IN2110 SPRING 2022 SPRÅKTEKNOLOGISKE METODER

Erik Velldal & Jan Tore Lønning

Plan – week 4

Lectures 2-5

- How to represent (language) data in a mathematical model.
- Vector space models.
- Representing
 - Documents (today)
 - Words (week 5)
- Vector-based machine learning
 - Classification (week 3)
 - Clustering (week 4)

Today

🗆 Recap

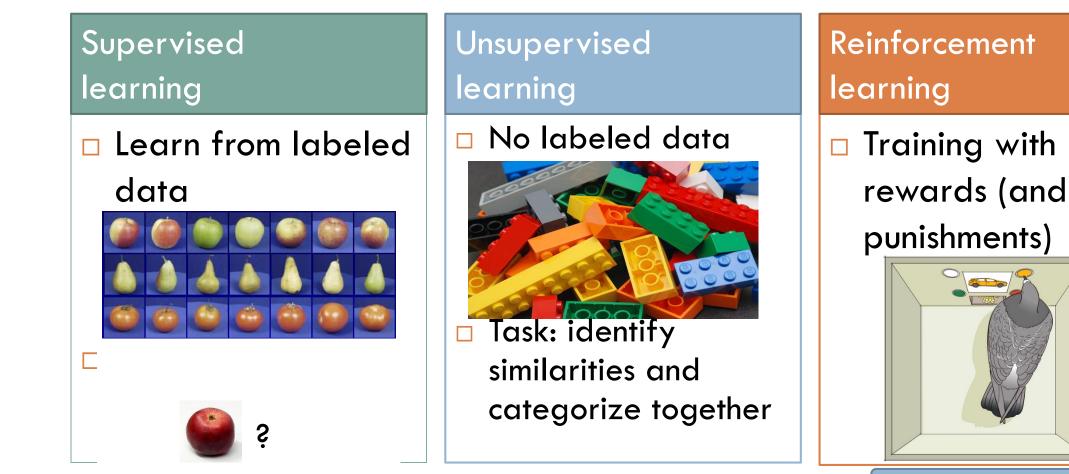
- Evaluating classifiers
- Clustering

Disclaimer

- I am only a substitute teacher for Erik Velldal
- □ The slides will be a mixture
 - Erik's slides from last year
 - My slides from IN3050 and IN4080
 - Some new slides (like this one)

Three main types of ML

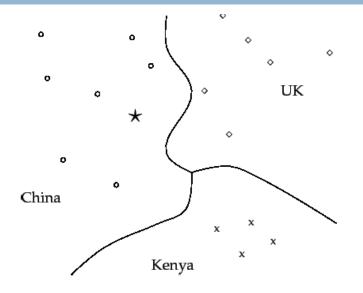
5



Source: Wikipedia

Classification based on vector spaces

- In our vector space model, objects are represented as points, so classes will correspond to collections of points; regions.
- Vector space classification is based on the contiguity hypothesis:



- Objects in the same class form a contiguous region, and regions of different classes do not overlap.
- Classification amounts to computing the boundaries in the space that separate the classes; the decision boundaries.

Two algorithms

Rocchio

- Training: Calculate the centroid to each class in the training set.
- Application: assign an object to the class with the nearest centroid
- □ A linear classifier
- Strong assumptions (bias) regarding the classes

K nearest neighbors (k NN)

- No real training
- Application:
 - Find the k nearest neighbors
 - Pick the majority class of the neighbors
- Non-linear

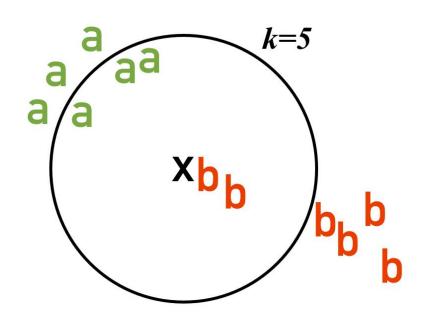
Properties of kNN

- Instance-based, no real training
 - it simply memorizes all training examples
 - Fast to "train"
- Inefficient in predicting the label of new instances
 - Since it must consider all the training data each time (= linear in the size of the training set)
- Notice the similarity to retrieving relevant documents for a given query: Both are instances of finding nearest neighbors.

