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Plan

 How to represent (language) data 
in a mathematical model.

 Vector space models.

 Representing

 Documents (today)

 Words (week 5)

 Vector-based machine learning 

 Classification (week 3)

 Clustering (week 5)

 Examples

 Features (no: "trekk")

 Geometrical views:

 Vector space models

 Application to documents and 

Information retrieval
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Lectures 2-5 Today



Disclaimer

 I am only a substitute teacher for Erik Velldal

 The slides will be a mixture

 Erik's slides from last year

 My slides from IN3050 and IN4080

 Some new slides (like this one)
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Similarity

 We classify the image from 

how similar it is to the 

training images in the two 

classes

 But how do we measure 

similarity?
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Features

 To classify cats and dogs, we (as humans) will 
typically consider attributes or features like:

 color

 size

 fur

 ears

 …

 For a machine to classify images of cats and 
dogs it has to consider features of the image 
(pixels)
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Numerical features and geometry

(Arbitrary) example:

 Countries

 many possible features

 choose by purpose

 With two numerical features

 Plot the numbers

 See which country is similar to which 
other countries
◼ use this to predict other properties (ML)

 Compare countries with respect to one 
feature given the other
◼ Vectors
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https://www.aploris.com/blog/charts/category/scatter-chart/

https://www.aploris.com/blog/charts/category/scatter-chart/


Example data set: email spam

spam chars lines

breaks

'dollar'

occurs.

numbers

'winner' 

occurs?

format number

1 no 21,705 551 0 no html small

2 no 7,011 183 0 no html big

3 yes 631 28 0 no text none

4 no 2,454 61 0 no text small

5 no 41,623 1088 9 no html small

…

50 no 15,829 242 0 no html small

 Data are 
typically 
represented in 
a table

 Each column
one attribute 
(feature)

 Each row
an observation 
(n-tuple, vector)

 (cf. Data base)From OpenIntro Statistics

Creative Commons license

There are more variables 

(attributes) in the data set
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Example data set: email spam

spam chars lines

breaks

'dollar'

occurs.

numbers

'winner' 

occurs?

format number

1 no 21,705 551 0 no html small

2 no 7,011 183 0 no html big

3 yes 631 28 0 no text none

4 no 2,454 61 0 no text small

5 no 41,623 1088 9 no html small

…

50 no 15,829 242 0 no html small

50 observations, rows

4 categorical variables

3 numerical variables

7 variables, columns
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The larger picture

 This is how data sets are presented in texts on statistics or machine 

learning.

 But in real life, you want to apply ML to new tasks, then there is a lot 

of work before you have a data set like that:

1. Data Collection and Preparation

2. Feature Selection and extraction

 And for supervised learning, in particular

3. Label the data, e.g., whether an x-ray shows cancer
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Transforming the classification task

 The task of predicting from an e-mail

 is transformed to the task of predicting from some features
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yes/no

yes/no
(Chars: 21,705, Lines: 551, ‘dollar’: 0, 

‘winner’: no, format: html, number: small)

• is transformed to the task of predicting
from a numerical vector to a number

𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) 𝑦 ∈ {0, 1}



Types of features (and statistical variables)

 Person: Name

 Word: Part of Speech (POS)

 {Verb, Noun, Adj, …}

 Noun: Gender

 {Mask, Fem, Neut}

 Sequence of words: Grammatical 

English sentence or not?

 Person: Years of age, Weight, 
Height 

 Word: length

 Text: number of occurrences of 
great, (42)

 Relative frequency of a word in 
a text: (0.0186%)

Categorical Numerical
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A binary categorical feature can be considered numerical: 0 or 1

Other categorical features can be represented by several binary features



The Bag of Words Representation

12

From Jurafsky & Martin



Term-document matrix

 Example of a co-occurrence matrix

 More specifically, 
a 𝑚 × 𝑛 term-document matrix

 𝑚 terms, 𝑛 documents

 Count the number of occurrences 
of the terms in each document

 Each column represent a document

 Each row represents a term (word, 
feature)

 With 4 key words each document is 
represented as a 4-d vector

 (We could use any set of key words)
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Shakespeare (from J & M)
14

 Vectors are similar for the two comedies

 Different than the historical dramas

 Comedies have more fools and wit and fewer battles.



Numerical features understood geometrically

 Features correspond to dimensions

 Objects correspond to points

 Similarity by distance

 Two features

 a plane

 Three features

 a 3d space

 More features: 

 an abstract n-dimensional space, ℝ𝑛
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https://www.aploris.com/blog/charts/category/scatter-chart/

https://www.aploris.com/blog/charts/category/scatter-chart/


Plotting the documents with two key words
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Distance between points

 Pythagorean theorem

 General form
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Vector spaces
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Shakespeare (from J & M)
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 Vectors are similar for the two comedies

 Different than the historical dramas

 Comedies have more fools and wit and fewer battles.



