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Plan – week 4

 How to represent (language) data 
in a mathematical model.

 Vector space models.

 Representing

 Documents (today)

 Words (week 5)

 Vector-based machine learning 

 Classification (week 3)

 Clustering (week 4)

 Recap

 Evaluating classifiers

 Clustering
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Lectures 2-5 Today



Disclaimer

 I am only a substitute teacher for Erik Velldal

 The slides will be a mixture

 Erik's slides from last year

 My slides from IN3050 and IN4080

 Some new slides (like this one)
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Recap4



 Learn from labeled 

data

 Task: assign new 

items to a class

Three main types of ML
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 No labeled data 

 Task: identify 
similarities and 
categorize together

 Training with 

rewards (and 

punishments)

Supervised 

learning

Unsupervised 

learning

Reinforcement 

learning

?

Source: Wikipedia

https://en.wikipedia.org/wiki/File:Operant_Conditioning_Involves_Choice.png


Classification based on vector spaces
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Two algorithms

 Training: Calculate the centroid 
to each class in the training set.

 Application: assign an object to 
the class with the nearest 
centroid

 A linear classifier

 Strong assumptions (bias) 
regarding the classes

 No real training

 Application:

 Find the k nearest neighbors

 Pick the majority class of the 

neighbors

 Non-linear
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Rocchio K nearest neighbors (k NN)



Properties of kNN

 Instance-based, no real training

 it simply memorizes all training 
examples

 Fast to "train"

 Inefficient in predicting the label 
of new instances

 Since it must consider all the 
training data each time (= linear in 
the size of the training set)

 Notice the similarity to retrieving 
relevant documents for a given 
query: Both are instances of 
finding nearest neighbors.

 One parameter: k

 The distance measure may 
influence the result

 The scaling of the axes might 
influence the result
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Probabilistic kNN

 Sometimes, we are not interested in a 
hard decision,
but rather the probability of an item 
belonging to a class

 In particular if we are to combine this with 
other information

 kNN can be made probabilistic:

 The probability of class c is the proportion 
of the k nearest neighbors in c.

 We may here also apply the weighting 
from next slide
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• 𝑃 𝑎 𝑥 =
3

5

• 𝑃 𝑏 𝑥 =
2
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Footnote: More than two classes

 A binary classifier with odd k
always reaches a decision

 With more than 2 classes, there 
might be a draw

 One possible way out

1. Weight points by inverse distance 
from target, 

2. Sum weighted distances for each 
class

3. Choose the class with largest 
weighted max.
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Evaluation of classifiers11



Classification
12

https://www.nltk.org/book/ch06.html

https://www.nltk.org/book/ch06.html
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Procedure

1. Train classifier on training set

2. Test it on dev-test set

3. Compare to earlier runs,

 is this better?

4. Error analysis: What are the mistakes (on dev-test set)

5. Make changes to the classifier

6. Repeat from 1

==================

 When you have run empty on ideas, test on test set. Stop!
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https://www.nltk.org/book/ch06.html

https://www.nltk.org/book/ch06.html


Cross-validation

 Small test sets  Large variation in results

 N-fold cross-validation:

 Split the development set into n equally sized bins 

 (e.g. n = 10)

 Conduct n many experiments:

 In experiment m, use part m as test set and the n-1 other parts as training set. 

 This yields n many results:

 We can consider the mean of the results

 We can consider the variation between the results.

 Statistics!
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Testing a classifier

 Train on the training set.

 Predict labels on the test set 

(after removing the labels)

 Compare the prediction to the 

given labels (called gold 

labels)
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https://www.nltk.org/book/ch06.html

https://www.nltk.org/book/ch06.html


Confusion matrix and accuracy

Goal: Evaluate our spam classifier

 We run the classifier on the 

labeled test set (without the 

labels)

 Compare the predicted labels to 

the example labels and count

 We can present the numbers in a 

confusion table

 True positives, tp=150

 False positives, fp=50

 False negatives, fn=100

 True negatives, tn=200

 Accuracy: 
(tp+tn)/N = 350/500 = 
0.7
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True label

Yes NO

Predicted 

label 

Yes tp=150 fp=50

No fn=100 tn=200



More than two classes

Accuracy: 

 (sum of the diagonal)/N

 = ൗ#{𝑦𝑖|𝑦𝑖=𝑡𝑖}
#{𝑦𝑖}

= Τ450
600 = 0.75

Observe

 There is no consensus regarding what 

should be the columns and what should be 

the rows
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True label

spam normal urgent

Predicted label spam 150 49 1

normal 31 250 19

urgent 19 31 50



Evaluation measure: Accuracy
20

 What does accuracy 0.81 tell us?