- □ One parameter: *k*
- The distance measure may influence the result
- The scaling of the axes might influence the result

Probabilistic kNN

- Sometimes, we are not interested in a hard decision, but rather the probability of an item belonging to a class
 - In particular if we are to combine this with other information
- \square kNN can be made probabilistic:
 - The probability of class c is the proportion of the k nearest neighbors in c.
- We may here also apply the weighting from next slide

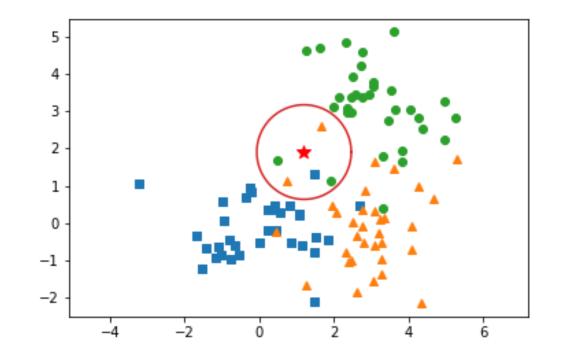


•
$$P(a|x) = \frac{3}{5}$$

• $P(b|x) = \frac{2}{5}$

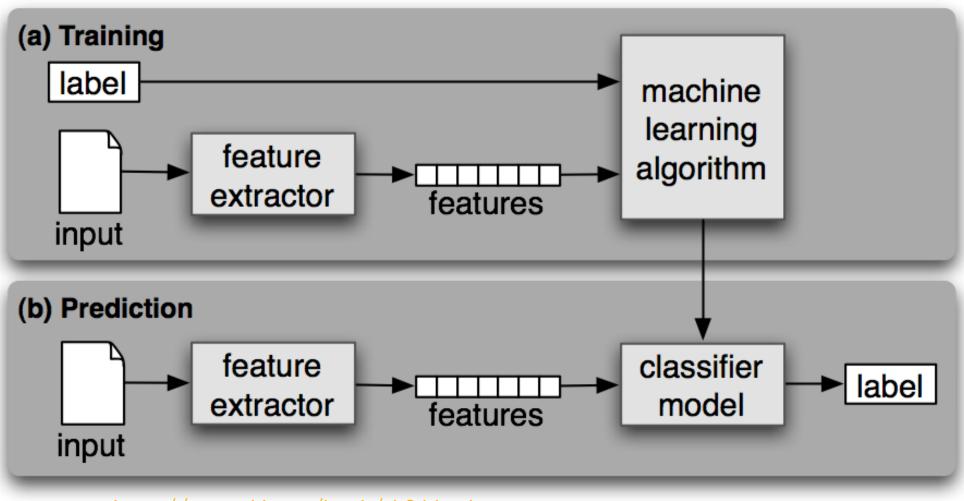
Footnote: More than two classes

- A binary classifier with odd k always reaches a decision
- With more than 2 classes, there might be a draw
- One possible way out
 - Weight points by inverse distance from target,
 - 2. Sum weighted distances for each class
 - 3. Choose the class with largest weighted max.



11 Evaluation of classifiers

Classification



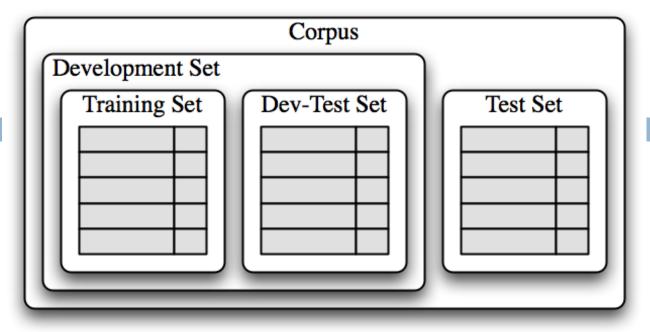
https://www.nltk.org/book/ch06.html

A practical note on feature extraction

- Before training and applying a classifier we first have to create the feature vectors to represent our data.
- Sometimes referred to as vectorization.
- The feature types (e.g. the BoW vocabulary) needs to be defined relative to the training set (including parameters like frequency cut-offs, idf-weights, etc).
- When vectorizing test data we must use the same features as in training.
- Vectorization therefore often done in two passes: first defining the feature set based on the training data, then creating the feature vectors. (*Fit* and *transform* in scikit-learn terminology)

Procedure

- 1. Train classifier on training set
- 2. Test it on dev-test set
- 3. Compare to earlier runs,
 - is this better?