Plotting the documents with two key words
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Information retrieval (IR)

 We see clear patterns

 But the (red) points, representing documents, are not necessarily close 

together for similar documents.

 One reason is, of course, that documents have different lengths

 The directions towards the points are more interesting than the location 

of the points.

 This is where vectors (blue arrows) come at rescue.
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Vectors

 An n-dimensional vector is an array of n scalars (real numbers)

 𝑥1, 𝑥2, … 𝑥𝑛

 Two operations on vectors

 Scalar multiplication

 𝑎 𝑥1, 𝑥2, … 𝑥𝑛 = 𝑎𝑥1, 𝑎𝑥2, … 𝑎𝑥𝑛

 Addition

 𝑥1, 𝑥2, … 𝑥𝑛 + 𝑦1, 𝑦2, … 𝑦𝑛 = 𝑥1 + 𝑦1, 𝑥2 + 𝑦2, … 𝑥𝑛 + 𝑦𝑛
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Euclidean vectors

 Also called geometric or spatial 

vectors

 2D or 3D

 Characterized by

 length

 direction

 Used in physics for e.g.

 forces, speed, acceleration, etc.
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Figures from Wikipedia



The connection

 Vectors with the same length and 
direction are considered 
equivalent

 A vector can be described by

 start- and end-point

◼ 𝒖 = 𝐴,𝐵 = 2,5 , 6,8

◼ 𝒘 = 0,0 , 4,3

 end-point

◼ 𝒘 = 𝐸 = 4,3

◼ the numeric form we use for addition 
and scalar multiplication
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Vector operations
25

Sum Difference



Norm of a vector

The norm (length) of a vector

 𝑥1, 𝑥2, … 𝑥𝑛 =

𝑥1
2 + 𝑥2

2 +⋯+ 𝑥𝑛
2

 This is called L2-norm

 Equals the distance between the end 

points.
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Euclidean distance between vectors

 The distance between the two 

end-points

 The length of the vector which is  

the distance between the two

 𝑑𝑖𝑠𝑡( 𝑥1, 𝑥2, … 𝑥𝑛 , 𝑦1, 𝑦2, … 𝑦𝑛 =
𝑥1, 𝑥2, … 𝑥𝑛 − 𝑦1, 𝑦2, … 𝑦𝑛
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Normalize

 We have seen that distance does not reflect document similarity

 One option is to normalize the vector to a vector of length one pointing in the 
same direction

 Replace 𝒖 with 𝐯 =
𝒖

𝒖

 (Also other possibilities for documents, e.g., the relative frequency of the terms)
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Cosine similarity

 Several possible ways to define 

similarity, e.g., 

 Euclidean

 Manhattan

 Most common: cosine

 Do the arrows point in the same 

direction?
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Cosine

 cos 𝐴 =
𝑏

ℎ

 sin 𝐴 =
𝑎

ℎ
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Cosine

Also defined for obtuse (non-acute) 
angles:

 cos 𝑢 = 𝐶1 = 0.5

 cos 𝑣 = 𝐷1 =

1 − 0.52 ≈ −0.9
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Cosine

Observations:

 cos 0 = 1

 cos 𝑢 = 0 iff 𝑢 =
𝜋

2
= 90°

 0 < cos 𝑢 < 1 iff 0 < 𝑢 <
𝜋

2

 cos 𝑢 < 0 iff  
𝜋

2
< 𝑢 ≤ 𝜋
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Dot product

 𝑥1, 𝑥2, … 𝑥𝑛 ∙ 𝑦1, 𝑦2, … 𝑦𝑛 = 𝑥1𝑦1 + 𝑥2𝑦2 +⋯+ 𝑥𝑛𝑦𝑛 =
σ𝑖=1
𝑛 𝑥𝑖𝑦𝑖

 This is a scalar (real number) – not a vector

 𝒙 ∙ 𝒚 = 𝒙 𝒚 cos(𝑢) where 𝑢 is the angle between the two vectors

 cos 𝑢 =
𝒙∙𝒚

𝒙 𝒚

 In 2D and 3D we can prove this

 In higher dimensions, we can use it to define cosine

 and show that cosine get the expected properties
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Let us try: cos(𝑣1, 𝑣2)

AYLI   TwNi JuCa HenV

AYLI    1.000  0.950  0.945  0.949

TwNi 0.950  1.000  0.809  0.822

JuCa 0.945  0.809  1.000  0.999

HenV 0.949  0.822  0.999  1.000

AYLI   TwNi JuCa HenV

AYLI    1.000  1.000  0.169  0.321

TwNi 1.000  1.000  0.141  0.294

JuCa 0.169  0.141  1.000  0.988

HenV 0.321  0.294  0.988  1.000
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Full vectors (4 key words) battles & fools



Information retrieval

 Consider the query as a short 

document

 Represent it as a vector in the 

same space as the documents

 Measure the similarity between 

the query and the documents

 Rank the relevance of the 

documents according to 

similarity with the quey
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Observations

 Cosine similarity measures the 

similarity between vectors

 Larger is better

 Euclidean distance measure the 

distance between vectors

 Smaller is better

 With length normalized vectors, 

they will yield the same ranking 

of candidates
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Frequencies

I Problem: Raw frequency counts not always good indicators of relevance.

