
IN2110: Språkteknologiske metoder
Dependensparsing

Lilja Øvrelid

Språkteknologigruppen (LTG)

(with thanks to Stephan Oepen and Joakim Nivre)

6 april, 2022

Topics for Today

I Short recap:
I Dependency syntax
I Formal properties of dependency graphs
I Universal Dependencies

I Syntactic parsing
I Data-driven dependency parsing

I Variations on shift–reduce parsing
I The arc-eager transition system
I Thorough walk-through example

I Dependency Parser Evaluation

I Obligatory exercise

2

Topics for Today

I Short recap:
I Dependency syntax
I Formal properties of dependency graphs
I Universal Dependencies

I Syntactic parsing
I Data-driven dependency parsing

I Variations on shift–reduce parsing
I The arc-eager transition system
I Thorough walk-through example

I Dependency Parser Evaluation

I Obligatory exercise

2

Topics for Today

I Short recap:
I Dependency syntax
I Formal properties of dependency graphs
I Universal Dependencies

I Syntactic parsing
I Data-driven dependency parsing

I Variations on shift–reduce parsing
I The arc-eager transition system
I Thorough walk-through example

I Dependency Parser Evaluation

I Obligatory exercise

2

Topics for Today

I Short recap:
I Dependency syntax
I Formal properties of dependency graphs
I Universal Dependencies

I Syntactic parsing
I Data-driven dependency parsing

I Variations on shift–reduce parsing
I The arc-eager transition system
I Thorough walk-through example

I Dependency Parser Evaluation

I Obligatory exercise

2

Recap: Dependency syntax

I DG is based on relationships between words, i.e., dependency relations
I A dependency structure can be defined as a labeled, directed graph G

The dog ate my homework
det noun verb det noun

nsubjdet

dobj

det

3

Recap: Formal Conditions on Dependency Graphs

I Principles:
I Syntactic structure is complete (Connectedness).
I Syntactic structure is hierarchical (Acyclicity).
I Every word has at most one syntactic head (Single-Head).

The dog ate my homework
det noun verb det noun

nsubjdet

dobj

det

4

Treebanks: Universal Dependencies

5

(Degrees of) Cross-Linguistic Consistency

The dog was chased by the cat .

aux

nsubj

det

obl

det

case

punct

Hunden jagades av katten .

nsubj

obl

case

punct

Pes byl honěn kočkou .

nsubj

aux obl

punct

I Capitalize on content words, e.g. demote case-marking prepositions.

6

(Degrees of) Cross-Linguistic Consistency

The dog was chased by the cat .

aux

nsubj

det

obl

det

case

punct

Hunden jagades av katten .

nsubj

obl

case

punct

Pes byl honěn kočkou .

nsubj

aux obl

punct

I Capitalize on content words, e.g. demote case-marking prepositions.

6

(Degrees of) Cross-Linguistic Consistency

The dog was chased by the cat .

aux

nsubj

det

obl

det

case

punct

Hunden jagades av katten .

nsubj

obl

case

punct

Pes byl honěn kočkou .

nsubj

aux obl

punct

I Capitalize on content words, e.g. demote case-marking prepositions.

6

(Degrees of) Cross-Linguistic Consistency

The dog was chased by the cat .

aux

nsubj

det

obl

det

case

punct

Hunden jagades av katten .

nsubj

obl

case

punct

Pes byl honěn kočkou .

nsubj

aux obl

punct

I Capitalize on content words, e.g. demote case-marking prepositions. 6

Topics for Today

I Short recap:
I Dependency syntax
I Formal properties of dependency graphs
I Universal Dependencies

I Syntactic parsing
I Data-driven dependency parsing

I Variations on shift–reduce parsing
I The arc-eager transition system
I Thorough walk-through example

I Dependency Parser Evaluation

I Obligatory exercise

7

Syntactic parsing

I Automatically determining the syntactic structure for a given sentence
I Traditionally (for phrase-structure grammars):