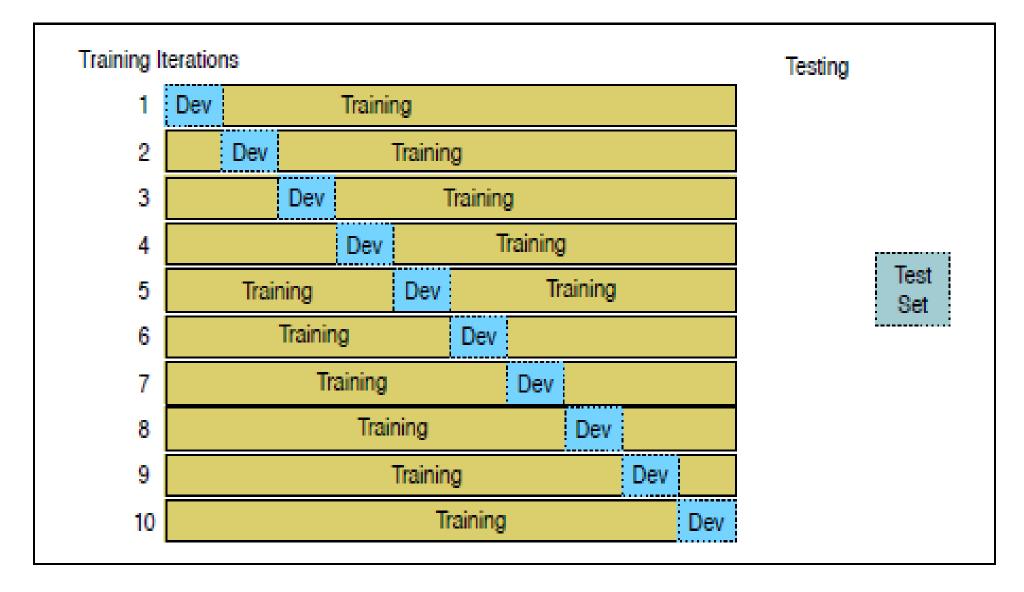
https://www.nltk.org/book/ch06.html

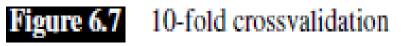
- 4. Error analysis: What are the mistakes (on dev-test set)
- 5. Make changes to the classifier
- 6. Repeat from 1

□ When you have run empty on ideas, test on test set. Stop!

Cross-validation

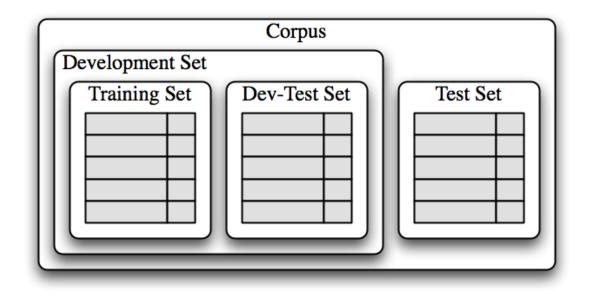
- □ Small test sets → Large variation in results
- N-fold cross-validation:
 - Split the development set into n equally sized bins
 - (e.g. n = 10)
 - Conduct n many experiments:
 - In experiment m, use part m as test set and the n-1 other parts as training set.
 - This yields n many results:
 - We can consider the mean of the results
 - We can consider the variation between the results.
 - Statistics!





Testing a classifier

- □ Train on the training set.
- Predict labels on the test set (after removing the labels)
- Compare the prediction to the given labels (called gold labels)



https://www.nltk.org/book/ch06.html

	Confusion matrix and a	curacy			
	Comosion manix and a	True label			
8				Yes	NO
	Goal: Evaluate our spam classifier We run the classifier on the	Predicted label	Yes	tp=150	fp=50
			No	fn=100	tn=200
	 labeled test set (without the labels) Compare the predicted labels to the example labels and count We can present the numbers in a confusion table 	 True positive False positive False negative True negative Accuracy: (tp+tn)/ 0.7 	ives, f itives, ives, t	⁵ p=50 fn=100 tn=200	9 =

More than two classes

		True label		
		spam	normal	urgent
Predicted label	spam	150	49	1
	normal	31	250	19
	urgent	19	31	50

Accuracy:

(sum of the diagonal)/N $= \frac{\#\{y_i|y_i=t_i\}}{\#\{y_i\}} = \frac{450}{600} = 0.75$

Observe

There is no consensus regarding what should be the columns and what should be the rows

Evaluation measure: Accuracy

- □ What does accuracy 0.81 tell us?
- □ Given a test set of 500 documents:
 - The classifier will classify 405 correctly
 - And 95 incorrectly
- □ A good measure given:
 - The 2 classes are equally important
 - The 2 classes are roughly equally sized
 - Example:
 - Woman/man
 - Movie reviews: pos/neg

