International Telecommunication Union

ITU-T X.509

TELECOMMUNICATION (10/2012)
STANDARDIZATION SECTOR
OF ITU

SERIES X: DATA NETWORKS, OPEN SYSTEM
COMMUNICATIONS AND SECURITY

Directory

Information technology — Open Systems
Interconnection — The Directory: Public-key and
attribute certificate frameworks

Recommendation ITU-T X.509

! intsernationsl

Telscommunication
Union

IR

ITU-T X-SERIES RECOMMENDATIONS
DATA NETWORKS, OPEN SYSTEM COMMUNICATIONSAND SECURITY

PUBLIC DATA NETWORKS
Services and facilities
Interfaces
Transmission, signalling and switching
Network aspects
Maintenance
Administrative arrangements
OPEN SYSTEMS INTERCONNECTION
Model and notation
Service definitions
Connection-mode protocol specifications
Connectionless-mode protocol specifications
PICS proformas
Protocol Identification
Security Protocols
Layer Managed Objects
Conformance testing
INTERWORKING BETWEEN NETWORKS
General
Satellite data transmission systems
| P-based networks
MESSAGE HANDLING SYSTEMS
DIRECTORY
OSI NETWORKING AND SYSTEM ASPECTS
Networking
Efficiency
Quality of service
Naming, Addressing and Registration
Abstract Syntax Notation One (ASN.1)
OSI MANAGEMENT
Systems management framework and architecture
Management communication service and protocol
Structure of management information
Management functions and ODMA functions
SECURITY
OS| APPLICATIONS
Commitment, concurrency and recovery
Transaction processing
Remote operations
Generic applications of ASN.1
OPEN DISTRIBUTED PROCESSING
INFORMATION AND NETWORK SECURITY
SECURE APPLICATIONS AND SERVICES
CYBERSPACE SECURITY
SECURE APPLICATIONS AND SERVICES
CYBERSECURITY INFORMATION EXCHANGE

X.1-X.19
X.20-X.49
X.50-X.89
X.90-X.149
X.150-X.179
X.180-X.199

X.200-X.209
X.210-X.219
X.220-X.229
X.230-X.239
X.240-X.259
X.260-X.269
X.270-X.279
X.280-X.289
X.290-X.299

X.300-X.349
X.350-X.369
X.370-X.379
X.400-X.499
X.500-X.599

X.600-X.629
X.630-X.639
X.640-X.649
X.650-X.679
X.680-X.699

X.700-X.709
X.710-X.719
X.720-X.729
X.730-X.799
X.800-X.849

X.850-X.859
X.860-X.879
X.880-X.889
X.890-X.899
X.900-X.999
X.1000-X.1099
X.1100-X.1199
X.1200-X.1299
X.1300-X.1399
X.1500-X.1599

For further details, please refer to thelist of ITU-T Recommendations.

INTERNATIONAL STANDARD ISO/IEC 9594-8
RECOMMENDATION ITU-T X.509

Summary

Recommendation ITU-T X.509 | ISO/IEC 9594-8 defines frameworks for public-key certificates and attribute
certificates. The public-key certificate framework is the base specification for public-key certificates, for the different
components going into a public-key infrastructure (PKI) for validation procedures and for public-key certificate
revocation, etc. The attribute certificate framework is the base specification for attribute certificates and the different
components going into the Privilege Management Infrastructure (PMI). These frameworks may be used by standards

I nformation technology — Open Systems I nter connection —
The Directory: Public-key and attribute certificate frameworks

bodies to profile their application to PKls and PMIs.

History
Edition
1.0
20
30
31
3.2
33
34
35
3.6
4.0
4.1
4.2
4.3
4.4
5.0
51
5.2
53
54
6.0
6.1
6.2
6.3
7.0

Recommendation
ITU-T X.509
ITU-T X.509
ITU-T X.509

ITU-T X.509 (1997) Technical Cor.
ITU-T X.509 (1997) Technical Cor.
ITU-T X.509 (1997) Technical Cor.
ITU-T X.509 (1997) Technical Cor.
ITU-T X.509 (1997) Technical Cor.
ITU-T X.509 (1997) Technical Cor.

ITU-T X.509

ITU-T X.509 (2000) Technical Cor.
ITU-T X.509 (2000) Technical Cor.
ITU-T X.509 (2000) Technical Cor.
ITU-T X.509 (2000) Technical Cor.

ITU-T X.509
ITU-T X.509 (2005) Cor.
ITU-T X.509 (2005) Cor.
ITU-T X.509 (2005) Cor.
ITU-T X.509 (2005) Cor.

ITU-T X.509
ITU-T X.509 (2008) Cor. 1
ITU-T X.509 (2008) Cor. 2
ITU-T X.509 (2008) Cor. 3

ITU-T X.509

A W N P

D OB WN P

A WOWN PR

Approval
1988-11-25
1993-11-16
1997-08-09
2000-03-31
2001-02-02
2001-10-29
2002-04-13
2003-02-13
2004-04-29
2000-03-31
2001-10-29
2002-04-13
2004-04-29
2007-01-13
2005-08-29
2007-01-13
2008-11-13
2011-02-13
2012-04-13
2008-11-13
2011-02-13
2012-04-13
2012-10-14
2012-10-14

Study Group

Rec. | TU-T X.509 (10/2012)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommuni cations on aworldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendationsis covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with |SO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure, eg., interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approva of this Recommendation, ITU had received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

©ITU 2014

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of I TU.

i Rec. | TU-T X.509 (10/2012)

http://www.itu.int/ITU-T/ipr/

10

11

CONTENTS

o0 o PSSRSO
NOMMBLIVE FEFEIEINCES ...ttt sttt ettt s e et b e s e e st ebese e st et e seebesbeseebesbeneenenbeneas
2.1 Identical Recommendations | International Standards............ccceoevereenenieieneneieseseese e
2.2 Paired Recommendations | International Standards equivalent in technical content..............cccccceeee.
P2 T B (= 00001010 01 10 = (0] 1TSS
I © 0= = 1= (= o= ST
D=, T a1 o) 1SS
3.1 OSl Reference Model security architecture definitions...........coooeiereriiieie e
3.2 Basdineidentity management terms and definitions...........ccoceeeiiiiiiie s
CTC T BT = ox (o) VA 100 0 (= I (= 1T a1 i o) SRS
34 Access control framework defiNiTiONS.........ccviriririrer e
3.5 Public-key and attribute certificate defiNItioNS...........cccoveiiiirie i s
W o] o] (=Y = o] SO S
(@00 1Y/ g1 Lo TP
FramMEWOIKS OVEIVIBIWviiiietirieeete ettt sttt stk st b e st b e b e b e b e se e bt et e seebe st e neeb e st e neenenbeneas
6.1 Digital SIGNBIUMNEScueitiieteitiieiert ettt ettt b bbb e bt sb e h s s e bt s b e e bt b e e eb e b e e ene e enes
6.2 Formal definitionsfor public-Key Cryptography ... s
6.3 Distinguished encoding of BasiC ENCOdING RUIES...........c..coiiriininiiinineesceerieee s
6.4 Applying distingUiShed ENCOTING.......c..eririereiieiere ettt eesb e e b e ae e e e eesae e e
Public-keys and public-Key CErtifiCaLES.ooiiiiiiiere e et e e s
4% S [9140 o U 1o o PRSP
A 2 =V o [T e VAol g U] o= (S
7.3 Public-key CErtifiCate EXIENSIONS........ccceiiiie ettt st ae s e e e see st e s teeaeere e e enaesresresne e
7.4 Typesof PUbliC-KEY CEtIfICAEScciiiieciece et s e e bt resne e
A T I 1= e o TR
AL T =01 8V (= = (0] T oY
A A O~ 1 11 117 1 o g 1 TSP
7.8 GENEration Of KEY PAITS......ccviueeuieeeeeiesiesese st st st eeesee e steste st e saeese e e eaesaestesbesaesresneeseenseseenseseessesseens
7.9 Public-key CertifiCate CrEaliON.........ccuciererese et sa e s e re e e srenrenne e
7.10 Certificate reVOCEIION lISh......ciieeiieiieiriee ettt ne e s
4% % R 2 7= o 0o [F= 1 To g o = o [T [= IS T 1 o [
Public-key certificate and CRL EXIENSIONS........ccciiiriiirierieesie sttt st sre et sb e s be b e b b seenesbe e
8.1 POICY NBNAIING.eieetiitiiei et b bbbt b bbb
8.2 Key and policy information EXIENSIONS.........cociririeiririeeresie et
8.3 Subject and issuer information EXIENSIONS.coeiiiriie et see e sae s
8.4 Certification path CONSIraiNt EXIENSIONScciiiiiriireeie ettt et se et e b e e
8.5 BaSIC CRL EXIENSIONScouiiiiitirteiteeteeeeeereeseeste et sbe st eseesee e e besaeebe s it eae e e e asesbesaesbesaeeaeeneensenbeseenbesaesaens
8.6 CRL distribution points and delta-CRL eXIENSIONS.........cooiirererieeeie et e
Delta CRL relationship 10 DESE........oiiiiieiieieie ettt bbb st e e e e b e e b eeas
Certification path ProCeSSING PrOCEAUNE........cce ittt sttt se e et ste s besaesre e e e e e ae e entesresresneens
10.1 Path PrOCESSING INPULS. ...c.veieieisieiiesieeeeeee e sees e seesre s e sseeseee e e saeseessesaeesesseeseesessessesaessesseeseessensessnssensen
10.2 Path PrOCESSING OULPULS......veiueerereeeeeeeeieseseestessessesseeseeseessetesaessessesseeseessessessessessessessesssensessessessessenses
10.3 Path processing VariahlES........cceeeeieierese sttt e sr et re e e e eneese e tesnenrennn
L0 1 o 1 1= T2 (o g TS = oS
O T O) 1= (= 001>] o S
PKI Ir€CtOry SCREMEL.........cciiiiiiii b
11.1 PKI directory object classes and NamME fONMS.........covriiiirieiieeee e
11.2 PKI dir€CtOry @ttriDULES.......ccuiieeiitiieecete ettt ettt st b e s b e sb e e ebe e
11.3 PKI directory MatChing FUIEScc.oouiiiieie ettt e e e b e b enas
11.4 PKI directory syntax defiNitioNScooiiiiriiieeree et e e s

Rec. | TU-T X.509 (10/2012)

U
&
© o0 00 N PP WWW WWWNDN P O

e
()