 Given a test set of 500 documents:

 The classifier will classify 405 correctly

 And 95 incorrectly

 A good measure given:

 The 2 classes are equally important

 The 2 classes are roughly equally sized

 Example:

 Woman/man

 Movie reviews: pos/neg



But
21

 For some tasks, the classes aren't equally important

 Worse to lose an important mail than to receive yet another spam mail

 For some tasks, the different classes have different sizes.



Information retrieval (IR)
22

 Traditional IR, e.g., a library

 Goal: Find all the documents on a particular topic out of 100 000 documents,

 Say there are 5

 The system delivers 10 documents: all irrelevant

 What is the accuracy?

 For these tasks, focus on

 The relevant documents

 The documents returned by the system

 Forget the

 Irrelevant documents which are not returned



IR - evaluation
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Confusion matrix

 Beware what the rows 

and columns are:

 NLTKs 

ConfusionMatrix

swaps them 

compared to this 

table
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Evaluation measures

 Accuracy: (tp+tn)/N

 Precision:tp/(tp+fp)

 Recall: tp/(tp+fn)

 F-score combines P and R

 𝐹1 =
2𝑃𝑅

𝑃+𝑅
=

1
1
𝑅+

1
𝑃

2

 F1 called ‘’harmonic mean’’

 General form

 𝐹 =
1

𝛼
1

𝑃
+(1−𝛼)

1

𝑅

 for some  0 < 𝛼 < 1
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Is in C

Yes NO

Class

ifier 

Yes tp fp

No fn tn



Confusion matrix

 Precision, recall and 

f-score can be 

calculated for each 

class against the rest
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Evaluating multi-class and multi-label classifiers

 Calculate Precision, 𝑃𝑖, for each 
class 𝑖, 𝑖 = 1,2,…𝑁, 

 (𝑁 different classes) 

 Take the average of these 
1

𝑁
σ𝑖=1
𝑁 𝑃𝑖,

 Similarly for Recall and F-score

 Favors small classes

 Sum TP, FN, FP across the 

classes

 Use the formulas and calculate 

Precision, Recall and F-score 

from these using the formulas

 Favors large classes
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Macro-average Micro-average



To be continued

 More on classification later in 

this course

 More details on macro- and 

micro-average in IN4080
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An instance of unsupervised learning

Clustering29



2. Unsupervised learning - clustering

 Can you sort the Lego bricks?

 (No instruction on how)

 You may choose sorting on

 Color, or

 Size, or

 Shape, or

 A combination

 I cannot know beforehand what 
you choose, but

 The result might me helpful
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Unsupervised learning, example 2.1

 Approach 1:

 Compare your reading story to the reading story of 

all other users (One feature for each earlier story)

 Select the k most similar readers

 Give recommendations from what (else) they read

 This is kNN with its efficiency problems

31

 Everybody (Facebook, Schibsted, ..) collects what 

you are reading

 And want to use this to give you recommendations 

for readings which may interest you

 (generate clicks)

 Assumption: Readers who have read  the same 

stories before, have similar interests



Unsupervised learning, example 2.2

 This is much more efficient

 But how do we find the groups?

 Clustering!
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 Approach 2:

 Assume that the readers are grouped into classes

 Where readers in the same class have similar reading 

stories

 A new reader is assigned to a group based on her 

reading story

 Recommendations are made based on the groups 

common reading interest (Rocchio classification)



Unsupervised learning, example 2.3

 We can cluster an initial collection of 

documents, 

 e.g., based on the BoW-model

 New documents can be assigned to a 

cluster
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 By the way:

 It also helps if the documents are 

clustered



Applications of clustering in search
34

 Clustering of results

 Interest: Fruit, Term: Apple

What if the 100 best ranked results 

are computer related?