1. S → NP VP
2. NP → D N
3. VP → V NP

I search through all possible trees for a sentence
I bottom-up vs top-down approaches

8

Ambiguities

I more than one possible structure for a sentence
I natural languages are hugely ambiguous
I a very common problem

PoS-ambiguities Attachment ambiguities
VB

VBZ VBP VBZ
NNP NNS NN NNS CD NN
Fed raises interest rates 0.5 % in effort

to control
inflation

9

Back in the days (90s)

I Grammar-driven parsing: possible trees defined by the grammar
I Problems with coverage

I only around 70% of all sentences were assigned an analysis
I Most sentences were assigned very many analyses by a grammar

I no way of choosing between them

10

Enter data-driven (statistical) parsing

I Today data-driven/statistical parsing is available for a range of
languages and syntactic frameworks

I Data-driven approaches: possible trees defined by the treebank
I Produce one analysis (hopefully the most likely one) for any sentence
I And get most of them correct
I Still an active field of research, improvements are still possible!

11

Topics for Today

I Short recap:
I Dependency syntax
I Formal properties of dependency graphs
I Universal Dependencies

I Syntactic parsing
I Data-driven dependency parsing

I Variations on shift–reduce parsing
I The arc-eager transition system
I Thorough walk-through example

I Dependency Parser Evaluation

I Obligatory exercise

12

Data-driven parsing

1. formal model M defining possible analyses for sentences in L

2. A sample of annotated text S = (x1, . . . , xm) from L

3. An inductive inference scheme I defining actual analyses for the
sentences of a text T = (x1, . . . , xn) in L, relative to M and S.

I S is the training data: contains representations satisfying M

I a treebank: manually annotated with correct analysis
I I based on supervised machine learning

13

Data-driven dependency parsing

I M defined by formal conditions on dependency graphs (labeled directed
graphs that are):

I connected
I acyclic
I single-head
I (projective)

I I may be defined in different ways
I parsing method
I machine learning algorithm, feature representations

I Two main approaches: graph-based and transition-based models
I We will focus on transition-based approaches

14

Transition-based approaches

Basic idea:
I define a transition system for mapping a sentence to its dependency
graph

I Learning: induce a model for predicting the next state transition, given
the transition history

I Parsing: Construct the optimal transition sequence, given the induced
model

15

Architecture: Stack and Buffer Configurations

16

An Adaptation of Shift–Reduce Parsing
I Originally developed for non-ambiguous languages: deterministic.

I Shift (‘read’) tokens from input buffer, one at a time, left-to-right;

I compare top n symbols on stack, perform some action, e.g. reduce

I Dependencies: create arcs between top of stack and front of buffer.

I Transitions:

shift move from front of buffer to top of stack
reduce pop the top of stack (requires existing head)

left-arc(k) leftward dependency of type k; reduce
right-arc(k) rightward dependency of type k; shift

I At reduce, token must be fully processed (head and dependents).

I left-arc must respect single-head constraint and unique root node.

17

An Adaptation of Shift–Reduce Parsing
I Originally developed for non-ambiguous languages: deterministic.

I Shift (‘read’) tokens from input buffer, one at a time, left-to-right;

I compare top n symbols on stack, perform some action, e.g. reduce

I Dependencies: create arcs between top of stack and front of buffer.

I Transitions:

shift move from front of buffer to top of stack
reduce pop the top of stack (requires existing head)

left-arc(k) leftward dependency of type k; reduce
right-arc(k) rightward dependency of type k; shift

I At reduce, token must be fully processed (head and dependents).

I left-arc must respect single-head constraint and unique root node.

17

An Adaptation of Shift–Reduce Parsing
I Originally developed for non-ambiguous languages: deterministic.

I Shift (‘read’) tokens from input buffer, one at a time, left-to-right;

I compare top n symbols on stack, perform some action, e.g. reduce

I Dependencies: create arcs between top of stack and front of buffer.