NP RRPRPRRERRERRERRERR
P WWOWMOOOUOMNELER

B W W wNNDN
ONWE OINDN

[S2¢)]
w N

GLEE

62
ol

o o U Ul Ul
o =R BRI

I N 1] o101 (Y O 4 1) {07 =S TSSO 68
12,1 Attribute CErtifiCate SETUCLUIEccvee ettt et see e e 69
12.2 Attribute CertifiCation PALNS..........cciiieiiic bbb 71
13 Attribute Authority, SOA and Certification Authority relationship........cccocevvrenievnineeee e 71
13.1 Privilegein attribute CErtifiCaLESooiiiie e e e 73
13.2 Privilegein public-Key CartifiCates.ot e e s 73
I e 470 L= £SO 73
I €T 1 = 00T [USRS 73
I e g 1 (0] I 1070 [USRS 75
/I D 1= 1= = o) 811010 o L= IS 76
14.4 Group asSigNMENE MOAEL........cciieeeeeec e e ese et e st sresresneeneeneeeeseenrenns 76
T o (o] =] 410 L= PSR PSRUSRN 77
14.6 Recognition of AULNOtY MOEccooeiiiice e e 78
14.7 XML privilegeinformation attribDULE...........ccuoriiiie s e 82
14.8 Permission attribute and MatChing FUIE...........coierereeeeser e s 83
15 Privilege management CertifiCale EXIENSIONS.........cii ittt b e bbb e nre e 83
15.1 Basic privilege management EXIENSIONS..........cuieirerieerereeese ettt ere et sbeseese b seesesreseas 84
15.2 Privilege revoCation EXIENSIONS.coiirueuiriirietirierietestere et sttt st se et e st st se bt sbeseebesbe e ebeneesesbeseas 87
15.3 Source of AULNOITY EXIENSIONS......cc.iiiiiie ittt h et e b et eae s e e e e eeseesbesaesreenas 87
o o L= O 1= =T o] TSP 90
155 Delegation EXIENSIONScoueiuieterieeieeieereesie et stesieeseseeseseessesbesaeebesaeeseeaseasesbeseesbesaeeseensansensessanseseessesses 1
15.6 Recognition Of AULNOFitY EXTENSIONS.coiiirieierieie ettt st e e e enas 95
16 Privilege path proCessing PrOCEAUIE.cociiiirieirieee ettt s be b b st ae e e e e eese e be e sreeaas 98
16.1 BaSIC ProCESSING PrOCEAUIE.cceeueeeeteitestee e steetee e eeetesee e saesbesseeseesee s esteseestesaessesseessensessenseseesrenses 98
16.2 ROIE PrOCESSING PrOCEOUIEocviiuecteeeeeee e stes e ste st e e e e st e tesaesbesreese e e e ssestesrestesaeeseeseenseneeseenteseesrennes 99
16.3 Delegation proCeSSING PrOCEAUIEcoueiieiteeieieeteeieeteiesees e srestesresseesee s esaessestestesrestesaeeseeseensensessesses 99
17 Y0 = w00 A= o 1= 0 7= USRS 102
17.1 PMI direCtory ODJECE CIASSEScveiieieieirie et see et e e st neese e e e e e e eeseenrenrn 102
17.2 PMI DIreCtory attriBULES.........ccvieieicecec st e e se e e neennennn 103
17.3 PMI genera directory MatChing FUIES.........ccoiiiiririeiie et 105
18 DireCtory AUtNENTICALIONcceveieiieterieeet ettt ettt et b e et b e e bt b e e b e b e seebesbe e enenre e 107
18.1 Simple authentiCation PrOCEAUIE..........co ittt et sbe bt se b be et sae e e 107
RS Yo o oo oy TSP 109
RO (o o AN U 1 0T= 011 [or= 1o o TSP 119
S T N wlo =Y ofo 11 (o) U ORTR 122
20 Protection Of DIr€CtOry OPErBHIONSccoveiveiiectesecteee st e e e este e st e esaesresseese e e e s estestesbestesresresseeseeseensesseseenres 122
Annex A — Public-Key and Attribute Certificate FrameWOrKS..........ccveieieviie s 123
Annex B — Reference definition of algorithm object identifiers.........covvvve i 153
Annex C — CRL generation and proCessing FUIES.............coviiiiii s 154
@35 A 1 g1 L1 Tox 1 o o ST 154
C.2 Determing parameterS fOr CRLScoiiiiie ettt sttt et et e e e see b b e 155
C.3 Determing CRLS FEOUITEHcc.eiuieeieeeieieesie ettt ettt st st ae st e e ae e e besae b e saeeaeeseeseabeseestesaeene 156
(@3 R @ o] -] 4 11 = { I PR 157
C.5 PrOCESS CRLS .. .cuiitiietiitiieie sttt te et sttt st et s et eseste st e be st eseesesses e ebesbeseesesseseesessenenbe st ensnseseenensessenen 157
Annex D — Examples Of delta CRL ISSUANCE........cocuiiiiiieiee ettt e et e bt se e e s e e e e e 161
Annex E — Privilege policy and privilege attribute definition eXamplesccevcieveie i 163
R 1 011 oo 0o o o TSP 163
S 1 410 Lo Y | = = S 163
E.3 Privilege attribute EXamMPIE.........cceeieieeee s nnn 167
Annex F — An introduction to public K&y Cryptograpiy?c.eeoeeieeeeeeeeeeeeeeeeeee e see e 168
Annex G — Examples of use of certification path CONSrAINES.cccvirieiiirieiriere s 170

iv Rec. | TU-T X.509 (10/2012)

G.1 Example l: Use of basiC CONSIIAINTS........ccciieeieeerierieseesieseesresseeeeseessesseseesressesseesessessessessessessessessenes 170
G.2 Example 2: Use of policy mapping and poliCy CONSLIaINS..........ccureerireeeriinieerieeeeseeeeee e 170
G.3 Use of Name Constraints EXTENSION.cccuiiiirieieeieieniene st sees e saestestesne s e eeenseseessesns 170
Annex H — Guidance on determining for which policies a certification path isvalid ..o, 179
H.1 Certification path valid for a user-specified poliCy reqUIred...........cocooereieienene s 179
H.2 Certification path valid for any poliCy reqUITed ..o s 180
H.3 Certification path valid regardleSS Of POIICYcoeieriririiereeeee e e e 180
H.4 Certification path valid for a user-specific policy desired, but not required ..., 180
Annex | —Key usage CertifiCate EXIENSION ISSUES........couciiiriiriirerie ettt sttt e e e see st sbe st ese e e e nsesaeseesbeeee 181
ANNEX J— EXTENal ASN.L MOQUIES.......c.ciiiiiieiiriiiee ettt s e e e bt e e b teneebe st e e sseneenes 182
Annex K —Use of Protected Passwords for Bind OPErationS..........cccverererieieseneseeeesesieseesesaesresesseesesesssesssssesees 190
Annex L — Examples of password hashing algorithms...........cceeeveeeeieiese e 191
L. NUll Hashing MELNOGc.coiiiiiieeieeet ettt sttt st sttt sb e ebenre e 191
L.2 MDS MENOGottt ettt et st et et st e se et e st eseetesaeseebesaeseatesaeseetesaeseasessesenteeas 191
L.3 SHA-LMENOMcooiiiicieiecece ettt sttt sttt s a e e et e st e seetesaeseebesaesesbeseesenteneas 191
Annex M — Alphabetical list of information item definitionS............cooiiiiiiiii e 192
Annex N — AmMendments and COMTIGENTALu ettt ettt st b et e e e e b e besaeebe s e eaeese e e enseseesbeseeene 195

Rec. ITU-T X.509 (10/2012) v

Introduction

This Recommendation | International Standard, together with other Recommendations | International Standards, has
been produced to facilitate the interconnection of information processing systems to provide directory services. A set of
such systems, together with the directory information which they hold, can be viewed as an integrated whole, called the
Directory. The information held by the Directory, collectively known as the Directory Information Base (DIB), is
typically used to facilitate communication between, with or about objects such as application-entities, people, terminals
and distribution lists.

The Directory plays a significant role in Open Systems Interconnection, whose aim is to allow, with a minimum of
technical agreement outside of the interconnection standards themselves, the interconnection of information processing
systems:

— from different manufacturers;

— under different managements;

— of different levels of complexity; and
— of different ages.

Many applications have requirements for security to protect against threats to the communication of information.
Virtually al security services are dependent upon the identities of the communicating parties being reliably known, i.e.,
authentication.

This Recommendation | International Standard defines a framework for public-key certificates. This framework
includes the specification of data objects used to represent the certificates themselves, as well as revocation notices for
issued certificates that should no longer be trusted. The public-key certificate framework defined in this
Recommendation | International Standard, while it defines some critical components of a public-key infrastructure
(PKI), it does not define a PKI in its entirety. However, this Recommendation | International Standard provides the
foundation upon which full PK1s and their specifications would be built.

Similarly, this Recommendation | International Standard defines a framework for attribute certificates. That framework
includes the specification of data objects used to represent the certificates themselves, as well as revocation notices for
issued certificates that should no longer be trusted. The attribute certificate framework defined in this
Recommendation | International Standard, while it defines some critical components of a Privilege Management
Infrastructure (PMI), it does not define a PMI in its entirety. However, this Recommendation | International Standard
provides the foundation upon which full PMIs and their specifications would be built.

Information objects for holding PKI and PMI objects in the Directory and for comparing presented values with stored
values are also defined.

This Recommendation | International Standard also defines a framework for the provision of authentication services by
the Directory to its users.

This Recommendation | International Standard provides the foundation frameworks upon which industry profiles can be
defined by other standards groups and industry forums. Many of the features defined as optional in these frameworks
may be mandated for use in certain environments through profiles. This seventh edition technically revises and
enhances the sixth edition of this Recommendation | International Standard.

This seventh edition specifies versions 1, 2 and 3 of public-key certificates and versions 1 and 2 of certificate revocation
lists. This edition also specifies version 2 of attribute certificates.

The extensibility function was added in an earlier edition with version 3 of the public-key certificate and with version 2
of the certificate revocation list and was incorporated into the attribute certificate from its initial inception. This
function is specified in clause 7. It is anticipated that any enhancements to this edition can be accommodated using this
function and avoid the need to create new versions.

Annex A, which is an integral part of this Recommendation | International Standard, provides the ASN.1 modules
which contain all of the definitions associated with the frameworks.

Annex B, which is an integral part of this Recommendation | International Standard, defines object identifiers assigned
to authentication and encryption algorithms, in the absence of aformal register.

Annex C, which is an integral part of this Recommendation | International Standard, provides rules for generating and
processing Certificate Revocation Lists.

Annex D, which is not an integral part of this Recommendation | International Standard, provides examples of delta-
CRL issuance.

Vi Rec. | TU-T X.509 (10/2012)

Annex E, which is not an integral part of this Recommendation | International Standard, provides examples of privilege
policy syntaxes and privilege attributes.

Annex F, which is not an integral part of this Recommendation | International Standard, is an introduction to public-key
cryptography.

Annex G, whichis not an integral part of this Recommendation | International Standard, contains examples of the use of
certification path constraints.

Annex H, which is not an integral part of this Recommendation | International Standard, provides guidance for PKI
enabled applications on the processing of certificate policy while in the certification path validation process.

Annex |, which is not an integral part of this Recommendation | International Standard, provides guidance on the use of
the contentcommi tment bit in the keyUsage certificate extension.

Annex J, which is not an integral part of this Recommendation | International Standard, includes extracts of external
ASN.1 modules referenced by this Recommendation | International Standard.

Annex K, which is not an integral part of this Recommendation | International Standard, provides a suggested technique
for a Bind protected password.

Annex L, which is not an integral part of this Recommendation | International Standard, gives some examples of
password hashing algorithms.

Annex M, which is not an integral part of this Recommendation | International Standard, contains an alphabetical list of
information item definitions in this Recommendation | International Standard.

Annex N, which is not an integral part of this Recommendation | International Standard, lists the amendments and
defect reports that have been incorporated to form this edition of this Recommendation | International Standard.

Rec. ITU-T X.509 (10/2012) vii

| SO/l EC 9594-8:2014 (E)

INTERNATIONAL STANDARD
RECOMMENDATION ITU-T

I nformation technology — Open Systems I nter connection —
The Directory: Public-key and attribute certificate frameworks

SECTION 1 — GENERAL

1 Scope

This Recommendation | International Standard addresses some of the security requirements in the areas of
authentication and other security services through the provision of a set of frameworks upon which full services can be
based. Specifically, this Recommendation | International Standard defines frameworks for:

— public-key certificates;
— dttribute certificates; and
— authentication services.

The public-key certificate framework defined in this Recommendation | International Standard includes a definition of
the information objects for a public-key infrastructure (PKI), including public-key certificates and Certificate
Revocation Lists (CRLS). The attribute certificate framework includes a definition of the information objects for a
Privilege Management Infrastructure (PMI), including attribute certificates, and Attribute Certificate Revocation Lists
(ACRLS). This Recommendation | International Standard also provides the framework for issuing, managing, using and
revoking certificates. An extensibility mechanism isincluded in the defined formats for both certificate types and for all
revocation list schemes. This Recommendation | International Standard also includes a set of standard extensions for
each, which is expected to be generaly useful across a number of applications of PKI and PMI. The schema
components (including object classes, attribute types and matching rules) for storing PKI and PMI objects in the
Directory, are included in this Recommendation | International Standard. Other elements of PKI and PMI, beyond these
frameworks, such as key and certificate management protocols, operational protocols, additional certificate and CRL
extensions are expected to be defined by other standards bodies (e.g., ISO TC 68, IETF, etc.).

The authentication scheme defined in this Recommendation | International Standard is generic and may be applied to a
variety of applications and environments.

The Directory makes use of public-key certificates and attribute certificates, and the framework for the Directory's use
of these facilities is also defined in this Recommendation | International Standard. Public-key technology, including
certificates, is used by the Directory to enable strong authentication and signed operations, and for storage of signed
data in the Directory. Attribute certificates can be used by the Directory to enable rule-based access control. Although
the framework for these is provided in this Recommendation | International Standard, the full definition of the
Directory's use of these frameworks, and the associated services provided by the Directory and its components is
supplied in the complete set of ITU-T X.500 series of Recommendations | ISO/IEC 9594 (all parts).