 Search: step-wise refinement

 And more, see IR-book



Application
35

 Visualization

 Data analysis

 (Data  science)



Clustering methods
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 Hierarchical

 Creates a tree structure of hierarchically nested clusters.

 Flat

 Tries to directly decompose the data into a set of clusters.

 What we will focus on.

 Given a set of objects O = {o1, . . . , on},

construct a set of clusters C = {c1, . . . , ck}, 

where each object oi is assigned to a cluster cj .

 We will consider one algorithm: k-means clustering



K-means clustering
37

1. Decide on the number of clusters: k

2. Choose a set of arbitrary centroids: 𝜇1, 𝜇2, … , 𝜇𝑘
3. For each item, x, in the training data, 

 find the nearest centroid 𝜇𝑖 , and assign x to class 𝐶𝑖

4. For each resulting class 𝐶𝑖, calculate and find the new centroid 𝜇𝑖.

5. Classify each item according to the new centroids

6. Repeat from 4



Demo

 Many demos and videos on the 

net.

 I like this one:

 http://shabal.in/visuals/kmeans

/1.html

 Here is 

 another one

 and one on youtube
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http://shabal.in/visuals/kmeans/1.html
https://dashee87.github.io/data%20science/general/Clustering-with-Scikit-with-GIFs/
https://www.youtube.com/watch?v=nXY6PxAaOk0


Why does this work? How does this work?

 The goal is a mapping 

𝛾: 𝑂 → 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑘}

 We need a tool, 𝐹, 

 to measure the performance of 𝛾

 The goal is to find a 𝛾 that 

optimizes 𝐹, in symbols 

ො𝛾 = argmax
𝛾

𝐹(𝛾)

 𝐹 is called an objective function

 Several possible objectives:

 High similarity (=small distance) 

within the clusters (intra-cluster)

 Low similarity (high distance) 

between the clusters (inter-

clusters)
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Within cluster sum of squares (intra-cluster)

 For each cluster consider the sum 
of square distances: 

𝑆𝑆𝑖 = ෍

𝑥𝑗∈𝐶𝑖

𝑥𝑗 − 𝜇𝑖
2

 Sum over all classes 

𝑊𝐶𝑆𝑆 =෍

𝑖=1

𝑘

𝑆𝑆𝑖

 To optimize 𝐹, is to find the 𝛾 that 
yields the smallest 𝑊𝐶𝑆𝑆
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Applied to k-means

 For each iteration: 

𝑊𝐶𝑆𝑆𝑖+1 ≤ 𝑊𝐶𝑆𝑆𝑖
 Because:

 Given a class, 𝐶𝑖 , the recalulated

centroid is the unique point in 

space that minimizes 𝑆𝑆𝑖
 If an item is moved from one 

class to another, its centroid-

distance decreases

 Possible stopping criteria:

 Fixed number of iterations

 Clusters or centroids are 

unchanged between iterations.

 Threshold on the decrease of the 

objective function (absolute or 

relative to previous iteration)
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Properties of k-means

 The time complexity is linear, 

𝑂(𝑘𝑛)

 Guaranteed to converge, but 

not to find the global optimal 

solution:

 Depends on choice of initial 

centroids
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Comments
43

 No prescribed way to choose k.

 In particular, more k-s will always give better WCSS without being intuitively 
better.



Intrinsic evaluation of clustering

 Run k-means on the gold set 

(without the labels).

 Compare the clusters to the 

classes:

 Purity: a good cluster will have 

all members from the same class

 We can use some intra-cluster 

or inter-cluster measure, 

 E.g., WCSS to compare which 

intial choice of centroids is better 

in k-means

44

With labeled gold-data Without using gold data



Extrinsic evaluation
45

 See which clustering (or lack of clustering) yields the best results in a 

larger task

 For example: two versions of a recommender system, and measure 

some of:

 User satisfaction

 How many recommended articles they read, or click on 

 Improvement in sales



46



47



Limitations
48

 Similar underling 

assumptions as 

the Rocchio

classifier

 Assumes regions 

with the same 

diameter



Limitations
49

 Similar underling 

assumptions as the 

Rocchio classifier

 A Voronoi cell for each 

cluster, defined by the 

centroid
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