But

□ For some tasks, the classes aren't equally important

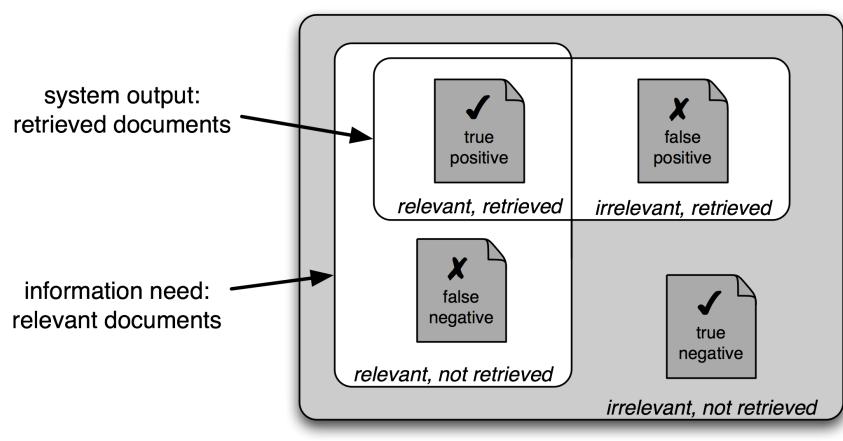
Worse to lose an important mail than to receive yet another spam mail

□ For some tasks, the different classes have different sizes.

Information retrieval (IR)

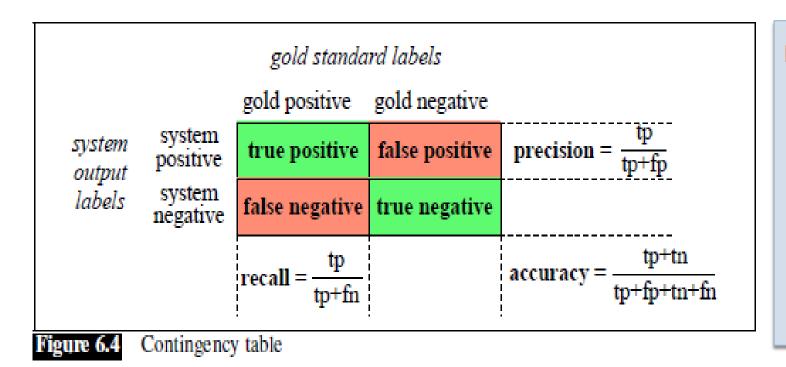
- Traditional IR, e.g., a library
 - Goal: Find all the documents on a particular topic out of 100 000 documents,
 - Say there are 5
 - The system delivers 10 documents: all irrelevant
 - What is the accuracy?
- □ For these tasks, focus on
 - The relevant documents
 - The documents returned by the system
- □ Forget the
 - Irrelevant documents which are not returned

IR - evaluation



Document Collection

Confusion matrix



 Beware what the rows and columns are:
 NLTKs

 OnfusionMatrix swaps them compared to this table

Evaluation measures

		Is in C	
		Yes	NO
Class	Yes	tp	fp
ifier	No	fn	tn

- Accuracy: (tp+tn)/N
- Precision:tp/(tp+fp)
- Recall: tp/(tp+fn)

F-score combines P and R

$$\square F_1 = \frac{2PR}{P+R} \left(= \frac{1}{\frac{1}{\frac{1}{R} + \frac{1}{P}}} \right)$$

- \square F₁ called "harmonic mean"
- General form

$$\square F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}}$$

• for some $0 < \alpha < 1$

Confusion matrix

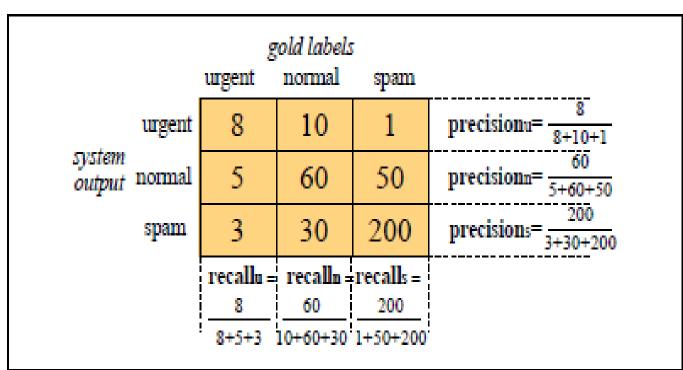


Figure 6.5 Confusion matrix for a three-class categorization task, showing for each pair of classes (c_1, c_2) , how many documents from c_1 were (in)correctly assigned to c_2

Precision, recall and
 f-score can be
 calculated for each
 class against the rest

Evaluating multi-class and multi-label classifiers

Macro-average

- □ Calculate Precision, P_i , for each class i, i = 1, 2, ... N,
 - (N different classes)
- □ Take the average of these $\frac{1}{N} \sum_{i=1}^{N} P_i$,
- Similarly for Recall and F-score
- Favors small classes

Micro-average

- Sum TP, FN, FP across the classes
- Use the formulas and calculate Precision, Recall and F-score from these using the formulas
- Favors large classes