This Recommendation | International Standard, in the Authentication services framework, also:
— gspecifiesthe form of authentication information held by the Directory;
— describes how authentication information may be obtained from the Directory;
— states the assumptions made about how authentication information is formed and placed in the Directory;

— defines three ways in which applications may use this authentication information to perform
authentication and describes how other security services may be supported by authentication.

This Recommendation | International Standard describes two levels of authentication: simple authentication, using a
password as a verification of claimed identity; and strong authentication, involving credentias formed using
cryptographic techniques. While simple authentication offers some limited protection against unauthorized access, only
strong authentication should be used as the basis for providing secure services. It is not intended to establish this as a
general framework for authentication, but it can be of general use for applications which consider these techniques
adequate.

Authentication (and other security services) can only be provided within the context of a defined security policy. Itisa
matter for users of an application to define their own security policy which may be constrained by the services provided
by a standard.

Rec. ITU-T X.509 (10/2012) 1

| SO/l EC 9594-8:2014 (E)

It is a matter for standards-defining applications which use the authentication framework to specify the protocol
exchanges which need to be performed in order to achieve authentication based upon the authentication information
obtained from the Directory. The protocol used by applications to obtain credentials from the Directory is the Directory
Access Protocol (DAP), specified in Rec. ITU-T X.519 | ISO/IEC 9594-5.

2 Nor mative refer ences

The following Recommendations and International Standards contain provisions which, through reference in this text,
congtitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent
edition of the Recommendations and Standards listed below. Members of IEC and 1SO maintain registers of currently
valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently
valid ITU-T Recommendations.

2.1 Identical Recommendations| International Standards

— Recommendation ITU-T X.411 (1999) | ISO/IEC 10021-4:2003, Information technology — Message
Handling Systems (MHS) — Message Transfer System: Abstract Service Definition and Procedures.

— Recommendation ITU-T X.500 (2012) | ISO/IEC 9594-1:2014, Information technology — Open Systems
Interconnection — The Directory: Overview of concepts, models and services.

— Recommendation ITU-T X.501 (2012) | ISO/IEC 9594-2:2014, Information technology — Open Systems
Interconnection — The Directory: Models.

— Recommendation ITU-T X.511 (2012) | ISO/IEC 9594-3:2014, Information technology — Open Systems
Interconnection — The Directory: Abstract service definition.

— Recommendation ITU-T X.518 (2012) | ISO/IEC 9594-4:2014, Information technology — Open Systems
Interconnection — The Directory: Procedures for distributed operation.

— Recommendation ITU-T X.519 (2012) | ISO/IEC 9594-5:2014, Information technology — Open Systems
Interconnection — The Directory: Protocol specifications.

— Recommendation ITU-T X.520 (2012) | ISO/IEC 9594-6:2014, Information technology — Open Systems
Interconnection — The Directory: Selected attribute types.

— Recommendation ITU-T X.521 (2012) | ISO/IEC 9594-7:2014, Information technology — Open Systems
Interconnection — The Directory: Selected object classes.

— Recommendation ITU-T X.525 (2012) | ISO/IEC 9594-9:2014, Information technology — Open Systems
Interconnection — The Directory: Replication.

— Recommendation ITU-T X.660 (2008) | ISO/IEC 9834-1:2008, Information technology — Open Systems
Interconnection — Procedures for the operation of OS Registration Authorities: General procedures and
top arcs of the International Object Identifier tree.

— Recommendation ITU-T X.680 (2008) | ISO/IEC 8824-1:2008, Information technology — Abstract
Syntax Notation One (ASN.1): Specification of basic notation.

— Recommendation ITU-T X.681 (2008) | ISO/IEC 8824-2:2008, Information technology — Abstract
Syntax Notation One (ASN.1): Information object specification.

— Recommendation ITU-T X.682 (2008) | ISO/IEC 8824-3:2008, Information technology — Abstract
Syntax Notation One (ASN.1): Constraint specification.

— Recommendation ITU-T X.683 (2008) | ISO/IEC 8824-4:2008, Information technology — Abstract
Syntax Notation One (ASN.1): Parameterization of ASN.1 specifications.

— Recommendation ITU-T X.690 (2008) | ISO/IEC 8825-1:2008, Information technology — ASN.1
encoding rules. Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and
Distinguished Encoding Rules (DER).

— Recommendation ITU-T X.691 (2008) | ISO/IEC 8825-2:2008, Information technology — ASN.1
encoding rules: Specification of Packed Encoding Rules (PER).

— Recommendation ITU-T X.812 (1995) | ISO/IEC 10181-3:1996, Information technology — Open Systems
Interconnection — Security frameworks for open systems: Access control framework.

— Recommendation ITU-T X.813 (1996) | ISO/IEC 10181-4:1997, |nformation technology — Open Systems
I nterconnection — Security frameworks for open systems: Non-repudiation framework.

2 Rec. | TU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

Recommendation ITU-T X.841 (2000) | ISO/IEC 15816:2002, Information technology — Security
techniques — Security information objects for access control.

2.2 Paired Recommendations | International Standards equivalent in technical content

Recommendation CCITT X.800 (1991), Security architecture for Open Systems Interconnection for
CCITT applications.

SO 7498-2:1989, Information processing systems — Open Systems Interconnection — Basic Reference
Model — Part 2: Security Architecture.

2.3 Recommendations

Recommendation ITU-T X.1252 (2010), Baseline identity management terms and definitions.

24 Other references

IETF RFC 791 (1981), Internet Protocol.
IETF RFC 822 (1982), STANDARD FOR THE FORMAT OF ARPA INTERNET TEXT MESSAGES
IETF RFC 1035 (1987), Domain names — implementation and specification.

IETF RFC 1630 (1994), Universal Resource Identifiers in WMWV: A Unifying Syntax for the Expression
of Names and Addresses of Objects on the Network as used in the World-Wide Web.

IETF RFC 4523 (2006), Lightweight Directory Access Protocol (LDAP) Schema Definitions for X.509
Certificates.

IETF RFC 5280 (2008), Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile.

3 Definitions

For the purposes of this Recommendation | International Standard, the following definitions apply.

31 OSl Reference Model security ar chitecture definitions
The following terms are defined in CCITT Rec. X.800 | ISO 7498-2:

a)
b)
0
d)
€
)
9)
h)
)
)

asymmetric (encipherment);
authentication exchange;
authentication information;
confidentiality;

credentials;

cryptography;

data origin authentication;
decipherment;

digital signature;
encipherment;

key;

password;

peer-entity authentication;
symmetric (encipherment).

3.2 Baseline identity management terms and definitions
Thefollowing term is defined in Rec. ITU-T X.1252;

a)

trust: The firm belief in the reliability and truth of information or in the ability and disposition of an
entity to act appropriately, within a specified context.

Rec. ITU-T X.509 (10/2012) 3

| SO/l EC 9594-8:2014 (E)

3.3 Directory model definitions
The following terms are defined in Rec. ITU-T X.501 | ISO/IEC 9594-2:
a) attribute;
b) Directory Information Base;
c) Directory Information Tree;
d) Directory System Agent;
e) Directory User Agent;
f) distinguished name;
g) entry;
h) object;
i) root.

34 Access control framework definitions

The following terms are defined in Rec. ITU-T X.812 | ISO/IEC 10181-3:
a) Access control Decision Function (ADF);
b) Access control Enforcement Function (AEF).

35 Public-key and attribute certificate definitions
The following terms are defined in this Recommendation | International Standard:

351 attribute certificate (AC): A data structure, digitally signed by an Attribute Authority, that binds some
attribute values with identification information about its holder.

352 Attribute Authority (AA): An authority which assigns privileges by issuing attribute certificates.

353 attribute authority revocation list (AARL): A revocation list containing a list of references to attribute
certificates issued to AAs that are no longer considered valid by the issuing authority.

354 attribute certificate revocation list (ACRL): A revocation list containing a list of references to attribute
certificates that are no longer considered valid by the issuing authority.

355 authentication token; (token): Information conveyed during a strong authentication exchange, which can be
used to authenticate its sender.

356 authority: An entity, responsible for the issuance of certificates. Two types are defined in this
Recommendation | International Standard; a certification authority which issues public-key certificates and an attribute
authority which issues attribute certificates.

357 authority certificate: A certificate issued to an authority (e.g., either to a certification authority or to an
attribute authority).

358 base CRL: A CRL that is used as the foundation in the generation of adCRL.
359 CA-certificate: A public-key certificate for one CA issued by either another CA or by the same CA.

35.10 certificate policy: A named set of rules that indicate the applicability of a certificate to a particular
community and/or class of application with common security requirements. For example, a particular certificate policy
might indicate the applicability of a type of certificate to the authentication of electronic data interchange transactions
for the trading of goods within agiven price range.

35.11 certification practice statement (CPS): A statement of the practices that a CA employs in issuing
certificates.

35.12 certificate revocation list (CRL): A signed list indicating a set of certificates that are no longer considered
valid by the certificate issuer. In addition to the generic term CRL, some specific CRL types are defined for CRLs that
cover particular scopes.

35.13 certificate serial number: An integer value, unique within the issuing authority, which is unambiguously
associated with a certificate issued by that authority.

35.14 certificate-using system: An implementation of those functions defined in this Recommendation |
International Standard that are used by arelying party.

4 Rec. | TU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

35.15 certificate validation: The process of ensuring that a certificate was valid at a given time, including possibly
the construction and processing of a certification path, and ensuring that all certificatesin that path were valid (i.e., were
not expired or revoked) at that given time.

35.16 certification authority (CA): An authority trusted by one or more users to create and assign public-key
certificates. Optionally the certification authority may create the subjects keys.

3.5.17 certification authority revocation list (CARL): A revocation list containing a list of CA-certificates issued
to certification authorities that are no longer considered valid by the certificate issuer.

3.5.18 certification path: An ordered list of one or more public-key certificates, starting with a public-key certificate
signed by the trust anchor, and ending with the public key certificate to be validated. All intermediate public-key
certificates, if any, are CA-certificates in which the subject of the preceding certificate is the issuer of the following
certificate.

35.19 CRL distribution point: A directory entry or other distribution source for CRLs; a CRL distributed through a
CRL distribution point may contain revocation entries for only a subset of the full set of certificates issued by one CA
or may contain revocation entries for multiple CAs.

35.20 cross-certificate: A public-key certificate where the issuer and the subject are different CAs. CAs issue
cross-certificates to other CAs as a mechanism to authorize the subject CA's existence.

3.5.21 cryptographic system, cryptosystem: A collection of transformations from plain text into cipher text and
vice versa, the particular transformation(s) to be used being selected by keys. The transformations are normally defined
by a mathematical algorithm.

3.5.22 data confidentiality: This service can be used to provide the protection of data from unauthorized disclosure.
The data confidentiality service is supported by the authentication framework. It can be used to protect against data
interception.

3.5.23 delegation: Conveyance of privilege from one entity that holds such privilege, to another entity.

3.5.24 delegation path: An ordered sequence of certificates which together with the authentication of a privilege
asserter's identity, can be processed to verify the authenticity of an asserter's privilege.

35.25 deta-CRL (dCRL): A partia revocation list that only contains entries for certificates that have had their
revocation status changed since the issuance of the referenced base CRL.

35.26 end-entity: Either a public-key certificate subject that uses its private key for purposes other than signing
certificates, or an attribute certificate holder that uses its attributes to gain access to a resource.

3.5.27 end-entity attribute certificate: An attribute certificate issued to an end-entity.

3.5.28 end-entity attribute certificate revocation list (EARL): A revocation list containing a list of end-entity
attribute certificates that are no longer considered valid by the issuing attribute authority.

3.5.29 end-entity certificate: An attribute or public-key certificate issued to an end-entity.
3.5.30 end-entity public-key certificate: A public-key certificate issued to an end-entity.

35.31 end-entity public-key certificate revocation list (EPRL): A revocation list containing a list of end-entity
public-key certificates that are no longer considered valid by the issuing certification authority.

3.5.32 environmental variables: Those aspects of policy required for an authorization decision, that are not
contained within static structures, but are available through some local means to a privilege verifier (e.g., time of day or
current account balance).

3.5.33 full CRL: A complete revocation list that contains entries for all certificates that have been revoked for the
given scope.

