| \cos (u)$ where u is the angle between the two vectors
$\square \cos (u)=\frac{x \cdot y}{\|x\|\|y\|}$
$\square \ln$ 2D and 3D we can prove this
\square In higher dimensions, we can use it to define cosine
\square and show that cosine get the expected properties

Let us try: $\cos \left(v_{1}, v_{2}\right)$

Full vectors (4 key words)

AYLI TwNi JuCa HenV

AYLI	1.000	0.950	0.945	0.949
TwNi	0.950	1.000	0.809	0.822
JuCa	0.945	0.809	1.000	0.999
HenV	0.949	0.822	0.999	1.000

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	14	80	62	89
fool	36	58	1	4
wit	20	15	2	3

Information retrieval

\square Consider the query as a short document
\square Represent it as a vector in the same space as the documents
\square Measure the similarity between the query and the documents
\square Rank the relevance of the documents according to similarity with the quey

Observations

\square Cosine similarity measures the similarity between vectors
\square Larger is better
\square Euclidean distance measure the distance between vectors
\square Smaller is better
\square With length normalized vectors, they will yield the same ranking of candidates

Frequencies

I love this movie! It's sweet, but with satirical humor. The dialogue is great and the adventure scenes are fun It manages to be whimsical and romantic while laughing at the conventions of the fairy tale genre. I would recommend it to just about anyone I've seen it several times, and I'm always happy to see it again whenever I have a friend who hasn't seen it yet!

- Problem: Raw frequency counts not always good indicators of relevance.
- The most frequent words will typically not be very discriminative.
- A weighting function is therefore usually applied to the raw counts.

TF-IDF

- The most commonly used weighting function is tf-idf:

TF-IDF

- The most commonly used weighting function is tf-idf:
- The term frequency $\operatorname{tf}\left(t_{i}, d_{j}\right)$ denotes the number of times the term t_{i} occurs in document d_{j}.
- The most commonly used weighting function is tf-idf:
- The term frequency $\operatorname{tf}\left(t_{i}, d_{j}\right)$ denotes the number of times the term t_{i} occurs in document d_{j}.
- The document frequency $\operatorname{df}\left(t_{i}\right)$ denotes the total number of documents in the collection that the term occurs in.
- The most commonly used weighting function is tf-idf:
- The term frequency $\operatorname{tf}\left(t_{i}, d_{j}\right)$ denotes the number of times the term t_{i} occurs in document d_{j}.
- The document frequency $\operatorname{df}\left(t_{i}\right)$ denotes the total number of documents in the collection that the term occurs in.
- The inverse document frequency is defined as $\operatorname{idf}\left(\mathrm{t}_{\mathrm{i}}\right)=\log \left(\frac{N}{d f\left(t_{i}\right)}\right)$, where N is the total number of documents in the collection.
- The most commonly used weighting function is tf-idf:
- The term frequency $\mathrm{ff}\left(t_{i}, d_{j}\right)$ denotes the number of times the term t_{i} occurs in document d_{j}.
- The document frequency $\operatorname{df}\left(t_{i}\right)$ denotes the total number of documents in the collection that the term occurs in.
- The inverse document frequency is defined as $\operatorname{idf}\left(\mathrm{t}_{\mathrm{i}}\right)=\log \left(\frac{N}{d f\left(t_{i}\right)}\right)$, where N is the total number of documents in the collection.
- The weight given to term t_{i} in document d_{j} is then computed as

$$
\operatorname{tf}-\operatorname{idf}\left(t_{i}, d_{j}\right)=\operatorname{tf}\left(t_{i}, d_{j}\right) \times \operatorname{idf}\left(t_{i}\right)
$$

- The most commonly used weighting function is tf-idf:
- The term frequency $\operatorname{tf}\left(t_{i}, d_{j}\right)$ denotes the number of times the term t_{i} occurs in document d_{j}.
- The document frequency $\operatorname{df}\left(t_{i}\right)$ denotes the total number of documents in the collection that the term occurs in.
- The inverse document frequency is defined as $\operatorname{idf}\left(\mathrm{t}_{\mathrm{i}}\right)=\log \left(\frac{N}{d f\left(t_{i}\right)}\right)$, where N is the total number of documents in the collection.
- The weight given to term t_{i} in document d_{j} is then computed as

$$
\operatorname{tf}-\operatorname{idf}\left(t_{i}, d_{j}\right)=\operatorname{tf}\left(t_{i}, d_{j}\right) \times \operatorname{idf}\left(t_{i}\right)
$$

- A high tf-idf is obtained if a term has a high frequency in the given document and a low frequency in the document collection as whole.
- The weights hence tend to filter out common terms.

Footnote: Variants of TF-IDF

\square There are variants to both the TF and the IDF
\square For TF:

- Instead of raw frequency one could use relative frequencies or length normalize.
- The result is the same as with raw frequency when we use cos-similarity
- An option for other (classification) tasks
\square J\&M uses Sublinear TF: ($1+\log (\mathrm{tf})$), 0 when $\mathrm{ff}=0$
- which can give a different ranking also with cosine similarity
\square For IDF:
$\square i d f_{t}=\log \frac{N}{d f_{t}}$
- Smooth: some avoid dividing by zero $i d f_{t}=\log \frac{N}{d f_{t}+1}+1$, or other variants
\square You don't have to learn these, but beware why you might get a result different from the book(s).