To be continued

 More on classification later in this course

More details on macro- and micro-average in IN4080

An instance of unsupervised learning

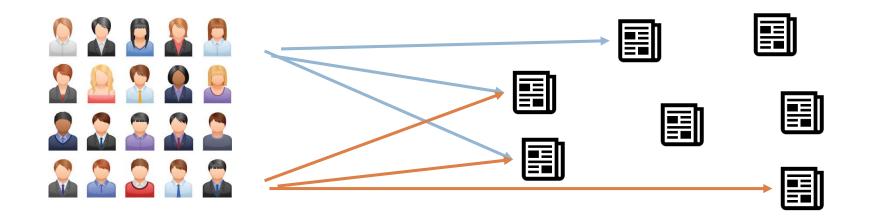
2. Unsupervised learning - clustering

Can you sort the Lego bricks?

(No instruction on how)

- □ You may choose sorting on
 - Color, or
 - □ Size, or
 - Shape, or
 - A combination
- I cannot know beforehand what you choose, but
- The result might me helpful

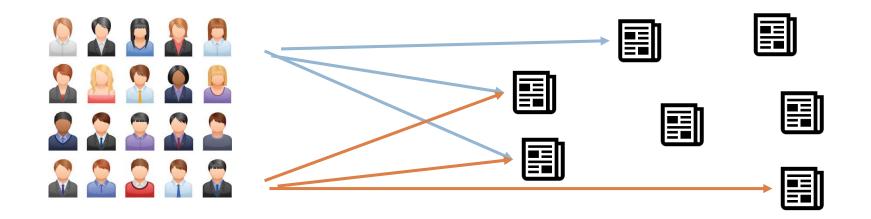
Unsupervised learning, example 2.1



- Everybody (Facebook, Schibsted, ..) collects what you are reading
- And want to use this to give you recommendations for readings which may interest you
 - (generate clicks)
- Assumption: Readers who have read the same stories before, have similar interests

- □ Approach 1:
 - Compare your reading story to the reading story of all other users (One feature for each earlier story)
 - Select the *k* most similar readers
 - Give recommendations from what (else) they read
- \Box This is *k*NN with its efficiency problems

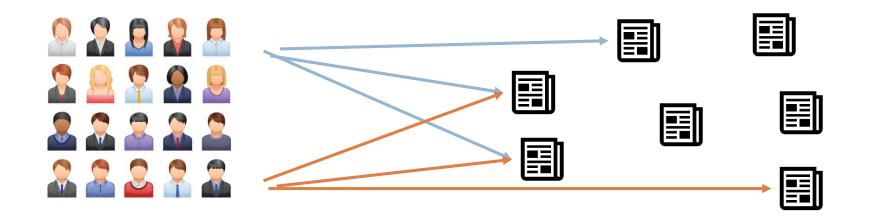
Unsupervised learning, example 2.2



- Approach 2:
 - Assume that the readers are grouped into classes
 - Where readers in the same class have similar reading stories
 - A new reader is assigned to a group based on her reading story
 - Recommendations are made based on the groups common reading interest (Rocchio classification)

- □ This is much more efficient
- But how do we find the groups?
- □ Clustering!

Unsupervised learning, example 2.3



- \square By the way:
- It also helps if the documents are clustered

- We can cluster an initial collection of documents,
 - e.g., based on the BoW-model
- New documents can be assigned to a cluster

