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Plan

 How to represent (language) data 
in a mathematical model.

 Vector space models.

 Representing

 Documents (today)

 Words (week 5)

 Vector-based machine learning 

 Classification (week 3)

 Clustering (week 4)

 Machine learning

 supervised

 classification

 Rocchio classifier

 k Nearest Neighbors (kNN)
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Lectures 2-5 Today



Disclaimer

 I am only a substitute teacher for Erik Velldal

 The slides will be a mixture

 Erik's slides from last year

 My slides from IN3050 and IN4080

 Some new slides (like this one)
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Machine learning
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Machine Learning

In particular :

 Generalization: Provide sensible outputs for inputs not encountered 

during training

 extracting relevant information from data and applying it to 

analyze new data.

Machine learning (ML) is the study of computer algorithms 

that improve automatically through experience. (Wikipedia)



 Learn from labeled 

data

 Task: assign new 

items to a class

Three main types of ML
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 No labeled data 

 Task: identify 
similarities and 
categorize together

 Training with 

rewards (and 

punishments)

Supervised 

learning

Unsupervised 

learning

Reinforcement 

learning

?

Source: Wikipedia

https://en.wikipedia.org/wiki/File:Operant_Conditioning_Involves_Choice.png


1. Classification, supervised learning
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2. Unsupervised learning

 Can you sort the Lego bricks?

 (No instruction on how)

 You may choose sorting on

 Color, or

 Size, or

 Shape, or

 A combination

 I cannot know beforehand what 
you choose, but

 The result might me helpful
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3. Reinforcement example: AlphaZero

 It beats humans in Go and Chess

 Totally self-learned by playing 
against itself:

 Reinforcement learning

 Neural nets to generalize over 
game states

 Human players, e.g., Carlsen, has 
learned new strategies from the 
program

 ‘’The h pawn’’

 Trial and error
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https://www.aftenposten.no/sport/sjakk/i/K3K31M/ny-oppfinnelse-er-en-sjakk-sensasjon-slik-paavirkes-carlsen

https://www.aftenposten.no/sport/sjakk/i/K3K31M/ny-oppfinnelse-er-en-sjakk-sensasjon-slik-paavirkes-carlsen


Today: Classification, supervised learning
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What is a classifier?

 A domain of objects/observations we are to classify

 Labels: A finite set of labels

 Classifier: A mapping which maps each object to a unique label
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Classification in NLP

 Spam detection

 Genre classification

 Language identification

 Authorship attribution

 Sentiment analysis:

 Positive-negative

 Abusive language detection

 Etc.

 Word sense disambiguation

 Sentence splitting

 Tagging

 Named-entity recognition

 Language models

 Predict the next word in a sentence

 etc.
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Text classification Other classification tasks in NLP



Types of classifiers ("one of")

 Binary classification: 

 Two classes

 Multiclass classification: 

 Three or more classes

 Each object belongs to one 
class

 Observe:

 Some learning algorithms are by nature binary (e.g., the perceptron, Logistic 
regression) and have to be adapted to multiclass classification

 Both Rocchio and kNN are multiclass by nature.
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Multi-label classification ("any-of")

 Classify an object with respect 

to several binary classes

 E.g., Who is in the picture?

 (Uncle Tom: 1, Aunt Mary: 1, 

Grandma: 0, Grandpa: 0, etc.)

 Topic classification of 

documents

 Example, both: China, sport
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Transforming the classification task

 The task of predicting from an e-mail

 is transformed to the task of predicting from some features
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yes/no

yes/no
(Chars: 21,705, Lines: 551, ‘dollar’: 0, 

‘winner’: no, format: html, number: small)

• is transformed to the task of predicting
from a numerical vector to a number

𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) 𝑦 ∈ {0, 1}



The Bag of Words Representation
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From Jurafsky & Martin



Term-document matrix

 Example of a co-occurrence matrix

 More specifically, 
a 𝑚 × 𝑛 term-document matrix

 𝑚 terms, 𝑛 documents

 Count the number of occurrences 
of the terms in each document

 Each column represent a document

 Each row represents a term (word, 
feature)

 With 4 key words each document is 
represented as a 4-d vector

 (We could use any set of key words)
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The geometrical view

