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Plan

 How to represent (language) data 
in a mathematical model.

 Vector space models.

 Representing

 Documents (today)

 Words (week 5)

 Vector-based machine learning 

 Classification (week 3)

 Clustering (week 5)

 Examples

 Features (no: "trekk")

 Geometrical views:

 Vector space models

 Application to documents and 

Information retrieval
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Lectures 2-5 Today



Disclaimer

 I am only a substitute teacher for Erik Velldal

 The slides will be a mixture

 Erik's slides from last year

 My slides from IN3050 and IN4080

 Some new slides (like this one)
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Similarity

 We classify the image from 

how similar it is to the 

training images in the two 

classes

 But how do we measure 

similarity?
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Features

 To classify cats and dogs, we (as humans) will 
typically consider attributes or features like:

 color

 size

 fur

 ears

 …

 For a machine to classify images of cats and 
dogs it has to consider features of the image 
(pixels)
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Numerical features and geometry

(Arbitrary) example:

 Countries

 many possible features

 choose by purpose

 With two numerical features

 Plot the numbers

 See which country is similar to which 
other countries
◼ use this to predict other properties (ML)

 Compare countries with respect to one 
feature given the other
◼ Vectors
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https://www.aploris.com/blog/charts/category/scatter-chart/
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Example data set: email spam

spam chars lines

breaks

'dollar'

occurs.

numbers

'winner' 

occurs?

format number

1 no 21,705 551 0 no html small

2 no 7,011 183 0 no html big

3 yes 631 28 0 no text none

4 no 2,454 61 0 no text small

5 no 41,623 1088 9 no html small

…

50 no 15,829 242 0 no html small

 Data are 
typically 
represented in 
a table

 Each column
one attribute 
(feature)

 Each row
an observation 
(n-tuple, vector)

 (cf. Data base)From OpenIntro Statistics

Creative Commons license

There are more variables 

(attributes) in the data set
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Example data set: email spam

spam chars lines

breaks

'dollar'

occurs.

numbers

'winner' 

occurs?

format number

1 no 21,705 551 0 no html small

2 no 7,011 183 0 no html big

3 yes 631 28 0 no text none

4 no 2,454 61 0 no text small

5 no 41,623 1088 9 no html small

…

50 no 15,829 242 0 no html small

50 observations, rows

4 categorical variables

3 numerical variables

7 variables, columns
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The larger picture

 This is how data sets are presented in texts on statistics or machine 

learning.

 But in real life, you want to apply ML to new tasks, then there is a lot 

of work before you have a data set like that:

1. Data Collection and Preparation

2. Feature Selection and extraction

 And for supervised learning, in particular

3. Label the data, e.g., whether an x-ray shows cancer
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Transforming the classification task

 The task of predicting from an e-mail

 is transformed to the task of predicting from some features
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yes/no

yes/no
(Chars: 21,705, Lines: 551, ‘dollar’: 0, 

‘winner’: no, format: html, number: small)

• is transformed to the task of predicting
from a numerical vector to a number

𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) 𝑦 ∈ {0, 1}



Types of features (and statistical variables)

 Person: Name

 Word: Part of Speech (POS)

 {Verb, Noun, Adj, …}

 Noun: Gender

 {Mask, Fem, Neut}

 Sequence of words: Grammatical 

English sentence or not?

 Person: Years of age, Weight, 
Height 

 Word: length

 Text: number of occurrences of 
great, (42)

 Relative frequency of a word in 
a text: (0.0186%)

Categorical Numerical
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A binary categorical feature can be considered numerical: 0 or 1

Other categorical features can be represented by several binary features



The Bag of Words Representation
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From Jurafsky & Martin



Term-document matrix

 Example of a co-occurrence matrix

 More specifically, 
a 𝑚 × 𝑛 term-document matrix

 𝑚 terms, 𝑛 documents

 Count the number of occurrences 
of the terms in each document

 Each column represent a document

 Each row represents a term (word, 
feature)

 With 4 key words each document is 
represented as a 4-d vector

 (We could use any set of key words)
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Shakespeare (from J & M)
14

 Vectors are similar for the two comedies

 Different than the historical dramas

 Comedies have more fools and wit and fewer battles.



Numerical features understood geometrically

 Features correspond to dimensions

 Objects correspond to points

 Similarity by distance

 Two features

 a plane

 Three features

 a 3d space

 More features: 

 an abstract n-dimensional space, ℝ𝑛
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Plotting the documents with two key words
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Distance between points

 Pythagorean theorem

 General form
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Vector spaces
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Shakespeare (from J & M)
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Plotting the documents with two key words
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Information retrieval (IR)

 We see clear patterns

 But the (red) points, representing documents, are not necessarily close 

together for similar documents.