I Transitions:

shift move from front of buffer to top of stack
reduce pop the top of stack (requires existing head)

left-arc(k) leftward dependency of type k; reduce
right-arc(k) rightward dependency of type k; shift

I At reduce, token must be fully processed (head and dependents).

I left-arc must respect single-head constraint and unique root node.

17

An Adaptation of Shift–Reduce Parsing
I Originally developed for non-ambiguous languages: deterministic.

I Shift (‘read’) tokens from input buffer, one at a time, left-to-right;

I compare top n symbols on stack, perform some action, e.g. reduce

I Dependencies: create arcs between top of stack and front of buffer.

I Transitions:

shift move from front of buffer to top of stack
reduce pop the top of stack (requires existing head)

left-arc(k) leftward dependency of type k; reduce
right-arc(k) rightward dependency of type k; shift

I At reduce, token must be fully processed (head and dependents).

I left-arc must respect single-head constraint and unique root node.
17

Transition-Based Dependency Parsing

Arc-Eager Transition System [Nivre 2003]

Configuration: (S ,B,A) [S = Stack, B = Buffer, A = Arcs]

Initial: ([], [0, 1, . . . , n], { })
Terminal: (S , [],A)

Shift: (S , i |B,A) ⇒ (S |i ,B,A)

Reduce: (S |i ,B,A) ⇒ (S ,B,A) h(i ,A)

Right-Arc(k): (S |i , j |B,A) ⇒ (S |i |j ,B,A ∪ {(i , j , k)})
Left-Arc(k): (S |i , j |B,A) ⇒ (S , j |B,A ∪ {(j , i , k)}) ¬h(i ,A) ∧ i 6= 0

Notation: S|i = stack with top i and remainder S

j |B = buffer with head j and remainder B

h(i ,A) = i has a head in A

Recent Advances in Dependency Parsing 6(54)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT]S [Economic, news, had, little, effect, on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

proot

Recent Advances in Dependency Parsing 7(54)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, Economic]S [news, had, little, effect, on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

proot

Recent Advances in Dependency Parsing 7(54)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT]S [news, had, little, effect, on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod

nsubj

dobj

amod prep

pmod

amod

proot

Recent Advances in Dependency Parsing 7(54)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, news]S [had, little, effect, on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod

nsubj

dobj

amod prep

pmod

amod

proot

Recent Advances in Dependency Parsing 7(54)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT]S [had, little, effect, on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

proot

Recent Advances in Dependency Parsing 7(54)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had]S [little, effect, on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Recent Advances in Dependency Parsing 7(54)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had, little]S [effect, on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Recent Advances in Dependency Parsing 7(54)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had]S [effect, on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod

prep

pmod

amod

p

root

Recent Advances in Dependency Parsing 7(54)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had, effect]S [on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod

prep

pmod

amod

p

root

Recent Advances in Dependency Parsing 7(54)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had, effect, on]S [financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Recent Advances in Dependency Parsing 7(54)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had, effect, on, financial]S [markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Recent Advances in Dependency Parsing 7(54)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had, effect, on]S [markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Recent Advances in Dependency Parsing 7(54)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had, effect, on, markets]S [.]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Recent Advances in Dependency Parsing 7(54)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had, effect, on]S [.]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Recent Advances in Dependency Parsing 7(54)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had, effect]S [.]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Recent Advances in Dependency Parsing 7(54)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had]S [.]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Recent Advances in Dependency Parsing 7(54)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had, .]S []B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

proot

Recent Advances in Dependency Parsing 7(54)

What Just Happened

shift left-arc(amod)
shift left-arc(nsubj)

right-arc(root)
shift left-arc(amod)

right-arc(dobj)
right-arc(prep)

shift left-arc(amod)
right-arc(pmod)

reduce reduce reduce
right-arc(p)

reduce reduce

18

Navigating the Parser Search Space

The Search Space

I Transition system ensures formal wellformedness of dependency trees;

I A specific sequence of transitions determines the final parsing result.