 The classifiers we consider today 

can best be described and 

understood in geometrical terms

 Strictly speaking, we only need 

points, and Euclidean distances in 

an n-dimensional space - not 

directions and cosine

 For documents, we can think of 

them as length-normalized tf-idf

representations.
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 But they can also be adopted to 

use cosine similarity instead of 

Euclidean distance



Also called Nearest Centroid

Rocchio classification
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Another example (iris dataset)
26

https://scikit-learn.org/stable/auto_examples/neighbors/plot_nearest_centroid.html#sphx-glr-auto-examples-neighbors-plot-nearest-centroid-py
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Linear and non-linear classifiers

 In 2008 (the IR-book):

 Success in ML was based on:

 Feature selection:  choosing the 
right features

 Feature engineering: adopting 
and manipulating the features

 Kernels (automatic feature 
engineering), in particular SVM-
methods (IR, ch. 15)

 Today, the best ML, also in NLP, 

is achieved with (deep) neural 

networks:

 Less feature engineering

 More model engineering

 Needs large  training data

Feature engineering Neural networks
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k Nearest Neighbors (kNN)
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kNN algorithm

1. Calculate the distance to all 
the training instances

2. Pick the k nearest ones

3. Choose the majority class for 
this set
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What is the result with

k = 1?

k = 3?



38



39



Example: Height, weight, gender

 Dataset: 

 10,000 observations

 5,000 of each gender

 Height in inches

 Weight in pounds
 https://www.kaggle.com/mustafaali96/weight-height

 Processing:

 Shuffled

 Split:
 5000 for training

 2500 for development testing

 2500 for final testing
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A random subset of 200 of the training data

https://www.kaggle.com/mustafaali96/weight-height


Choosing k

 For alternative values of k:

 Train on the training set

 Evaluate on the dev-test set

 Choose the k which yields the 

best accuracy

 You may test with this k on the 

final test set.
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kNN with varying k

 Trained on the train set with 

various k-s

 Accuracy on 2 different dev-test 

sets

 For this task: better with larger k
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Is larger k always better?

 Small k:

 Good fit to training data

 Danger of overfitting

 Larger k:

 More general

 Next slide: 

 A different example task

 The squares and triangles are 

the true classes

 The background colors show the 

decision boundary for the 

classifier with various k-s
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44 https://towardsdatascience.com/knn-visualization-in-just-13-lines-of-code-32820d72c6b6

https://towardsdatascience.com/knn-visualization-in-just-13-lines-of-code-32820d72c6b6
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Footnote: More than two classes

 A binary classifier with odd k
always reaches a decision

 With more than 2 classes, there 
might be a draw

 One possible way out

1. Weight points by inverse distance 
from target, 

2. Sum weighted distances for each 
class

3. Choose the class with largest 
weighted max.
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Probabilistic kNN

 Sometimes, we are not interested in a 
hard decision,
but rather the probability of an item 
belonging to a class

 In particular if we are to combine this with 
other information

 kNN can be made probabilistic:

 The probability of class c is the proportion 
of the k nearest neighbors in c.

 We may here also apply the weighting 
from last slide
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• 𝑃 𝑎 𝑥 =
3

5

• 𝑃 𝑏 𝑥 =
2
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Properties of kNN

 Instance-based, no real training

 it simply memorizes all training 
examples

 Fast to "train"

 Inefficient in predicting the label of 
new instances

 Since it must consider all the training 
data each time (= linear in the size of 
the training set)

 Notice the similarity to retrieving 
relevant documents for a given 
query: Both are instances of finding 
nearest neighbors.

 One parameter: k

 The distance measure may influence 
the result

 The scaling of the axes might 
influence the result
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Clarifications
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 Syllabus: Manning, Raghavan & Schütze (2008), kapittel 14 frem til

seksjon 14.3.1.

 Last week we included 14.4 "Linear versus nonlinear classifiers" on the 

last slide, but to learn more about that you have to attend

 IN3050, a main topic

 UN4080 explains why Naive Bayes can be considered a linear classifier
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J&M, seksjon 4.7–4.8

https://web.stanford.edu/~jurafsky/slp3/4.pdf