3.5.34 hash function: A (mathematical) function which maps values from alarge (possibly very large) domain into a
smaller range. A "good" hash function is such that the results of applying the function to a (large) set of valuesin the
domain will be evenly distributed (and apparently at random) over the range.

3.5.35 holder: An entity to whom some privilege has been delegated either directly from the Source of Authority or
indirectly through another Attribute Authority.

3.5.36 indirect CRL (iCRL): A revocation list that contains at least revocation information about certificates issued
by authorities other than that which issued this CRL.

Rec. ITU-T X.509 (10/2012) 5

| SO/l EC 9594-8:2014 (E)

3.5.37 key agreement: A method for negotiating a key value online without transferring the key, even in an
encrypted form, e.g., the Diffie-Hellman technique (see ISO/IEC 11770-1 for more information on key agreement
mechanisms).

3.5.38 password expiration: A situation where a user password has reached the end of its validity period; the
account is locked and the user has to change the password before doing any other directory operation.

35.39 password quality attributes: Attributes that specify how a password shall be constructed. Password quality
attributes include things like minimum length, mixture of characters (uppercase, lowercase, figures, punctuation, etc.),
and avoidance of trivial passwords.

3540 password history: A list of old passwords and the times they were inserted in the history.

3541 object method: An action that can be invoked on a resource (e.g., a file system may have read, write and
execute object methods).

3542 oneway function: A (mathematical) function f which is easy to compute, but which for a general valuey in
the range, it is computationally difficult to find a value x in the domain such that f(x) = y. There may be a few values of
y for which finding x is not computationally difficult.

3.5.43 policy decision point (PDP): The point where policy decisions are made (synonymous with ADF).

35.44 policy enforcement point (PEP): The point where the policy decisions are actually enforced (synonymous
with AEF).

3545 policy mapping: Recognizing that, when a CA in one domain certifies a CA in another domain, a particular
certificate policy in the second domain may be considered by the authority of the first domain to be equivalent (but not
necessarily identical in all respects) to a particular certificate policy in the first domain.

35.46 private key: (In a public key cryptosystem) that key of an entity's key pair which is known only by that
entity.

3.5.47 privilege: An attribute or property assigned to an entity by an authority.

3548 privilege asserter: A privilege holder using their attribute certificate or public-key certificate to assert
privilege.

3549 privilege management infrastructure (PMI): The infrastructure able to support the management of
privilegesin support of a comprehensive authorization service and in relationship with a public-key infrastructure.

3.5.50 privilege policy: The policy that outlines conditions for privilege verifiers to provide/perform sensitive
services to/for qualified privilege asserters. Privilege policy relates attributes associated with the service, as well as
attributes associated with privilege asserters.

3.5.51 privilegeverifier: An entity verifying certificates against a privilege policy.
3.5.52 public-key: (In apublic key cryptosystem) that key of a user's key pair which is publicly known.

3.5.53 public-key certificate (PKC): The public key of a user, together with some other information, rendered
unforgeable by digital signature with the private key of the CA which issued it.

3.5.54 public-key infrastructure (PK1): The infrastructure able to support the management of public keys able to
support authentication, encryption, integrity or non-repudiation services.

3555 relying party: A user or agent that relies on the datain a certificate in making decisions.

3.5.56 role assignment certificate: A certificate that contains the role attribute, assigning one or more roles to the
certificate subject/holder.

3.,5.57 role specification certificate: A certificate that contains the assignment of privilegesto arole.
3.5.58 sensitivity: Characteristic of aresource that impliesits value or importance.
3.5.59 simpleauthentication: Authentication by means of simple password arrangements.

3.5.60 security policy: The set of rules laid down by the security authority governing the use and provision of
security services and facilities.

3561 sdf-issued attribute certificate: An attribute certificate where the issuer and the subject are the same
Attribute Authority. An Attribute Authority might use a self-issued AC, for example, to publish policy information.

6 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

35.62 sef-issued certificate: A public-key certificate where the issuer and the subject are the same CA. A CA
might use self-issued certificates, for example, during a key rollover operation to provide trust from the old key to the
new key.

35.63 saf-signed certificate: A special case of self-issued certificates where the private key used by the CA to sign
the certificate corresponds to the public key that is certified within the certificate. A CA might use a self-signed
certificate, for example, to advertise their public key or other information about their operations.

NOTE — Use of self-issued certificates and self-signed certificates issued by other than CAs are outside the scope of this
Recommendation | International Standard.

3.5.64 sourceof authority (SOA): An Attribute Authority that a privilege verifier for a particular resource trusts as
the ultimate authority to assign a set of privileges.

35.65 strong authentication: Authentication by means of cryptographically derived credentials.

3.5.66 trust anchor: A trust anchor is an entity that is trusted by a relying party and used for validating certificates
in certification paths.

3.5.67 trust anchor information: Trust anchor information is at least the: distinguished name of the trust anchor,
associated public key, algorithm identifier, public key parameters (if applicable), and any constraints on its use
including a validity period. The trust anchor information may be provided as a self-signed CA-certificate or as a normal
CA-certificate (i.e., cross-certificate).

4 Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviations apply:
AA Attribute Authority
AARL Attribute Authority Revocation List
AC Attribute Certificate
ACRL Attribute Certificate Revocation List
ADF Access control Decision Function
AEF Access control Enforcement Function
AlA Authority Information Access
CA Certification Authority
CARL Certification Authority Revocation List
CRL Certificate Revocation List
DAP Directory Access Protocol
dCRL DeltaCertificate Revocation List
DIB Directory Information Base
DIT Directory Information Tree
DS Delegation Service
DSA Directory System Agent
DUA Directory User Agent
EARL End-entity Attribute certificate Revocation List
EPRL End-entity Public-key certificate Revocation List
Al Issuer's ACs Identifiers
iCRL Indirect Certificate Revocation List
OCSP Online Certificate Status Protocol
PDP Policy Decision Point
PEP Policy Enforcement Point
PKC Public-Key Certificate
PKCS Public-Key Cryptosystem
PKI Public-Key Infrastructure

Rec. ITU-T X.509 (10/2012) 7

| SO/l EC 9594-8:2014 (E)

PMI Privilege Management Infrastructure
RoA Recognition of Authority
SOA Source of Authority

5 Conventions

The term "Directory Specification" (as in "this Directory Specification") shall be taken to mean Rec. ITU-T X.509 |
ISO/IEC 9594-8. The term "Directory Specifications' shall be taken to mean the ITU-T X.500-series Recommendations
and all parts of 1SO/IEC 9594.

This Directory Specification uses the term first edition systems to refer to systems conforming to the first edition of
these Directory Specifications, i.e., the 1988 edition of the series of CCITT X.500 Recommendations and the
I SO/IEC 9594:1990 edition.

This Directory Specification uses the term second edition systems to refer to systems conforming to the second edition
of these Directory Specifications, i.e., the 1993 edition of the series of ITU-T X.500 Recommendations and the
I SO/IEC 9594:1995 edition.

This Directory Specification uses the term third edition systems to refer to systems conforming to the third edition of
these Directory Specifications, i.e., the 1997 edition of the series of ITU-T X.500 Recommendations and the
I SO/IEC 9594:1998 edition.

This Directory Specification uses the term fourth edition systems to refer to systems conforming to the fourth edition of
the Directory Specifications, i.e., the 2001 editions of Recs ITU-T X.500, X.501, X.511, X.518, X.519, X.520, X.521,
X.525, and X.530, the 2000 edition of Rec. ITU-T X.509, and parts 1-10 of the | SO/IEC 9594:2001 edition.

This Directory Specification uses the term fifth edition systems to refer to systems conforming to the fifth edition of
these Directory Specifications, i.e.,, the 2005 edition of the series of ITU-T X.500 Recommendations and the
I SO/IEC 9594:2005 edition.

This Directory Specification uses the term sixth edition systems to refer to systems conforming to the sixth edition of
these Directory Specifications, i.e.,, the 2008 edition of the series of ITU-T X.500 Recommendations and the
I SO/IEC 9594:2008 edition.

This Directory Specification uses the term seventh edition systems to refer to systems conforming to the seventh edition
of these Directory Specifications, i.e., the 2012 edition of the series of ITU-T X.500 Recommendations and the
I SO/IEC 9594:2014 edition.

This Directory Specification presents ASN.1 notation in the bold Courier New typeface. When ASN.1 types and values
are referenced in normal text, they are differentiated from normal text by presenting them in the bold Courier New
typeface. The names of procedures, typically referenced when specifying the semantics of processing, are differentiated
from normal text by displaying them in bold Times New Roman. Access control permissions are presented in italicized
Times New Roman. When a definition is referenced for the first time in normal text it is also presented in italicized
Times New Roman.

If the items in a list are numbered (as opposed to using "—" or letters), then the items shall be considered steps in a
procedure.

6 Framewor ks overview

This Directory Specification defines a framework for obtaining and trusting a public key of an entity in order to encrypt
information to be decrypted by that entity, or in order to verify the digital signature of that entity. The framework
includes the issuance of a public-key certificate by a Certification Authority (CA) and the validation of that public-key
certificate by the relying party, i.e., the entity relying on the content of the public-key certificate. The validation
includes:

— establishing a trusted path of public-key certificates between a trusted entity called a trust anchor
(seeclause 7.5) and the certificate subject, i.e., the entity for which the public-key certificate has been
issued;

— verifying the digital signatures on each public-key certificate in the path; and

— vadlidating all the public-key certificates along that path (i.e., that they were not expired or not revoked at
agiven time).

8 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

This Directory Specification defines a framework for obtaining and trusting privilege attributes of an entity in order to
determine whether they are authorized to access a particular resource. The framework includes the issuance of an
attribute certificate by an Attribute Authority (AA) and the validation of that attribute certificate by a privilege verifier.
The validation includes:

— ensuring that the privileges in the certificate are sufficient when compared against the privilege policy;
— establishing atrusted delegation path of certificates if necessary;

— verifying the digital signature on each certificate in the path;

— ensuring that each issuer was authorized to delegate privileges; and

— vadlidating that the certificates have not expired or been revoked by their issuers.

Although PKI and PMI are separate infrastructures and may be established independently from one ancther, they are
related. This Directory Specification recommends that holders and issuers of attribute certificates be identified within
attribute certificates by pointers to their appropriate public-key certificates. Authentication of the attribute certificate
issuers and holders, to ensure that entities claiming privilege and issuing privilege are who they claim to be, is done
using the normal processes of the PKI to authenticate identities. This authentication process is not duplicated within the
attribute certificate framework.

This Directory Specification makes extensive use of public-key cryptography. Annex F introduces this technol ogy.

6.1 Digital signatures

Digital signatures are used in both PKI and PMI as the mechanism by which the authority that issues a certificate
certifies the binding in the certificate. In PKI, the digital signature of the issuing CA on a public-key certificate certifies
the binding between the public-key material and the subject of the public-key certificate. In PMI, the digital signature of
the issuing AA certifies the binding between the attributes (privileges) and the holder of the certificate. This subclause
describes digital signatures in general. Sections 2 and 3 of this Directory Specification discuss the use of digital
signatures within PKI and PMI specificaly.

This subclause is not intended to specify a standard for digital signatures in general, but to specify the means by which
instances of the PKI and PMI specific data types are signed.

Information (info) is signed by appending to it an enciphered summary of the information. The summary is produced by
means of a one-way hash function, while the enciphering is carried out using the private key of the signer (see
Figure 1). Thus:

X {Info} = Info, Xgh(Info)]

" Private key i " Public key i
- (X9 : - (Xp) :
| | xdh(nfo)] | |
| ! | ! Compare
i i | i
| i Info | i
~ Signer (X) Recipient

X.509(12)_FO1

Figure 1 - Digital signatures

NOTE — The encipherment using the private key ensures that the signature cannot be forged. The one-way nature of the hash
function ensures that fal se information, generated to have the same hash result (and thus signature) cannot be substituted.

The recipient of signed information verifies the signature by:
— applying the one-way hash function to the information;

— comparing the result with that obtained by deciphering the signature using the public key of the signer.
This Directory Specification does not mandate a single one-way hash function for use in signing. It is intended that the
framework shall be applicable to any suitable hash function, and shall thus support changes to the methods used because

of future advancesin cryptography, mathematical techniques or computational capabilities. However, two users wishing
to authenticate shall support the same hash function for authentication to be performed correctly. Thus, within the

Rec. ITU-T X.509 (10/2012) 9

| SO/l EC 9594-8:2014 (E)

context of a set of related applications, the choice of a single function shall serve to maximize the community of users
able to authenticate and communicate securely.