I The most frequent words will typically not be very discriminative.

I A weighting function is therefore usually applied to the raw counts.
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TF-IDF

I The most commonly used weighting function is tf-idf:

I The term frequency tf(ti, dj) denotes the number of times the term ti

occurs in document dj .
I The document frequency df(ti) denotes the total number of documents

in the collection that the term occurs in.
I The inverse document frequency is defined as idf(ti) = log

(
N

df(ti)

)
,

where N is the total number of documents in the collection.
I The weight given to term ti in document dj is then computed as

tf-idf(ti, dj) = tf(ti, dj)× idf(ti)

I A high tf-idf is obtained if a term has a high frequency in the given
document and a low frequency in the document collection as whole.

I The weights hence tend to filter out common terms.
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Footnote: Variants of TF-IDF
1

 There are variants to both the TF and the IDF

 For TF:

 Instead of raw frequency one could use relative frequencies or length normalize.

◼ The result is the same as with raw frequency when we use cos-similarity

◼ An option for other (classification) tasks

 J&M uses Sublinear TF: (1 + log(tf)), 0 when tf=0

◼ which can give a different ranking also with cosine similarity

 For IDF:

 𝑖𝑑𝑓𝑡 = log
𝑁

𝑑𝑓𝑡

 Smooth: some avoid dividing by zero 𝑖𝑑𝑓𝑡 = log
𝑁

𝑑𝑓𝑡+1
+ 1, or other variants

 You don't have to learn these, but beware why you might get a result different from the 
book(s).



The effect of tf-idf
2



Text pre-processing. Or, what is a word?

Raw: “The programmer’s programs had been programmed.”

Tokenized: the programmer ’s programs had been programmed .
Lemmatized: the programmer ’s program have be program .
W/ stop-list: programmer program program
Stemmed: program program program

I Tokenization: Splitting a text into sentences and words or other units.
I Different levels of abstraction and morphological normalization:

I What to do with case, numbers, punctuation, compounds, . . . ?
I Full-form words vs. lemmas vs. stems . . .

I Stop-list: filter out closed-class words or function words.
I The idea is that only content words provide relevant context.
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Practical comments: Sparsity

I BoW feature vectors will be extremely high-dimensional.

I The number of non-zero elements will be very low.

I Few active features per word.

I We say that the vectors are sparse.

I This has implications for how to implement our data structures and
vector operations:

I Don’t want to waste space representing and iterating over zero-valued
features.
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Next: Two categorization tasks in machine learning

Classification
I Supervised learning, requiring labeled training data.
I Train a classifier to automatically assign new instances to predefined

classes, given some set of training examples.
I (Topic for next week.)

Clustering
I Unsupervised learning from unlabeled data.
I Automatically group similar objects together.
I No predefined classes or structure, we only specify the similarity

measure.
I (The topic for the week after.)
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Classes and classification

I In our vector space model, objects
are represented as points, so
classes will correspond to
collections of points; regions.

I Vector space classification is
based on the contiguity
hypothesis:

I Objects in the same class form a contiguous region, and regions of
different classes do not overlap.

I Classification amounts to computing the boundaries in the space that
separate the classes; the decision boundaries.
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Vector space classification

I Classifiers based on vector space representations are well-suited for
introducing the notion of classification:

I Little math required, easy to understand on the basis of geometrical
intuitions.

I We will consider two very simple but powerful methods:

I K-Nearest Neighbor (KNN) classification

I Rocchio classification (a.k.a. Nearest centroid)

I Example task: text classification
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Mandatory assignment 1 a

 Topic classification of news articles (reviews in NoReC)

 using kNN (k nearest neighbors)

 with BoW features and TF-IDF weighting

 In: 25/2, Out: 2/2

 Group work encouraged

 https://www.uio.no/studier/emner/matnat/ifi/IN2110/v22/obliger/

 Groups:

 Wed. 14.15-16, Chill, digital this week

 Thurs. 12.15-14, digital

1

https://www.uio.no/studier/emner/matnat/ifi/IN2110/v22/obliger/


Next week
2

 Classification algorithms:

 kNN (k nearest neighbors)

 Rocchio classification

 Reading: The chapter Vector Space Classification (sections 14–14.4) in 

Manning, Raghavan & Schütze (2008); 

https://nlp.stanford.edu/IR-book/

 PS: Want to learn more about IR? Take IN3120 – Search Technology

https://nlp.stanford.edu/IR-book/