The effect of tf-idf

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle good fool wit	$\left(\begin{array}{l}1 \\ 14 \\ 36 \\ 20\end{array}\right.$	0 80 58 15	($\left.\begin{array}{c}7 \\ 62 \\ 1 \\ 2\end{array}\right]$	13 89 4 3
	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	0.074	0	0.22	0.28
good	0	0	0	0
fool	0.019	0.021	0.0036	0.0083
wit	0.049	0.044	0.018	0.022

Figure 6.8 A tf-idf weighted term-document matrix for four words in four Shakespeare plays, using the counts in Fig. 6.2. For example the 0.049 value for wit in As You Like It is the product of $\mathrm{tf}=\log _{10}(20+1)=1.322$ and $\mathrm{idf}=.037$. Note that the idf weighting has eliminated the importance of the ubiquitous word good and vastly reduced the impact of the almost-ubiquitous word fool.

Text pre-processing. Or, what is a word?

Raw:
"The programmer's programs had been programmed."

- Tokenization: Splitting a text into sentences and words or other units.
- Different levels of abstraction and morphological normalization:
- What to do with case, numbers, punctuation, compounds, ...?
- Full-form words vs. lemmas vs. stems ...
- Stop-list: filter out closed-class words or function words.
- The idea is that only content words provide relevant context.

Text pre-processing. Or, what is a word?

Raw:
Tokenized:
"The programmer's programs had been programmed." the programmer 's programs had been programmed.

- Tokenization: Splitting a text into sentences and words or other units.
- Different levels of abstraction and morphological normalization:
- What to do with case, numbers, punctuation, compounds, ... ?
- Full-form words vs. lemmas vs. stems ...
- Stop-list: filter out closed-class words or function words.
- The idea is that only content words provide relevant context.

Text pre-processing. Or, what is a word?

Raw:
Tokenized:
Lemmatized:
"The programmer's programs had been programmed." the programmer 's programs had been programmed. the programmer 's program have be program .

- Tokenization: Splitting a text into sentences and words or other units.
- Different levels of abstraction and morphological normalization:
- What to do with case, numbers, punctuation, compounds, ... ?
- Full-form words vs. lemmas vs. stems ...
- Stop-list: filter out closed-class words or function words.
- The idea is that only content words provide relevant context.

Text pre-processing. Or, what is a word?

Raw:
Tokenized:
Lemmatized:
W/ stop-list:
"The programmer's programs had been programmed." the programmer 's programs had been programmed. the programmer 's program have be program .
programmer program program

- Tokenization: Splitting a text into sentences and words or other units.
- Different levels of abstraction and morphological normalization:
- What to do with case, numbers, punctuation, compounds, ... ?
- Full-form words vs. lemmas vs. stems ...
- Stop-list: filter out closed-class words or function words.
- The idea is that only content words provide relevant context.

Text pre-processing. Or, what is a word?

Raw:
Tokenized:
Lemmatized:
W/ stop-list:
Stemmed:
"The programmer's programs had been programmed." the programmer 's programs had been programmed. the programmer 's program have be program. programmer program program program program program

- Tokenization: Splitting a text into sentences and words or other units.
- Different levels of abstraction and morphological normalization:
- What to do with case, numbers, punctuation, compounds, ... ?
- Full-form words vs. lemmas vs. stems ...
- Stop-list: filter out closed-class words or function words.
- The idea is that only content words provide relevant context.

Practical comments: Sparsity

- BoW feature vectors will be extremely high-dimensional.
- The number of non-zero elements will be very low.
- Few active features per word.
- We say that the vectors are sparse.
- This has implications for how to implement our data structures and vector operations:
- Don't want to waste space representing and iterating over zero-valued features.

Next: Two categorization tasks in machine learning

Classification

- Supervised learning, requiring labeled training data.
- Train a classifier to automatically assign new instances to predefined classes, given some set of training examples.
- (Topic for next week.)

Next: Two categorization tasks in machine learning

Classification

- Supervised learning, requiring labeled training data.
- Train a classifier to automatically assign new instances to predefined classes, given some set of training examples.
- (Topic for next week.)

Clustering

- Unsupervised learning from unlabeled data.
- Automatically group similar objects together.
- No predefined classes or structure, we only specify the similarity measure.
- (The topic for the week after.)

Classes and classification

- In our vector space model, objects are represented as points, so classes will correspond to collections of points; regions.
- Vector space classification is based on the contiguity hypothesis:

- Objects in the same class form a contiguous region, and regions of different classes do not overlap.
- Classification amounts to computing the boundaries in the space that separate the classes; the decision boundaries.
- Classifiers based on vector space representations are well-suited for introducing the notion of classification:
- Little math required, easy to understand on the basis of geometrical intuitions.
- We will consider two very simple but powerful methods:
- K-Nearest Neighbor (KNN) classification
- Rocchio classification (a.k.a. Nearest centroid)
- Example task: text classification

Mandatory assignment 1 a

\square Topic classification of news articles (reviews in NoReC)
\square using kNN (k nearest neighbors)
\square with BoW features and TF-IDF weighting
$\square \operatorname{In}: 25 / 2$, Out: 2/2
\square Group work encouraged

- https://www.uio.no/studier/emner/matnat/ifi/IN2110/v22/obliger/
\square Groups:
\square Wed. 14.15-16, Chill, digital this week
\square Thurs. 12.15-14, digital

Next week

\square Classification algorithms:
$\square k N N$ (k nearest neighbors)
\square Rocchio classification
\square Reading: The chapter Vector Space Classification (sections 14-14.4) in Manning, Raghavan \& Schütze (2008);
https://nlp.stanford.edu/IR-book/
\square PS: Want to learn more about IR? Take IN31 20 - Search Technology