6.2 Formal definitionsfor public-key cryptography
The encipherment of a dataitem may be described using the following ASN.1:

ENCRYPTED{ToBeEnciphered} ::= BIT STRING (CONSTRAINED BY {
-- shall be the result of applying an encipherment procedure
-- to the BER-encoded octets of a value of -- ToBeEnciphered })

The value of the bit string is generated by taking the octets which form the complete encoding (using the ASN.1 Basic
Encoding Rules — Rec. ITU-T X.690 | ISO/IEC 8825-1) of the value of the ToBeEnciphered type and applying an
encipherment procedure to those octets.
NOTE 1-The encryption procedure requires agreement on the agorithm to be applied, including any parameters of the
algorithm such as any necessary keys, initialization values, and padding instructions. It is the responsibility of the encryption
procedures to specify the means by which synchronization of the sender and receiver of data is achieved, which may include
information in the bits to be transmitted.

NOTE 2 —The encryption procedure is required to take as input a string of octets and to generate a single string of bits as its
result.

NOTE 3 — Mechanisms for secure agreement on the encryption algorithm and its parameters by the sender and receiver of data
are outside the scope of this Directory Specification.

The signature of a data item is formed by encrypting a shortened or "hashed" transformation of the item, and may be
described by the following ASN.1:

HASH{ToBeHashed} ::= SEQUENCE ({
algorithmIdentifier AlgorithmIdentifier{{SupportedAlgorithms}},

hashValue BIT STRING (CONSTRAINED BY {

-- shall be the result of applying a hashing procedure to the DER-encoded

-- octets of a value of -- ToBeHashed }),

-}
ENCRYPTED-HASH{ToBeSigned} ::= BIT STRING (CONSTRAINED BY {

-- shall be the result of applying a hashing procedure to the DER-encoded (see 6.2)
-- octets of a value of -- ToBeSigned -- and then applying an encipherment procedure
-- to those octets -- })

SIGNATURE{ToBeSigned} ::= SEQUENCE ({
algorithmIdentifier AlgorithmIdentifier{{SupportedAlgorithms}},
encrypted ENCRYPTED-HASH{ToBeSigned},

-}
NOTE 4 — The encryption procedure requires the agreements listed in Note 1, and agreement as to whether the hashed octets are
encrypted directly, or only after further encoding them asaBIT STRING using the ASN.1 Basic Encoding Rules.

In the case where a signature is appended to a data type, the following ASN.1 may be used to define the data type
resulting from applying a signature to the given data type.

SIGNED{ToBeSigned} ::= SEQUENCE ({
toBeSigned ToBeSigned,
COMPONENTS OF SIGNATURE{ToBeSigned},

-}

6.3 Distinguished encoding of Basic Encoding Rules

In order to enable the validation of s1GNED and SIGNATURE types in a distributed environment, a distinguished
encoding isrequired. A distinguished encoding of a SIGNED or SIGNATURE data value shall be obtained by applying the
Basic Encoding Rules defined in Rec. ITU-T X.690 | ISO/IEC 8825-1, with the following restrictions:

a) thedefinite form of length encoding shall be used, encoded in the minimum number of octets;
b) for string types, the constructed form of encoding shall not be used;

c) if thevalueof atypeisitsdefault value, it shall be absent;

d) the components of a Set type shall be encoded in ascending order of their tag value;

e) the components of a Set-of type shall be encoded in ascending order of their octet value;

f) if thevalue of aBoolean type is TRUE, the encoding shall have its contents octet set to "FF";

10 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

g) each unused hit in the final octet of the encoding of a Bit String value, if there are any, shall be set to
Zexro;

h) the encoding of a Real type shall be such that bases 8, 10 and 16 shall not be used, and the binary scaling
factor shall be zero;

i) theencoding of aUTC time shall be as specified in Rec. ITU-T X.690 | ISO/IEC 8825-1;
j) theencoding of a Generalized time shall be as specified in Rec. ITU-T X.690 | ISO/IEC 8825-1.

6.4 Applying distinguished encoding

Generating distinguished encoding requires the abstract syntax of the data to be encoded to be fully understood. An
entity may be required to sign data or check the signature of data that contains unknown protocol extensions or
unknown attribute syntaxes. The entity shall follow these rules:

— It shall preserve the encoding of received information whose abstract syntax it does not fully know and
which it expects to subsequently sign.

— When signing data for sending, it shall send data whose syntax it fully knows with a distinguished
encoding and any other data with its preserved encoding, and shall sign the actual encoding it sends.

— When checking signatures in received data, it shall check the signature against the actual data received
rather than its conversion of the received data to a distinguished encoding.

SECTION 2 — PUBLIC-KEY CERTIFICATE FRAMEWORK

The public-key certificate framework defined here is for use by applications with requirements for authentication,
integrity, confidentiality and non-repudiation.

The binding of a public-key to an entity is provided by an authority through a digitally signed data structure called a
public-key certificate. The format of public-key certificates is defined here, including an extensibility mechanism and a
set of specific certificate extensions. If, for any reason, an authority revokes a previously issued public-key certificate,
users need to be able to learn that revocation has occurred so they do not use an untrustworthy certificate. Revocation
lists are one scheme that can be used to notify users of revocations. The format of revocation lists is defined here,
including an extensibility mechanism and a set of revocation list extensions. In both the certificate and revocation list
case, other bodies may aso define additional extensions that are useful to their specific environments.

A relying party needs to validate a public-key certificate prior to using that public-key certificate for an application.
Procedures for performing that validation are also defined here, including verifying the integrity of the public-key
certificate itself, its revocation status, and its validity with respect to the intended use.

The Directory uses public-key certificatesin its provision of security services including:
— strong authentication between and among directory components,
— authentication and integrity of directory operations; aswell as
— integrity and authentication of stored data.

7 Public-keys and public-key certificates

7.1 I ntroduction

In order for a user to be able to trust a public-key for another user, for instance to authenticate the identity of that user,
the public-key shall be obtained from a trusted source. Such a source, called a Certification Authority (CA), certifies a
public key by issuing a public-key certificate which binds the public-key to the entity which holds the corresponding
private-key. The procedures used by a CA to ensure that an entity isin fact in possession of the private key and other
procedures related to the issuance of public-key certificates are outside the scope of this Directory Specification. The
certificate, the form of which is specified later in this clause, has the following properties:

— any user with access to the public key of the CA can recover the public key which was certified;

— no party other than the CA can modify the certificate without this being detected (certificates are
unforgeable).

Because certificates are unforgeable, they can be published by being placed in the Directory, without the need for the
latter to make special efforts to protect them.

Rec. ITU-T X.509 (10/2012) 11

| SO/l EC 9594-8:2014 (E)

NOTE — Although the CAs are unambiguously defined by a distinguished name in the DIT, this does not imply that there is any
relationship between the organization of the CAsand the DIT.

7.2 Public-key certificate

A CA issues a public-key certificate of an entity by signing (see clause 6.1) a collection of information, including its
distinguished name, the user's distinguished name, a validity period, the value of a public key algorithm and public key,
as well as an optional additional information like for the permitted usage of the user's public key. The following ASN.1
data type can be used to represent public-key certificates:

Certificate ::= SIGNED{TBSCertificate}

TBSCertificate ::= SEQUENCE {
version [0] Version DEFAULT vl,
serialNumber CertificateSerialNumber,
signature AlgorithmIdentifier{{SupportedAlgorithms}},
issuer Name,
validity Validity,
subject Name,
subjectPublicKeyInfo SubjectPublicKeyInfo,
issuerUniqueIdentifier [1] IMPLICIT UniqueIdentifier OPTIONAL,
[[2: -- if present, version shall be v2 or v3
subjectUniqueIdentifier [2] IMPLICIT UniqueIdentifier OPTIONAL]],
[[3: -- if present, version shall be v2 or v3
extensions [3] Extensions OPTIONAL]]
-- If present, version shall be v3]]

Version ::= INTEGER {v1(0), v2(1), v3(2)}

CertificateSerialNumber ::= INTEGER

AlgorithmIdentifier{ALGORITHM: SupportedAlgorithms} ::= SEQUENCE {

algorithm ALGORITHM.&id ({SupportedAlgorithms}),
parameters ALGORITHM.&Type ({SupportedAlgorithms}{@algorithm}) OPTIONAL,

)

-- Definition of the following information object set is deferred, perhaps to

-- standardized profiles or to protocol implementation conformance statements. The
-- set is required to specify a table constraint on the parameters component of

-- AlgorithmIdentifier.

SupportedAlgorithms ALGORITHM ::= {...}

The following information object classis used to define specific algorithms.

ALGORITHM ::= CLASS {
&Type OPTIONAL,
&id OBJECT IDENTIFIER UNIQUE }

WITH SYNTAX {
[&Typel
IDENTIFIED BY &id }

Validity ::= SEQUENCE {
notBefore Time,
notAfter Time,

}
SubjectPublicKeyInfo ::= SEQUENCE {
algorithm AlgorithmIdentifier{{SupportedAlgorithms}},
subjectPublicKey BIT STRING,
)
Time ::= CHOICE {
utcTime UTCTime,

generalizedTime GeneralizedTime }

Extensions ::= SEQUENCE OF Extension

12 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

Extension ::= SEQUENCE {
extnId EXTENSION.&id ({ExtensionSet}),
critical BOOLEAN DEFAULT FALSE,
extnValue OCTET STRING
(CONTAINING EXTENSION.&ExtnType ({ExtensionSet}{@extnId})
ENCODED BY der),

-}

der OBJECT IDENTIFIER ::=
{joint-iso-itu-t asnl(l) ber-derived(2) distinguished-encoding(1)}

ExtensionSet EXTENSION ::= {...}

Before a value of Time is used in any comparison operation, e.g., as part of a matching rule in a search, and if the
syntax of Time has been chosen as the urcTime type, the value of the two digit year field shall be rationalized into a
four digit year value as follows:

— If the 2-digit value is 00 through to 49 inclusive, the value shall have 2000 added to it.

— If the 2-digit value is 50 through to 99 inclusive, the value shall have 1900 added to it.

NOTE 1 —The use of GeneralizedTime may prevent interworking with implementations unaware of the possibility of choosing
either UTCTime or GeneralizedTime. It is the responsibility of those specifying the domains in which certificates defined in this
Directory Specification will be used, e.g., profiling groups, as to when the GeneralizedTime may be used. In no case shall
UTCTime be used for representing dates beyond 2049.

The TBscertificate datatype is the unsigned public-key certificate and is referred to as a to-be-signed public-key
certificate.

The version field shall hold the version of the encoded public-key certificate. If the extensions component is
present in the public-key certificate, version shall be v3. If the issuerUniqueIdentifier Or
subjectUniqueIdentifier cOMponent ispresent version shall bev2 or v3.

The serialNumber field shall hold an integer assigned by the CA to the public-key certificate. The value of
serialNumber shall be unique for each public-key certificate issued by a given CA (i.e., the issuer name and serial
number identify a unique public-key certificate).

The signature field contains the algorithm identifier for the algorithm and hash function used by the CA in signing
the certificate (e.g., md5WithRSAEnNcryption, sha-1WithRSAEncryption, id-dsa-with-shal, etc.). It shall be the same
value as used in the algorithmIdentifier component of the sSIGNATURE data type when signing the public-key
certificate.

NOTE 2 —Thisfield is redundant except possibly for its participation in matching certificates (see clause 11.3.2).

The issuer field shall hold the distinguished name of the CA that issued the public-key certificate. It shall hold a non-
empty distinguished name.

The validity field shall hold the time interva during which the CA warrants that it will maintain information about
the status of the public-key certificate.

The subject field shall identify the entity associated with the public-key found in the subjectPublicKey
component of the subjectPublicKeyInfo field. If the public-key certificate is for an end-entity, then the
distinguished name may be an empty sequence providing that the subjectaltName extension is present and is flagged
ascritical. Otherwise, it shall be a non-empty distinguished name (see clause 8.3.2.1).

The subjectPublicKeyInfo field consists of two components:

— the algorithm component shall hold the algorithm which this public key is an instance of
(e.g., rsaEncryption, dhpublicnumber, id-dsa, etc.); and

— the subjectPublicKey shal hold the public key being certified.
The issuerUniqueIdentifier field isused uniquely to identify an issuer in case of name reuse.