 One reason is, of course, that documents have different lengths

 The directions towards the points are more interesting than the location 

of the points.

 This is where vectors (blue arrows) come at rescue.
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Vectors

 An n-dimensional vector is an array of n scalars (real numbers)

 𝑥1, 𝑥2, … 𝑥𝑛

 Two operations on vectors

 Scalar multiplication

 𝑎 𝑥1, 𝑥2, … 𝑥𝑛 = 𝑎𝑥1, 𝑎𝑥2, … 𝑎𝑥𝑛

 Addition

 𝑥1, 𝑥2, … 𝑥𝑛 + 𝑦1, 𝑦2, … 𝑦𝑛 = 𝑥1 + 𝑦1, 𝑥2 + 𝑦2, … 𝑥𝑛 + 𝑦𝑛
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Euclidean vectors

 Also called geometric or spatial 

vectors

 2D or 3D

 Characterized by

 length

 direction

 Used in physics for e.g.

 forces, speed, acceleration, etc.
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Figures from Wikipedia



The connection

 Vectors with the same length and 
direction are considered 
equivalent

 A vector can be described by

 start- and end-point

◼ 𝒖 = 𝐴,𝐵 = 2,5 , 6,8

◼ 𝒘 = 0,0 , 4,3

 end-point

◼ 𝒘 = 𝐸 = 4,3

◼ the numeric form we use for addition 
and scalar multiplication
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Vector operations
25

Sum Difference



Norm of a vector

The norm (length) of a vector

 𝑥1, 𝑥2, … 𝑥𝑛 =

𝑥1
2 + 𝑥2

2 +⋯+ 𝑥𝑛
2

 This is called L2-norm

 Equals the distance between the end 

points.
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Euclidean distance between vectors

 The distance between the two 

end-points

 The length of the vector which is  

the distance between the two

 𝑑𝑖𝑠𝑡( 𝑥1, 𝑥2, … 𝑥𝑛 , 𝑦1, 𝑦2, … 𝑦𝑛 =
𝑥1, 𝑥2, … 𝑥𝑛 − 𝑦1, 𝑦2, … 𝑦𝑛
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Normalize

 We have seen that distance does not reflect document similarity

 One option is to normalize the vector to a vector of length one pointing in the 
same direction

 Replace 𝒖 with 𝐯 =
𝒖

𝒖

 (Also other possibilities for documents, e.g., the relative frequency of the terms)
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Cosine similarity

 Several possible ways to define 

similarity, e.g., 

 Euclidean

 Manhattan

 Most common: cosine

 Do the arrows point in the same 

direction?
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Cosine

 cos 𝐴 =
𝑏

ℎ

 sin 𝐴 =
𝑎

ℎ
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Cosine

Also defined for obtuse (non-acute) 
angles:

 cos 𝑢 = 𝐶1 = 0.5

 cos 𝑣 = 𝐷1 =

1 − 0.52 ≈ −0.9
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Cosine

Observations:

 cos 0 = 1

 cos 𝑢 = 0 iff 𝑢 =
𝜋

2
= 90°

 0 < cos 𝑢 < 1 iff 0 < 𝑢 <
𝜋

2

 cos 𝑢 < 0 iff  
𝜋

2
< 𝑢 ≤ 𝜋
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Dot product

 𝑥1, 𝑥2, … 𝑥𝑛 ∙ 𝑦1, 𝑦2, … 𝑦𝑛 = 𝑥1𝑦1 + 𝑥2𝑦2 +⋯+ 𝑥𝑛𝑦𝑛 =
σ𝑖=1
𝑛 𝑥𝑖𝑦𝑖

 This is a scalar (real number) – not a vector

 𝒙 ∙ 𝒚 = 𝒙 𝒚 cos(𝑢) where 𝑢 is the angle between the two vectors

 cos 𝑢 =
𝒙∙𝒚

𝒙 𝒚

 In 2D and 3D we can prove this

 In higher dimensions, we can use it to define cosine

 and show that cosine get the expected properties
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Let us try: cos(𝑣1, 𝑣2)

AYLI   TwNi JuCa HenV

AYLI    1.000  0.950  0.945  0.949

TwNi 0.950  1.000  0.809  0.822

JuCa 0.945  0.809  1.000  0.999

HenV 0.949  0.822  0.999  1.000

AYLI   TwNi JuCa HenV

AYLI    1.000  1.000  0.169  0.321

TwNi 1.000  1.000  0.141  0.294

JuCa 0.169  0.141  1.000  0.988

HenV 0.321  0.294  0.988  1.000
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Full vectors (4 key words) battles & fools



Information retrieval

 Consider the query as a short 

document

 Represent it as a vector in the 

same space as the documents

 Measure the similarity between 

the query and the documents

 Rank the relevance of the 

documents according to 

similarity with the quey
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Observations

 Cosine similarity measures the 

similarity between vectors

 Larger is better

 Euclidean distance measure the 

distance between vectors

 Smaller is better

 With length normalized vectors, 

they will yield the same ranking 

of candidates
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Frequencies

I Problem: Raw frequency counts not always good indicators of relevance.