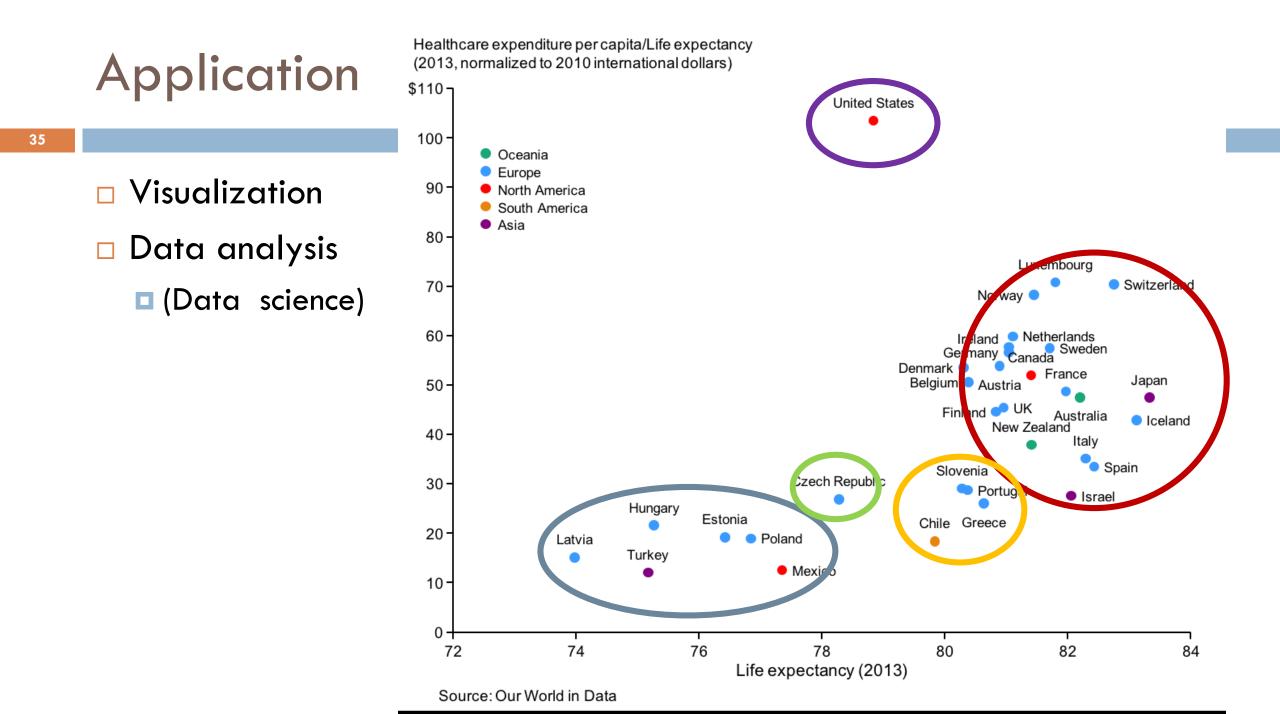
Applications of clustering in search

Clustering of results

Interest: Fruit, Term: Apple What if the 100 best ranked results are computer related?

Search: step-wise refinement

□ And more, see IR-book



Clustering methods

Hierarchical

Creates a tree structure of hierarchically nested clusters.

Flat

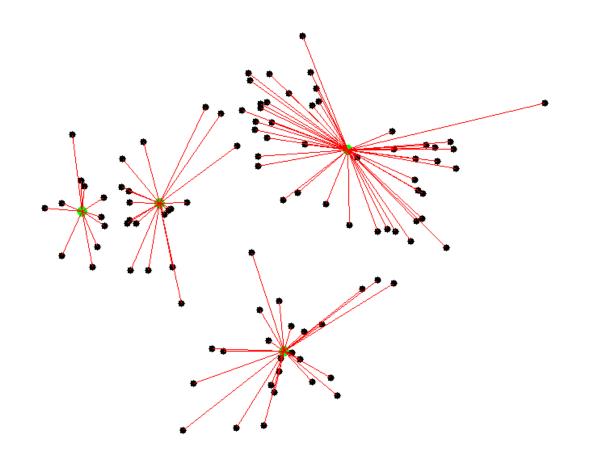
- Tries to directly decompose the data into a set of clusters.
- What we will focus on.
- Given a set of objects O = {o1, ..., on}, construct a set of clusters C = {c1, ..., ck}, where each object oi is assigned to a cluster cj.
- We will consider one algorithm: k-means clustering

K-means clustering

- 1. Decide on the number of clusters: k
- 2. Choose a set of arbitrary centroids: $\mu_1, \mu_2, \dots, \mu_k$
- 3. For each item, x, in the training data,
 - find the nearest centroid μ_i , and assign x to class C_i
- 4. For each resulting class C_i , calculate and find the new centroid μ_i .
- 5. Classify each item according to the new centroids
- 6. Repeat from 4

Demo

- Many demos and videos on the net.
- \Box I like this one:
 - <u>http://shabal.in/visuals/kmeans</u>
 <u>/1.html</u>
- □ Here is
 - □ <u>another one</u>
 - and one on youtube



Why does this work? How does this work?

- □ The goal is a mapping $\gamma: O \rightarrow C = \{C_1, C_2, \dots, C_k\}$
- \square We need a tool, F,

lacksquare to measure the performance of γ

□ The goal is to find a γ that optimizes *F*, in symbols $\hat{\gamma} = \underset{\gamma}{\operatorname{argmax}} F(\gamma)$

 \square F is called an objective function

- Several possible objectives:
 - High similarity (=small distance) within the clusters (intra-cluster)
 - Low similarity (high distance) between the clusters (interclusters)

Within cluster sum of squares (intra-cluster)