The subjectUniqueIdentifier fieldisused uniquely to identify asubject in case of name reuse.

NOTE 3 — The use of issuerUniqueldentifier and the subjectUniqueldentifier is deprecated. These fields were added because at
one time there was some fear of the reuse of distinguished names.

A user may obtain one or more public-key certificates from one or more CAs. Each certificate bears the name of the CA
which issued it.

Rec. ITU-T X.509 (10/2012) 13

| SO/l EC 9594-8:2014 (E)

7.3 Public-key certificate extensions

The extensions field allows for the addition of new fields to the structure without modification to the ASN.1
definition. An extension field consists of an extension identifier, a criticality flag, and an encoding of a data value of an
ASN.1 type associated with the identified extension. For those extensions where ordering of individual extensions
within the sEQUENCE is significant, the specification of those individual extensions shal include the rules for the
significance of the order therein. When a relying party processing a certificate does not recognize an extension and the
criticality flag is FALSE, it may ignore that extension. If the criticality flag is TRUE, unrecognized extensions shall cause
the structure to be considered invalid, i.e., in acertificate, an unrecognized critical extension would cause validation of a
signature using that public-key certificate to fail. When a relying party recognizes and is able to fully process an
extension, then the relying party shall process the extension regardless of the value of the criticality flag. When a
relying party recognizes and is able to partially process an extension for which the criticality flag is TRUE, then its
behaviour in the presence of unrecognized elements is extension specific and may be documented in each extension.
However, the default behaviour, when not specified specifically for an extension, is to treat the entire extension as
unrecognized. If unrecognized elements appear within the extension, and the extension is not marked critical, those
unrecognized elements shall be ignored according to the rules of extensibility documented in clause 12.2.2 in
Rec. ITU-T X.519 | ISO/IEC 9594-5.

Note that any extension that is flagged non-critical will cause inconsistent behaviour among relying parties that will
process the extension and relying parties that do not recognize the extension and will ignore it. The same may be true
for extensions that are flagged critical, between relying parties that can fully process the extension and those that can
partially process the extension, depending upon the extension.

A CA issuing a public-key certificate has three options with respect to an extension:
i) it can exclude the extension from the certificate;
i) it can include the extension and flag it non-critical;
iii) it can include the extension and flag it critical.

A relying party has three possible actions to take with respect to an extension:

i) if the extension is unrecognized and is marked non-critical, the relying party shall ignore the extension
and accept the certificate (all other things being equal);

ii) if the extension is unrecognized and marked critical, the relying party shall reject the certificate;

iii) if the extension is recognized, the relying party shall process the extension and accept or reject the
certificate depending on the content of the extension and the conditions under which processing is
occurring (e.g., the current values of the path processing variables).

Some extensions can only be marked critical. In these cases, arelying party that understands the extension processes it;
the acceptance/regjection of the certificate is dependent (at least in part) on the content of the extension. A relying party
that does not understand the extension shall reject the certificate.

Some extensions can only be marked non-critical. In these cases, a relying party that understands the extension shall
process it and acceptance/regjection of the certificate is dependent (at least in part) on the content of the extension. A
relying party that does not understand the extension accepts the certificate (unless factors other than this extension cause
it to be rejected).

Some extensions may be marked critical or non-critical. In these cases, a relying party that understands the extension
processes it: the acceptance/rejection of the certificate is dependent (at least in part) on the content of the extension,
regardless of the criticality flag. A relying party that does not understand the extension accepts the certificate if the
extension is marked non-critical (unless factors other than this extension cause it to be regjected) and rejects the
certificate if the extension is marked critical.

When a CA considers including an extension in a certificate it does so with the expectation that its intent will be
adhered to wherever possible. If it is necessary that the content of the extension be considered prior to any reliance on
the public-key certificate, a CA shall flag the extension critical. This is done with the realization that any relying party
that does not process the extension will reject the certificate (probably limiting the set of applications that can verify the
certificate). The CA may mark certain extensions non-critical to achieve backward compatibility with validation
applications that cannot process the extensions. Where the need for backward compatibility and interoperability with
validation applications incapable of processing the extensions is more vital than the ability of the CA to reinforce the
extensions, then these optionally critical extensions would be marked non-critical. It is most likely that CAs would set
optionally critical extensions as non-critical during a transition period while the verifiers certificate processing
applications are upgraded to ones that can process the extensions.

14 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

Specific extensions may be defined in ITU-T Recommendations | International Standards or by any organization which
has a need. The object identifier which identifies an extension shall be defined in accordance with Rec. ITU-T X.660 |
ISO/IEC 9834-1. Standard extensions for public-key certificates are defined in clause 8 of this Directory Specification.

The following information object classis used to define specific extensions.

EXTENSION ::= CLASS {
&id OBJECT IDENTIFIER UNIQUE,
&ExtnType }
WITH SYNTAX {
SYNTAX &ExtnType
IDENTIFIED BY &id }

7.4 Typesof public-key certificates
There are two primary types of public-key certificates, end-entity public-key certificates and CA-certificates.

An end-entity public-key certificate is a public-key certificate issued by a CA to a subject that is not an issuer of other
public-key certificates.

A CA-certificate is a public-key certificate issued by a CA to a subject that is also a CA and therefore is capable of
issuing public-key certificates. A CA-certificate shall include the basicConstraints extension with the ca
components set to TRUE (see clause 8.4.2.1).

CA-certificates can themselves be categorized by the following types:

— Sdf-issued certificate — Thisis a CA-certificate where the issuer and the subject are the same CA. A CA
might use self-issued certificates, for example, during a key rollover operation to provide trust from the
old key to the new key.

— Sdf-signed certificate — Thisis a special case of self-issued certificates where the private key used by the
CA to sign the certificate corresponds to the public key that is certified within the certificate. A CA
might use a self-signed certificate, for example, to advertise their public key or other information about
their operations.

— Cross-certificate — Thisis a CA-certificate where the issuer and the subject are different CAs. CAsissue
certificates to other CAs either as a mechanism to authorize the subject CA's existence (e.g., in a strict
hierarchy) or to recognize the existence of the subject CA (e.g., in a distributed trust model). The
cross-certificate structure is used for both of these.

75 Trust anchor

A trust anchor is an entity that is trusted for the purpose of certificate validation by arelying party. Information about a
trust anchor (trust anchor information) is typically configured into the relying party in a so-called trust anchor store. A
relying party may have configured information about multiple trust anchors into one or more trust anchor storages.

NOTE — Trust anchor has in the past been synonymous with the term root-CA. In a strict hierarchy, the CA at the top of the
hierarchy is called the root CA and it may be the trust anchor. However, in more complex environments, it may not be possible to
identify aroot CA. Even when it is possible to identify aroot CA, arelying party may not necessarily consider it a trust anchor.
An intermediate CA may instead take that role.

The trust anchor information may be provided as:
— asdf-signed certificate, or
— anorma CA cross-certificate.

Rec. ITU-T X.509 (10/2012) 15

| SO/l EC 9594-8:2014 (E)

7.6 Entity relationship

Trust anchor for relying party

Intermediate
CA

Subject

Relying
party

X.509(12)_F02

———p Certifies

- - - -9 Chainof CAs

— — = Trust anchor certifies CA
- — - = Trust relationship

Figure 2 — Entity relationships

There may be several CAs between the trust anchor recognized by the relying party and an end-entity for which a
public-key certificate is to be validated. Each CA has issued one or more cross-certificates for the next CA on the path
between the trust anchor and the end-entity. The CA that issues a cross-certificate to another CA takes the role of
intermediate CA. The CA that is the subject for a cross-certificate takes the role of subject CA. This is illustrated in
Figure 2. The same CA may take both the roles of an intermediate CA and a subject CA.

In some situations, conflicting or overlapping requirements for constraints, such as name constraints, may require a CA
to issue more than one cross-certificate to another CA. In this case, multiple, different paths of certificates are
established between the end-entity and the trust anchor.

7.7 Certification path

Before a public-key certificate can be securely used by arelying party, it shall be validated. In order to validate such a
public-key certificate, a chain of public-key certificates, called a certification path, shall be established between the
public-keycertificate signed by a trust anchor recognized by the relying party and the public-key certificate to be
validated. Every public-key certificate within that path shall be checked. A certification path is thus an ordered list of
public-key certificates starting with a public-key certificate signed by the trust anchor, and ending with the public key
certificate to be validated. All intermediate public-key certificates, if any, are CA-certificates in which the subject of the
preceding certificate is the issuer of the following certificate.

Each public-key certificate in a certification path is unique. A path that contains the same certificate multiple times is
not avalid certification path.

The issuer and subject fields of each certificate are used, in part, to identify avalid path. For each pair of adjacent
public-key certificates in a valid certification path, the value of the subject field in one certificate shall match the
value of the issuer field in the subsequent certificate. In addition, the value of the issuer field in the public-key
certificate issued by the trust anchor shall match the distinguished name of the trust anchor. Only the names in these
fields are used when checking the validity of a certification path. Names in certificate extensions are not used for this
purpose. The distinguishedNameMatch matching rule, defined in clause 1352 of
Rec. ITU-T X.501 | ISO/IEC 9594-2, shall be used to compare the distinguished name in the issuer field of one
certificate with the distinguished namein the subject field of ancther.

16 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

E Trust anchor information
Issued by trust anchor

- I'K

Certification path

\

End-entity A

public-key Relying

certificate party
X.509(12)_F03

——p CAsgning

- - - - P Chain of CA-certificates
— — = Trust anchor signing

- — . = Trust relationship

Figure 3 - Certification path

Figure 3 illustrates the situation where a relying party needs to check the validity of an end-entity public-key certificate
and the relying party is able to construct a certification path between the end-entity and a trust anchor recognized by the
relying party.

Trust suffers dilution as certification paths grow in length. The basicConstraints extension (see clause 8.4.2.1)
allows restrictions to be put onto the length of the path. The validation of a public-key certificate may be affected by
extensions in the chain of a public-key certificate, such as the certificatePolicies extension (see clause 8.2.2.6)
and nameConstraints (See clause 8.4.2.2). It isthe responsibility of the relying party to check that the restrictions are
observed.

A user may obtain one or more certificates from one or more Certification Authorities. Each certificate bears the name
of the CA which issued it. The following ASN.1 data types can be used to represent certificates and a certification path:

Certificates ::= SEQUENCE {
userCertificate Certificate,
certificationPath ForwardCertificationPath OPTIONAL,
-}
CertificationPath ::= SEQUENCE {
userCertificate Certificate,
theCACertificates SEQUENCE OF CertificatePair OPTIONAL}

Theusercertificate component shall hold the end-entity public-key certificate.

The cacertificates component may hold an element for each CA from the end-entity up to and including the CA
which has been certified by the trust anchor. If the end-entity public-key certificate has been issued directly by the trust
anchor, this component shall be absent.

The certificatePair data type is defined in clause 11.2.3. The issuedToThisca component of the
CertificatePair datatype shall be present to ensure an unbroken certification path.

NOTE — The certificationPath data type had aready been defined by the first edition of this Directory Specification
before the concept of certification path was fully developed. The order of elements in a CertificationPath instance
appears to be the opposite of that of a certification path. This data type is used, as an example, by the directory protocols for the
support of strong authentication and electronic signature. It is recommended that new applications use the PkiPath datatype.

In addition, the following ASN.1 data type can be used to represent the forward certification path. This component
contains the certification path which can point back to the originator.

ForwardCertificationPath ::= SEQUENCE OF CrossCertificates

CrossCertificates ::= SET OF Certificate

Rec. ITU-T X.509 (10/2012) 17

| SO/l EC 9594-8:2014 (E)

PkiPath ::= SEQUENCE OF Certificate

PkiPath iS used to represent a certification path. Within the sequence, the order of public-key certificates is such that
the subject of the first certificate isthe issuer of the second certificate, etc.

Each public-key certificate in a certification path shall be unique. No public-key certificate may appear more than once
in avaue of the thecaCertificates component of CertificationPath Or in avaue of certificate inthe
CrossCertificates component of ForwardCertificationPath Or avalue of certificate in PkiPath.