Towards a Parsing Algorithm

I Abstract goal: Find transition sequence that yields the ‘correct’ tree.

I Learn from treebanks: output dependency tree with high probability.

I Probability distributions over transitions sequences (rather than trees).

19

Navigating the Parser Search Space

The Search Space

I Transition system ensures formal wellformedness of dependency trees;

I A specific sequence of transitions determines the final parsing result.

Towards a Parsing Algorithm

I Abstract goal: Find transition sequence that yields the ‘correct’ tree.

I Learn from treebanks: output dependency tree with high probability.

I Probability distributions over transitions sequences (rather than trees).

19

A variant: the arc standard algorithm

I An earlier formulation of the arc eager algorithm with some limitations
I Only three transitions

shift move from front of buffer to top of stack
left-arc(k) leftward dependency of type k between two top tokens

on stack; remove 2nd token
right-arc(k) rightward dependency of type k between two top

tokens on stack; remove top token
I Main difference: right-arc cannot be applied until the dependent has
found all its dependents

20

Oracle parsing

I How does the parser locate the sequence of transitions?
I Given an oracle o that correctly predicts the next transition o(c),
parsing is deterministic:

21

Transition-Based Dependency Parsing

From Oracles to Classifiers

I An oracle can be approximated by a (linear) classifier:

o(c) = argmax
t

w · f(c, t)

I History-based feature representation f(c, t)

I Weight vector w learned from treebank data

Recent Advances in Dependency Parsing 10(54)

Generating training data

I Approach: simulate parsing guided by treebank data
I Given a gold standard (reference) parse and a configuration:

I Choose left-arc if it produces a correct relation given gold
I Choose right-arc if it produces a correct relation given gold
I Choose reduce if token is fully processed
I Otherwise choose shift

[Book the]S [flight through Houston]B

dobj

det

nmod

case

left-arc

22

Generating training data

I Approach: simulate parsing guided by treebank data
I Given a gold standard (reference) parse and a configuration:

I Choose left-arc if it produces a correct relation given gold
I Choose right-arc if it produces a correct relation given gold
I Choose reduce if token is fully processed
I Otherwise choose shift

[Book the flight]S [through Houston]B

dobj

det

nmod

case

left-arc
shift

22

Generating training data

I Approach: simulate parsing guided by treebank data
I Given a gold standard (reference) parse and a configuration:

I Choose left-arc if it produces a correct relation given gold
I Choose right-arc if it produces a correct relation given gold
I Choose reduce if token is fully processed
I Otherwise choose shift

[Book the flight through]S [Houston]B

dobj

det

nmod

case

left-arc
shift
shift

22

Generating training data

I Approach: simulate parsing guided by treebank data
I Given a gold standard (reference) parse and a configuration:

I Choose left-arc if it produces a correct relation given gold
I Choose right-arc if it produces a correct relation given gold
I Choose reduce if token is fully processed
I Otherwise choose shift

[Book the flight through]S [Houston]B

dobj

det

nmod

case

left-arc
shift
shift

left-arc

22

Generating training data

I Approach: simulate parsing guided by treebank data
I Given a gold standard (reference) parse and a configuration:

I Choose left-arc if it produces a correct relation given gold
I Choose right-arc if it produces a correct relation given gold
I Choose reduce if token is fully processed
I Otherwise choose shift

[Book the flight through]S [Houston]B

dobj

det

nmod

case

left-arc
shift
shift

left-arc
right-arc

22

Transition-Based Dependency Parsing

Feature Representation

I Features over input tokens relative to S and B

I Features over the (partial) dependency graph defined by A

I Features over the (partial) transition sequence

Configuration Features

[ROOT, had, effect]S [on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
ROOT adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod

root

pos(S2) = ROOT

pos(S1) = verb
pos(S0) = noun
pos(B0) = prep
pos(B1) = adj
pos(B2) = noun

I Feature representation unconstrained by parsing algorithm

Recent Advances in Dependency Parsing 11(54)