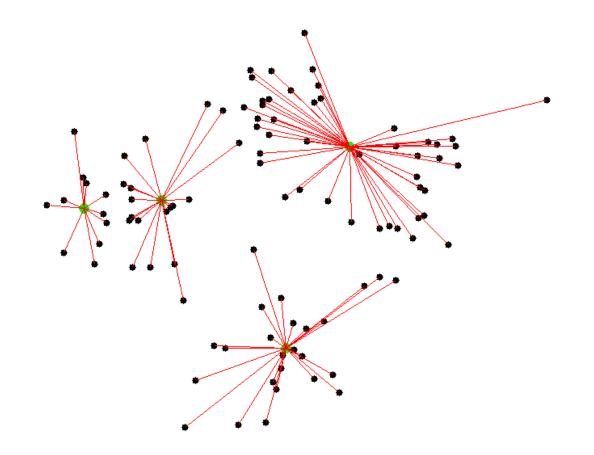
For each cluster consider the sum of square distances:

$$SS_i = \sum_{x_j \in C_i} \left\| x_j - \mu_i \right\|^2$$

Sum over all classes

$$WCSS = \sum_{i=1}^{\kappa} SS_i$$

To optimize F, is to find the γ that yields the smallest WCSS



Applied to k-means

□ For each iteration: $WCSS_{i+1} \le WCSS_i$

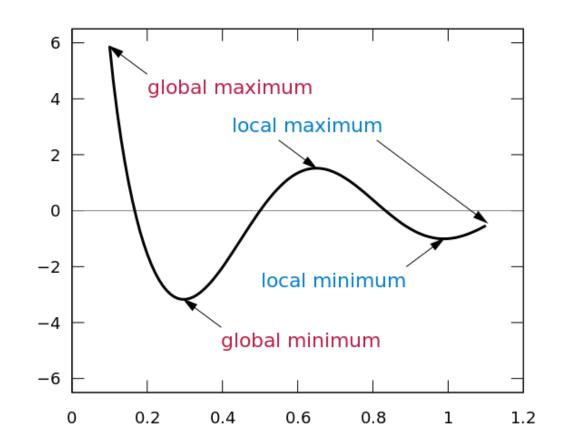
Because:

- Given a class, C_i, the recalulated centroid is the unique point in space that minimizes SS_i
- If an item is moved from one class to another, its centroiddistance decreases

- Possible stopping criteria:
 - Fixed number of iterations
 - Clusters or centroids are unchanged between iterations.
 - Threshold on the decrease of the objective function (absolute or relative to previous iteration)

Properties of k-means

- □ The time complexity is linear, O(kn)
- Guaranteed to converge, but not to find the global optimal solution:
 - Depends on choice of initial centroids



Comments

'Seeding'

- We initialize the algorithm by choosing random seeds that we use to compute the first set of centroids, e.g:
 - pick k random objects from the collection;
 - pick k random points in the space;
 - \blacktriangleright pick k sets of m random points and compute centroids for each set; etc.
- ► The seeds can have a large impact on the resulting clustering.
- Outliers are troublemakers.
- \square No prescribed way to choose k.
 - In particular, more k-s will always give better WCSS without being intuitively better.

Intrinsic evaluation of clustering

With labeled gold-data

- Run k-means on the gold set (without the labels).
- Compare the clusters to the classes:
 - Purity: a good cluster will have all members from the same class

Without using gold data

- We can use some intra-cluster or inter-cluster measure,
 - E.g., WCSS to compare which initial choice of centroids is better in k-means

Extrinsic evaluation

- See which clustering (or lack of clustering) yields the best results in a larger task
- For example: two versions of a recommender system, and measure some of:
 - User satisfaction
 - How many recommended articles they read, or click on
 - Improvement in sales

Flat Clustering: The good and the bad

Pros

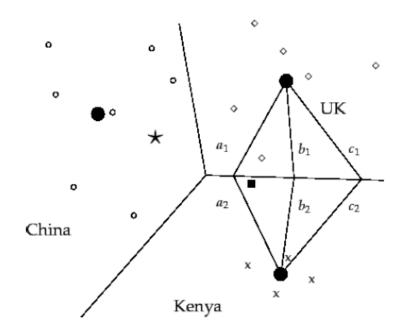
- Conceptually simple, and easy to implement.
- Efficient. Typically linear in the number of objects.

Cons

- The dependence on random seeds as in k-means makes the clustering non-deterministic.
- The number of clusters k must be pre-specified. Often no principled means of a priori specifying k.
- Not as informative as the more structured clusterings produced by hierarchical methods.
- ► In general; often difficult to evaluate clustering.