7.8 Generation of key pairs

The overall security management policy of an implementation shall define the lifecycle of key pairs, and is, thus,
outside the scope of this framework. However, it is vital to the overall security that al private keys remain known only
to the entity (subject) to whom they belong.

Key data is not easy for a human user to remember, so a suitable method for storing it in a convenient transportable
manner shall be employed. One possible mechanism would be to use a"Smart Card". This would hold the private and
(optionally) public keys of the user, the user's certificate, and a copy of the CA's public key. The use of this card shall
additionally be secured by, e.g., at least the use of a Personal |dentification Number (PIN), increasing the security of the
system by requiring the user to possess the card and to know how to access it. The exact method chosen for storing such
data, however, is beyond the scope of this Directory Specification.

Three waysin which auser's key pair may be produced are;

a) The user generates its own key pair. This method has the advantage that a user's private key is never
released to another entity, but requires acertain level of competence by the user.

b) The key pair is generated by a third party. The third party shall release the private key to the user in a
physically secure manner, and then actively destroy all information relating to the creation of the key pair
plus the keys themselves. Suitable physical security measures shall be employed to ensure that the third
party and the data operations are free from tampering.

¢) Thekey pair is generated by the CA. Thisisa specia case of b), and the considerations there apply.

NOTE — The CA already exhibits trusted functionality with respect to the user, and shall be subject to the necessary physical
security measures. This method has the advantage of not requiring secure data transfer to the CA for certification.

The cryptosystem in use imposes particular (technical) constraints on key generation.

79 Public-key certificate creation

A public-key certificate associates the public key and unique distinguished name of the subject it describes. Thus:
a) aCA shall besatisfied of the identity of a subject before creating a certificate for it;
b) aCA shall not issue certificates for two different subjects with the same name.

It is important that the transfer of information to the CA is not compromised, and suitable physical security measures
shall be taken. In thisregard:

a) It would be a serious breach of security if the CA issued a public-key certificate for a subject with a
public key that had been tampered with.

b) If the means of generation of key pairs of 7.8 b) or of 7.8 c) is employed, the subject's private key shall
be transferred to the user in a secure manner.

c) If the means of generation of key pairs of 7.8 @) or of 7.8 b) is employed, the subject may use different
methods (online or offline) to communicate its public key to the CA in a secure manner. Online methods
may provide some additional flexibility for remote operations performed between the user and the CA.

A public-key certificate is a publicly available piece of information, and no specific security measures need to be
employed with respect to its transmission e.g., to aDSA or LDAP server. Asit is produced by an offline CA on behalf
of a subject who shall be given a copy of it, the subject needs only store this information in its directory entry on a
subsequent directory access. Alternatively, the CA could lodge the public-key certificate for the subject, in which case
the CA shall be given suitable accessrights to entity's entry.

7.10 Certificaterevocation list

The authority that issues certificates (public-key or attribute) also has the responsibility to indicate the validity of the
certificates that it issues. Generaly, certificates are subject to possible subsequent revocation. This revocation and a
notification of the revocation may be done directly by the same authority that issued the certificate, or indirectly by

18 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

another authority duly authorized by the authority that issued the certificate. An authority that issues certificates is
required to state, possibly through a published statement of their practices, through the certificates themselves, or
through some other identified means, whether:

— thecertificates cannot be revoked; or
— the certificates may be revoked by the same certificate-issuing authority directly; or
— the certificate-issuing authority authorizes a different entity to perform revocation.

Authorities that do revoke certificates are required to state, through similar means, what mechanism(s) can be used by
relying parties to obtain revocation status information about certificates issued by that authority. This Directory
Specification defines a Certificate Revocation List (CRL) mechanism but does not preclude the use of aternative
mechanisms. One such aternative mechanism is the Online Certificate Status Protocol (OCSP) specified in
IETF RFC 25601. Using this protocol, a relying party (client) requests the revocation status of a certificate from an
OCSP server. The server may use CRLS, or other mechanisms to check the status of the certificate and respond to the
client accordingly. If OCSP can be used by relying parties to check the status of a certificate, IETF RFC 5280 contains a
certificate extension (Authority Info Access) that would be included in such certificates and would provide sufficient
information to access an appropriate OCSP server. Relying parties check revocation status information, as appropriate,
for all certificates considered during the path processing procedure described in clause 10 and the delegation path
processing procedure described in clause 16 to validate a certificate.

Only a CA that is authorized to issue CRLs may choose to delegate that authority to another entity. If this delegation is
done, it shall be verifiable at the time of certificate/CRL verification. The cRLDistributionPoints extension can be
used for this purpose. The crRLIssuer field of this extension would be populated with the name(s) of any entities, other
than the certificate issuer itself, that have been authorized to issue CRLs concerning the revocation status of the
certificate in question.

Certificates, including public-key certificates, as well as attribute certificates, shall have alifetime associated with them,
at the end of which they expire. In order to provide continuity of service, the authority shall ensure timely availability of
replacement certificates to supersede expired/expiring certificates. Revocation notice date is the date/time that a
revocation notice for a certificate first appears on a CRL, regardless of whether it is a base or dCRL. In the CRL,
revocation notice date is the value contained in the thisupdate field. Revocation date is the date/time the CA actually
revoked the certificate, which could be different from the first time it appears on a CRL. In the CRL, revocation date is
the value contained in the revocationbDate component. Invalidity date is the date/time at which it is known or
suspected that the private key was compromised or that the certificate should otherwise be considered invalid. This date
may be earlier than the revocation date. In the CRL, invalidity date is the value contained in the invalidityDate
entry extension.

Two related points are:

— Vadlidity of certificates may be designed so that each becomes valid at the time of expiry of its
predecessor, or an overlap may be allowed. The latter prevents the authority from having to install and
distribute alarge number of certificates that may run out at the same expiration date.

— Expired certificates will normally be removed from the Directory. It is a matter for the security policy
and responsibility of the authority to keep old certificates for a period if a non-repudiation of data service
is provided.

Certificates may be revoked prior to their expiration time, e.g., if the user's private key is assumed to be compromised,
the user is no longer to be certified by the CA, or if the CA's certificate is assumed to be compromised. The revocation
of an end-entity public-key certificate or a CA-certificate shall be made known by the CA, and a new certificate shall be
made available, if appropriate. The CA may then inform the holder of the certificate about its revocation by an offline
procedure.

An authority that issues and subsequently revokes certificates:

a) may berequired to maintain an audit record of its revocation events for all certificate typesissued by that
authority (e.g., public-key certificates, attribute certificates issued to end-entities, as well as other
authorities);

b) shal provide revocation status information to relying parties using CRLs, Online Certificate Status
Protocol (OCSP) or another mechanism for the publication of revocation status information;

¢) if using CRLs, it shall maintain and publish CRLs even if the lists of revoked certificates are empty;

1) |ETF RFC 2560, X.509 Internet Public Key Infrastructure Online Certificate Satus Protocol (OCSP), June 1999.

Rec. ITU-T X.509 (10/2012) 19

| SO/l EC 9594-8:2014 (E)

d) if using only partitioned CRLSs, it shall issue a full set of partitioned CRLSs covering the complete set of
certificates whose revocation status will be reported using the CRL mechanism. Thus, the compl ete set of
partitioned CRLs shall be equivalent to afull CRL for the same set of certificates, if the CRL issuer was
not using partitioned CRLs.

Relying parties may use a number of mechanisms to locate revocation status information provided by an authority. For
example, there may be a pointer in the certificate itself that directs the relying party to a location where revocation
information is provided. There may be a pointer in a revocation list that redirects the relying party to a different
location. The relying party may locate revocation information in a repository (e.g., a directory) or through other means
outside the scope of this Directory Specification (e.g., locally configured).

The maintenance of Directory entries affected by the authority's revocation lists is the responsibility of the Directory
and its users, acting in accordance with the security policy. For example, the user may modify its object entry by
replacing the old certificate with a new one. The latter shall then be used to authenticate the user to the Directory.

If revocation lists are published in the Directory, they are held within entries as attributes of the following types:
- certificateRevocationList;
— authorityRevocationList,
- deltaRevocationList;
- attributeCertificateRevocationList; and

— attributeAuthorityRevocationList.

CertificateList ::= SIGNED{CertificateListContent}
CertificateListContent ::= SEQUENCE {
version Version OPTIONAL,
-- if present, version shall be v2
signature AlgorithmIdentifier{{SupportedAlgorithms}},
issuer Name,
thisUpdate Time,
nextUpdate Time OPTIONAL,
revokedCertificates SEQUENCE OF SEQUENCE (
serialNumber CertificateSerialNumber,
revocationDate Time,

crlEntryExtensions Extensions OPTIONAL,
...} OPTIONAL,

.7

.7

crlExtensions [0] Extensions OPTIONAL }
The version field shall indicate the version of the encoded revocation list. If the extensions component flagged as

critical is present in the revocation list, the version shall be v2. If no extensions component flagged as critical is
present in the revocation list, the version shall either be absent or present asv2.

The signature field shall contain the algorithm identifier for the algorithm used by the authority to sign the revocation
list. It shall be the same value as used in the algorithmIdentifier component of the SIGNATURE data type when
signing the revocation list.

NOTE 1 —Thisfield is redundant.

The issuer field shall identify the entity that has signed and issued the revocation list.
The thisUpdate field shal indicate the date/time at which this revocation list was issued.

The nextUpdate field, if present, shall indicate the date/time by which the next revocation list in this series will be
issued. The next revocation list could be issued before the indicated date, but it shall not be issued any later than the
indicated time.

The revokedcCertificates field shall identify certificates that have been revoked. The revoked certificates are
identified by their serial humbers. If none of the certificates covered by this CRL has been revoked, it is strongly
recommended that the revokedCertificates parameter be omitted from the CRL, rather than being included with an
empty SEQUENCE.

The cr1Extensions field, if present, shall contain one or more CRL extensions.

NOTE 2 —The checking of the entire list of certificates is a local matter. The list shall not be assumed to be in any particular
order unless specific ordering rules have been specified by the issuing authority, e.g., in that authority's policy.

20 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

NOTE 3 —If anon-repudiation of data service is dependent on keys provided by the authority, the service should ensure that all
relevant keys of the authority (revoked or expired) and the time stamped revocation lists are archived and certified by a current
authority.

NOTE 4 —If any extensionsincluded in a CertificateList are defined as critical, the version element of the CertificateList shall be
present. If no extensions defined as critical are included, the version element may be absent. If version is absent, this may permit
an implementation that only supports version 1 CRLs still to use the CRL if in its examination of the revokedCertificates
sequence in the CRL, it does not encounter an extension. An implementation that supports version 2 (or greater) CRLs, in the
absence of version, may also be able to optimize its processing if it can determine early in processing that no critical extensions
are present in the CRL.

When an implementation processing a CRL encounters the serial number of the certificate of interest in a CRL entry,
but does not recognize acritical extension in the cr1EntryExtensions field from that CRL entry, that CRL cannot be
used to determine the status of the certificate. When an implementation does not recognize a critical extension in the
crlExtensions field, that CRL cannot be used to determine the status of the certificate, regardiess of whether the
serial number of the certificate of interest appearsin that CRL or not.

NOTE 5—1In these cases, local policy may dictate actions in addition to and/or stronger than those stated in this Directory
Specification, such as seeking revocation status information from other sources.

Certificates for which revocation status cannot be determined should not be considered valid certificates.

If an extension affects the treatment of the list (e.g., multiple CRLs need to be scanned to examine the entire list of
revoked certificates, or an entry may represent a range of certificates), then either that extension or a related extension
shall be indicated as critical in the cr1Extensions field. Therefore, acritical extension in the cr1lEntryExtensions
field of an entry shall affect only the certificate specified in that entry, unless there is arelated critical extension in the
crlExtensions field that advertises a special treatment for it. The only example of this situation defined in this
Directory Specification is the certificateIssuer CRL entry extenson and the related
issuingDistributionPoint CRL extension when the indirectcRIL Boolean from that extension is set to TRUE.

NOTE 6 — Standard extensions for CRLs are defined in clause 8 of this Directory Specification.

If unknown elements appear within the extension, and the extension is not marked critical, those unknown elements
shall be ignored according to the rules of extensibility documented in clause 12.2.2 of Rec. ITU-T X.519 | ISO/IEC
9594-5.