Transition-Based Dependency Parsing

Feature Representation

I Features over input tokens relative to S and B

I Features over the (partial) dependency graph defined by A

I Features over the (partial) transition sequence

Configuration Features

[ROOT, had, effect]S [on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
ROOT adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod

root

word(S2) = ROOT

word(S1) = had
word(S0) = effect
word(B0) = on
word(B1) = financial
word(B2) = markets

I Feature representation unconstrained by parsing algorithm

Recent Advances in Dependency Parsing 11(54)

Transition-Based Dependency Parsing

Feature Representation

I Features over input tokens relative to S and B

I Features over the (partial) dependency graph defined by A

I Features over the (partial) transition sequence

Configuration Features

[ROOT, had, effect]S [on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
ROOT adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod

root

dep(S1) = root
dep(lc(S1)) = nsubj
dep(rc(S1)) = dobj
dep(S0) = dobj
dep(lc(S0) = amod
dep(rc(S0) = NIL

I Feature representation unconstrained by parsing algorithm

Recent Advances in Dependency Parsing 11(54)

Transition-Based Dependency Parsing

Feature Representation

I Features over input tokens relative to S and B

I Features over the (partial) dependency graph defined by A

I Features over the (partial) transition sequence

Configuration Features

[ROOT, had, effect]S [on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
ROOT adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod

root

ti−1 = Right-Arc(dobj)
ti−2 = Left-Arc(amod)
ti−3 = Shift
ti−4 = Right-Arc(root)
ti−5 = Left-Arc(nsubj)
ti−6 = Shift

I Feature representation unconstrained by parsing algorithm

Recent Advances in Dependency Parsing 11(54)

Transition-Based Dependency Parsing

Feature Representation

I Features over input tokens relative to S and B

I Features over the (partial) dependency graph defined by A

I Features over the (partial) transition sequence

Configuration Features

[ROOT, had, effect]S [on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
ROOT adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod

root

ti−1 = Right-Arc(dobj)
ti−2 = Left-Arc(amod)
ti−3 = Shift
ti−4 = Right-Arc(root)
ti−5 = Left-Arc(nsubj)
ti−6 = Shift

I Feature representation unconstrained by parsing algorithm

Recent Advances in Dependency Parsing 11(54)

Architecture Summary

23

Data-driven dependency parsers

I A number of freely available dependency parsers
I Pre-trained models and trainable for any language (given available
training data)

I Stanford CoreNLP (English)
I SpaCy (A number of languages)
I Google SyntaxNet
I UDParse
I Stanza
I etc.

24

Topics for Today

I Short recap:
I Dependency syntax
I Formal properties of dependency graphs
I Universal Dependencies

I Syntactic parsing
I Data-driven dependency parsing

I Variations on shift–reduce parsing
I The arc-eager transition system
I Thorough walk-through example

I Dependency Parser Evaluation

I Obligatory exercise

25

Evaluation Metrics

General Ideas
I Fixed number of tokens: per-token accuracy scores (like in tagging).

I Can consider just structure or structure plus dependency types.

I Punctuation tokens (e.g. by Unicode property) are often excluded.

UAS: Unlabeled Attachment Score
I For each token, does it have correct head (source of incoming edge)?

LAS: Labeled Attachment Score
I In addition to the head, is the dependency type (edge label) correct?

26

Evaluation Metrics

General Ideas
I Fixed number of tokens: per-token accuracy scores (like in tagging).

I Can consider just structure or structure plus dependency types.

I Punctuation tokens (e.g. by Unicode property) are often excluded.

UAS: Unlabeled Attachment Score
I For each token, does it have correct head (source of incoming edge)?

LAS: Labeled Attachment Score
I In addition to the head, is the dependency type (edge label) correct?

26

Evaluation Metrics

General Ideas
I Fixed number of tokens: per-token accuracy scores (like in tagging).

I Can consider just structure or structure plus dependency types.

I Punctuation tokens (e.g. by Unicode property) are often excluded.