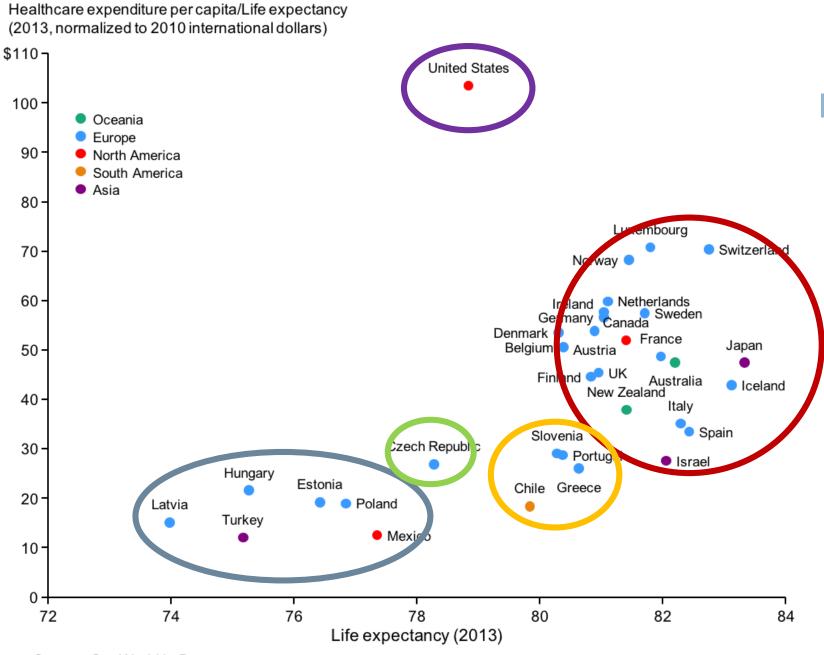
Connecting the dots

- We have seen how Rocchio classification can be thought of as a 1-Nearest-Neighbor classification with respect to the centroids.
- Note how k-means clustering can be thought of as performing Rocchio classification in each iteration.



Limitations

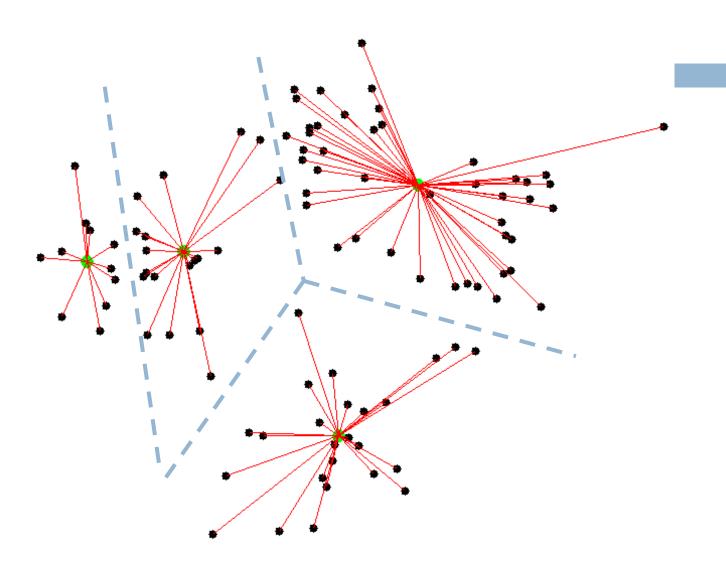
- Similar underling
 assumptions as
 the Rocchio
 classifier
- Assumes regions with the same diameter



Source: Our World in Data

Limitations

- Similar underling
 assumptions as the
 Rocchio classifier
- A Voronoi cell for each cluster, defined by the centroid



BoW representations of text

- So far we've been assuming BoW features for representing documents.
- Often also used for representing other units of texts, like sentences.
- Many sentence-classification tasks in NLP.
- Example: polarity classification (part of sentiment analysis).

I was impressed, this was not bad!

\Rightarrow

{was, was, !, not, I, impressed, bad, this }

What is missing with a BoW representation?

Dealing with compositionality

I was impressed, this was not bad! ≠ I was not impressed, this was bad!

- ► Will have the same BoW representation! :(
- A simplistic but much-used approximation to capture ordering constraints: n-grams (typically bigrams and trigrams).
- ► Ordered sub-sequences of *n* words.

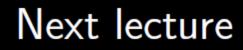
{was, was, !, not, I, impressed, bad, this }

VS.

{'I was', 'was impressed' ... 'was not', 'not bad', 'bad, !' }

No information sharing

- ► No information sharing between features.
- ► All features are equally distinct.
- ► The pizza was great
- ► The margeritha was awesome
- ► The dog was sick
- Would be nice if our BoW representations knew that *pizza* and *margeritha* are similar to each other (but not to *dog*).
- ► We've discussed one possible approach in this lecture...What?
- ► Will return to this issue next week.



- ► Focus on *words* rather than *documents*.
- Distributional models of word meaning (lexical semantics).
- Semantic spaces: Vector space models of word meaning
- Example tasks for evaluating word vectors