I The most frequent words will typically not be very discriminative.

I A weighting function is therefore usually applied to the raw counts.
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TF-IDF

I The most commonly used weighting function is tf-idf:

I The term frequency tf(ti, dj) denotes the number of times the term ti

occurs in document dj .
I The document frequency df(ti) denotes the total number of documents

in the collection that the term occurs in.
I The inverse document frequency is defined as idf(ti) = log

(
N

df(ti)

)
,

where N is the total number of documents in the collection.
I The weight given to term ti in document dj is then computed as

tf-idf(ti, dj) = tf(ti, dj)× idf(ti)

I A high tf-idf is obtained if a term has a high frequency in the given
document and a low frequency in the document collection as whole.

I The weights hence tend to filter out common terms.
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Footnote: Variants of TF-IDF
1

 There are variants to both the TF and the IDF

 For TF:

 Instead of raw frequency one could use relative frequencies or length normalize.

◼ The result is the same as with raw frequency when we use cos-similarity

◼ An option for other (classification) tasks

 J&M uses Sublinear TF: (1 + log(tf)), 0 when tf=0

◼ which can give a different ranking also with cosine similarity

 For IDF:

 𝑖𝑑𝑓𝑡 = log
𝑁

𝑑𝑓𝑡

 Smooth: some avoid dividing by zero 𝑖𝑑𝑓𝑡 = log
𝑁

𝑑𝑓𝑡+1
+ 1, or other variants

 You don't have to learn these, but beware why you might get a result different from the 
book(s).



The effect of tf-idf
2



Text pre-processing. Or, what is a word?

Raw: “The programmer’s programs had been programmed.”

Tokenized: the programmer ’s programs had been programmed .
Lemmatized: the programmer ’s program have be program .
W/ stop-list: programmer program program
Stemmed: program program program

I Tokenization: Splitting a text into sentences and words or other units.
I Different levels of abstraction and morphological normalization:

I What to do with case, numbers, punctuation, compounds, . . . ?
I Full-form words vs. lemmas vs. stems . . .

I Stop-list: filter out closed-class words or function words.
I The idea is that only content words provide relevant context.
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Practical comments: Sparsity

I BoW feature vectors will be extremely high-dimensional.

I The number of non-zero elements will be very low.

I Few active features per word.

I We say that the vectors are sparse.

I This has implications for how to implement our data structures and
vector operations:

I Don’t want to waste space representing and iterating over zero-valued
features.
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Next: Two categorization tasks in machine learning

Classification
I Supervised learning, requiring labeled training data.
I Train a classifier to automatically assign new instances to predefined

classes, given some set of training examples.
I (Topic for next week.)

Clustering
I Unsupervised learning from unlabeled data.
I Automatically group similar objects together.
I No predefined classes or structure, we only specify the similarity

measure.
I (The topic for the week after.)
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Classes and classification

I In our vector space model, objects
are represented as points, so
classes will correspond to
collections of points; regions.

I Vector space classification is
based on the contiguity
hypothesis:

I Objects in the same class form a contiguous region, and regions of
different classes do not overlap.

I Classification amounts to computing the boundaries in the space that
separate the classes; the decision boundaries.
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Vector space classification

I Classifiers based on vector space representations are well-suited for
introducing the notion of classification:

I Little math required, easy to understand on the basis of geometrical
intuitions.

I We will consider two very simple but powerful methods:

I K-Nearest Neighbor (KNN) classification

I Rocchio classification (a.k.a. Nearest centroid)

I Example task: text classification
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Mandatory assignment 1 a

 Topic classification of news articles (reviews in NoReC)

 using kNN (k nearest neighbors)

 with BoW features and TF-IDF weighting

 In: 25/2, Out: 2/2

 Group work encouraged

 https://www.uio.no/studier/emner/matnat/ifi/IN2110/v22/obliger/

 Groups:

 Wed. 14.15-16, Chill, digital this week

 Thurs. 12.15-14, digital

1

https://www.uio.no/studier/emner/matnat/ifi/IN2110/v22/obliger/


Next week
2

 Classification algorithms:

 kNN (k nearest neighbors)

 Rocchio classification

 Reading: The chapter Vector Space Classification (sections 14–14.4) in 

Manning, Raghavan & Schütze (2008); 

https://nlp.stanford.edu/IR-book/

 PS: Want to learn more about IR? Take IN3120 – Search Technology

https://nlp.stanford.edu/IR-book/