UAS: Unlabeled Attachment Score
I For each token, does it have correct head (source of incoming edge)?

LAS: Labeled Attachment Score
I In addition to the head, is the dependency type (edge label) correct?

26

Evaluation Metrics

General Ideas
I Fixed number of tokens: per-token accuracy scores (like in tagging).

I Can consider just structure or structure plus dependency types.

I Punctuation tokens (e.g. by Unicode property) are often excluded.

UAS: Unlabeled Attachment Score
I For each token, does it have correct head (source of incoming edge)?

LAS: Labeled Attachment Score
I In addition to the head, is the dependency type (edge label) correct?

26

Evaluation Metrics

General Ideas
I Fixed number of tokens: per-token accuracy scores (like in tagging).

I Can consider just structure or structure plus dependency types.

I Punctuation tokens (e.g. by Unicode property) are often excluded.

UAS: Unlabeled Attachment Score
I For each token, does it have correct head (source of incoming edge)?

LAS: Labeled Attachment Score
I In addition to the head, is the dependency type (edge label) correct?

26

Dependency Evaluation

Gold vs. system:

ROOT Kim adored snow in Oslo .

root

nsubj dobj

prep

pmod

punct

ROOT Kim adored snow in Oslo .

root

nsubj iobj prep pmod

punct

I UAS: 4/5 = 0,8
I LAS: 3/5 = 0,6

27

Dependency Evaluation

Gold vs. system:

ROOT Kim adored snow in Oslo .

root

nsubj dobj

prep

pmod

punct

ROOT Kim adored snow in Oslo .

root

nsubj iobj prep pmod

punct

I UAS: 4/5 = 0,8

I LAS: 3/5 = 0,6

27

Dependency Evaluation

Gold vs. system:

ROOT Kim adored snow in Oslo .

root

nsubj dobj

prep

pmod

punct

ROOT Kim adored snow in Oslo .

root

nsubj iobj prep pmod

punct

I UAS: 4/5 = 0,8
I LAS: 3/5 = 0,6

27

Obligatory assignment 2a: Dependency parsing

I CoNLL-U data format
I Parsing algorithm (arc standard or arc eager)
I Train and evaluate a Norwegian dependency parser using spaCy

I implement (unlabeled and labeled) attachment score metric
I assess parser performance on other variants of Norwegian

I Due: April 27th 23:59

28

In Conclusion

Data-Driven Dependency Parsing

I No notion of grammaticality (no rules): more or less probable trees.
I Much room for experimentation: Feature models and types of classifiers;
I decent results with Maximum Entropy or Support Vector Machines.

I In recent years, further advances with deep neural network classifiers.

Variants on Data-Driven Dependency Parsing

I Other transition systems (e.g. arc-standard; like ‘classic’ shift-reduce);
I different techniques for non-projective trees; e.g. swap transitions;
I can relax transition system further, to output general, non-tree graphs.

29

In Conclusion

Data-Driven Dependency Parsing

I No notion of grammaticality (no rules): more or less probable trees.
I Much room for experimentation: Feature models and types of classifiers;
I decent results with Maximum Entropy or Support Vector Machines.
I In recent years, further advances with deep neural network classifiers.

Variants on Data-Driven Dependency Parsing

I Other transition systems (e.g. arc-standard; like ‘classic’ shift-reduce);
I different techniques for non-projective trees; e.g. swap transitions;
I can relax transition system further, to output general, non-tree graphs.

29

In Conclusion

Data-Driven Dependency Parsing

I No notion of grammaticality (no rules): more or less probable trees.
I Much room for experimentation: Feature models and types of classifiers;
I decent results with Maximum Entropy or Support Vector Machines.
I In recent years, further advances with deep neural network classifiers.

Variants on Data-Driven Dependency Parsing

I Other transition systems (e.g. arc-standard; like ‘classic’ shift-reduce);
I different techniques for non-projective trees; e.g. swap transitions;
I can relax transition system further, to output general, non-tree graphs.

29