711 Repudiation of a digital signing

Participants in an event may subsequently decide to repudiate anything that they digitally signed in that event. For
example, one can dispute one's participation in a key establishment or being the originator of a signed email message as
easily as one can dispute one's signing of a document with the intent to be bound to the content of that document. The
repudiation may not be successful. The Non-repudiation Framework, Rec. ITU-T X.813 | ISO/IEC 10181-4, describes a
dispute resolution process as follows:

1) evidence generation;
2) evidencetransfer, storage and retrieval;
3) evidence verification; and
4) dispute resolution.
The generated evidence may include, but is not limited to:
— audit records pertinent to the event and an assertion of intent;
— statements made by third party notaries;
— policy statements,
— digitally signed information, including audit records and notary statements;
— timestamps of the digitally signed information;
— the certificates supporting the digital signature;
— theappropriate revocation information published and available at the time of the disputed event; and,

— any certificate revocations subseguent to the time of the event which indicate a key compromise occurred
before the time of the event.

The integrity of stored data that might be presented as evidence may be maintained in a variety of ways, e.g., access
control, storage of hashes by a trusted third party, digital signature. It may also be necessary periodically to strengthen
the protection of that stored data to counteract improvements in computer processing and/or crypto-analysis.

NOTE — Neither the type and amount of evidence generated nor the level of integrity is specified by this Directory Specification.
However, it is expected that the level of effort will be commensurate with the risk involved.

Rec. ITU-T X.509 (10/2012) 21

| SO/l EC 9594-8:2014 (E)

Evidence verification may require the revalidation of the digital signatures of data, e.g., messages, documents,
certificates, CRLs, and timestamps that were used in the initial validation process. The fact that a certificate has expired
shall not preclude its use for revalidating signatures created during the validity period of that certificate. A certificate
that has been revoked may be used if it can be determined that the certificate was valid at the time of the disputed event.

Even if al the digital evidence described above is considered technically valid, other conditions, e.g., the intent,
understanding or competence of the signer, may allow the signer successfully to repudiate it.

8 Public-key certificate and CRL extensions

The certificate extensions defined in this clause are for use with public-key certificates, unless otherwise stated.
Extensions for use with attribute certificates are defined in clause 15. CRL extensions defined in this clause may be
used in CRLs, CARLs and also for ACRLs and AARLs defined in clause 17.

This clause specifies extensions in the following areas:

a) Key and policy information: These certificate and CRL extensions convey additional information about
the keys involved, including key identifiers for subject and issuer keys, indicators of intended or
restricted key usage, and indicators of certificate policy.

b) Subject and issuer attributes: These certificate and CRL extensions support aternative names, of various
name forms, for a certificate subject, a certificate issuer, or a CRL issuer. These extensions can aso
convey additional attribute information about the certificate subject, to assist a relying party in being
confident that the certificate subject is a particular person or entity.

c) Caertification path constraints: These certificate extensions allow constraint specifications to be included
in CA-certificates, i.e., certificates for CAsissued by other CAs, to facilitate the automated processing of
certification paths when multiple certificate policies are involved. Multiple certificate policies arise when
policies vary for different applications in an environment or when interoperation with external
environments occurs. The constraints may restrict the types of certificates that can be issued by the
subject CA or that may occur subsequently in a certification path.

d) Basic CRL extensions: These CRL extensions alow a CRL to include indications of revocation reason,
to provide for temporary suspension of a certificate, and to include CRL-issue sequence numbers to
alow relying parties to detect missing CRLsin a sequence from one CRL issuer.

e) CRL distribution points and delta-CRLs: These certificate and CRL extensions allow the complete set of
revocation information from one CA to be partitioned into separate CRLs and alow revocation
information from multiple CAs to be combined in one CRL. These extensions also support the use of
partial CRLs indicating only changes since an earlier CRL issue.

Inclusion of any extension in a certificate or CRL is at the option of the authority issuing that certificate or CRL.

In a certificate or CRL, an extension is flagged as being either critical or non-critical. If an extension is flagged critical
and a relying party does not recognize the extension field type or does not implement the semantics of the extension,
then that relying party shall consider the certificate invalid. If an extension is flagged non-critical, a relying party that
does not recognize or implement that extension type may process the remainder of the certificate ignoring the extension.
If an extension is flagged non-critical, a relying party that does recognize the extension, shall process the extension.
Extension type definitionsin this Directory Specification indicate if the extension is always critical, always non-critical,
or if criticality can be decided by the certificate or CRL issuer. The reason for requiring some extensions to be always
non-critical is to allow relying parties which do not need to use such extensions to omit support for them without
jeopardizing the ahility to interoperate with all CAs.
NOTE — A relying party may require certain non-critical extensions to be present in a certificate in order for that certificate to be
considered acceptable. The need for inclusion of such extensions may be implied by local policy rules of the relying party or may
be a CA policy rule indicated to the relying party by inclusion of a particular certificate policy identifier in the certificate policies
extension with that extension being flagged critical.

For al certificate extensions, CRL extensions, and CRL entry extensions defined in this Directory Specification, there
shall be no more than one instance of each extension type in any certificate, CRL, or CRL entry, respectively.
8.1 Palicy handling

811 Certificate policy

This framework contains three types of entity: the relying party, the CA and the certificate subject (or end-entity). Each
entity operates under obligations to the other two entities and, in return, enjoys limited warranties offered by them.
These obligations and warranties are defined in a certificate policy. A certificate policy is a document (usualy in plain-

22 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

language). It may be referenced by an object identifier, which may be included in the certificate policies extension of
the certificate issued by the CA, to the end-entity and upon which the relying party relies. A certificate may beissued in
accordance with one or more than one policy. The definition of the policy and assignment of the identifier is performed
by a policy authority. The set of policies administered by a policy authority is called a policy domain. All certificates
are issued in accordance with a policy, even if the policy is neither recorded anywhere nor referenced in the certificate.
This Directory Specification does not prescribe the style or contents of the certificate policy.

The relying party may be bound to its obligations under the certificate policy by the act of importing an authority public
key and using it as trust anchor information, or by relying on a certificate that includes the associated policy identifier.
The CA may be bound to its obligations under the policy by the act of issuing a certificate that includes the associated
policy identifier. The end-entity may be bound to its obligations under the policy by the act of requesting and accepting
a certificate that includes the associated policy identifier and by using the corresponding private key. Implementations
that do not use the certificate policies extension should achieve the required binding by other means.

For an entity simply to declare conformance to a policy does not generally satisfy the assurance requirements of the
other entities in the framework. They require some reason to believe that the other parties operate a reliable
implementation of the policy. However, if explicitly stated in the policy, relying parties may accept the CA's assurances
that its end-entities agree to be bound by their obligations under the policy, without having to confirm this directly with
them. This aspect of certificate policy is outside the scope of this Directory Specification.

A CA may place limitations on the use of its certificates, in order to control the risk that it assumes as a result of issuing
certificates. For instance, it may restrict the community of relying parties, the purposes for which they may use its
certificates and/or the type and extent of damages that it is prepared to make good in the event of afailure on its part, or
that of its end-entities. These matters should be defined in the certificate policy.

Additional information, to help affected entities understand the provisions of the policy, may be included in the
certificate policies extension in the form of policy qualifiers.

8.1.2 Cross-certificates and policy handling

The warranties and obligations shared by the subject CA, the intermediate CA and the relying party are defined by the
certificate policy identified in the cross-certificate, in accordance with which the subject CA may act as, or on behalf of,
an end-entity. The warranties and obligations shared by the certificate subject, the subject CA and the intermediate CA
are defined by the certificate policy identified in the end-entity's certificate, in accordance with which the intermediate
CA may act as, or on behalf of, arelying party.

A certification path is said to be valid under the set of policies that are common to all public-key certificates in the path.

In addition to the situation described above, there are two special cases to be considered:

a) the CA does not use the certificate policies extension to convey its policy requirements to relying parties;
and

b) therelying party or intermediate CA delegates the job of controlling policy to the next CA in the path.

In thefirst case, the public-key certificate should not contain a certificate policies extension at al. As aresult, the set of
policies under which the path is valid will be null. But, the path may be valid nonetheless. Relying parties shall still
ensure that they are using the public-key certificate in conformance with the policies of the CAsin the path.

In the second case, the relying party or intermediate CA should include the special value any-policy in the initial-policy-
set or cross-certificate. Where a public-key certificate includes the special value any-policy, it should not include any
other certificate policy identifiers. The identifier any-policy should not have any associated policy qualifiers.

The relying party can ensure that al its obligations are conveyed by setting the initial-explicit-policy indicator. In this
way, only authorities that use the certificate policies extension as their way of achieving binding are accepted in the
path, and relying parties have no additional obligations. Because CAs also attract obligations when they act as, or on
behalf of, arelying party, they can ensure that all their obligations are conveyed by setting requireExplicitPolicy
component of the policyConstraints extension in the cross-certificate.

813 Policy mapping

Some certification paths may cross boundaries between policy domains. The warranties and obligations according to
which the cross-certificate is issued may be materially equivalent to some or all of the warranties and obligations
according to which the subject CA issues certificates to end-entities, even though the policy authorities under which the
two CAs operate may have selected different object identifiers for these materially equivalent policies. In this case, the
intermediate CA may include a policy mappings extension in the cross-certificate. In the policy mappings extension, the
intermediate CA assures the relying party that it will continue to enjoy the familiar warranties, and that it should
continue to fulfil its familiar obligations, even though subsequent entities in the certification path operate in a different
policy domain. The intermediate CA should include one or more mappings for each of a subset of the policies under

Rec. ITU-T X.509 (10/2012) 23

| SO/l EC 9594-8:2014 (E)

which it issued the cross-certificate, and it should not include mappings for any other policies. If one or more of the
certificate policies according to which the subject CA operates is identical to those according to which the intermediate
CA operates (i.e., it has the same unique identifier), then these identifiers should be excluded from the policy mapping
extension, but included in the certificate policies extension.

Policy mapping has the effect of converting all policy identifiersin certificates further down the certification path to the
identifier of the equivalent policy, as recognized by the relying party.

Policies shall not be mapped either to or from the specia value any-palicy.

Relying parties may determine that public-key certificates issued in a policy domain other than its own should not be
relied upon, even though a trusted intermediate CA may determine its policy to be materialy equivaent to its own. It
can do this by setting the initial-policy-mapping-inhibit input to the path validation procedure. Additionally, an
intermediate CA may make a similar determination on behalf of itsrelying parties. In order to ensure that relying parties
correctly enforce this requirement, it can set inhibitPolicyMapping iN @policyConstraints extension.

814 Certification path processing

Therelying party faces a choice between two strategies:

a) it canrequire that the certification path be valid under at least one of a set of policies pre-determined by
the user; or

b) it can ask the path validation module to report the set of policies for which the certification path is valid.

Thefirst strategy may be most appropriate when the relying party knows, a priori, the set of policies that are acceptable
for itsintended use.

The second strategy may be the most appropriate when the relying party does not know, a priori, the set of policies that
are acceptable for itsintended use.

In the first instance, the certification path validation procedure will indicate the path to be valid only if it is valid under
one or more of the policies specified in the initial-policy-set, and it will return the sub-set of the initial-policy-set under
which the path is valid. In the second instance, the certification path validation procedure may indicate that the path is
invalid under the initial-policy-set, but valid under a digoint set: the authorities-constrained-policy-set. Then the
relying party shall determine whether its intended use of the certificate is consistent with one or more of the certificate
policies under which the path is valid. By setting the initial-policy-set to any-policy, the relying party can cause the
procedure to return avalid result if the path is valid under any (unspecified) policy.

8.1.5 Self-issued certificates

A CA may issue a certificate to itself under three circumstances:

a) as a convenient way of encoding the public key associated with the private key used to sign the
certificate, so that it can be communicated to, and stored as trust anchor information by, its certificate-
using systems;

b) for certifying additional public keys of the CA used for purposes other than those covered by category a)
(such as OCSP and possibly CRL signing); and

¢) forreplacing its own expired CA-certificates.

These types of CA-certificates are called self-issued certificates, and they can be recognized by the fact that the issuer
and subject names present in them are identical. For the purposes of path validation, self-issued certificates of
category @) are self-signed certificates and are therefore verified with the public key contained in them, and if they are
encountered in the path, they shall be ignored.

Self-issued certificates of type b) may only appear as end certificates in a path, and shall be processed as end
certificates.

Self-issued certificates of type c) (also known as self-issued intermediate certificates) may appear as intermediate
certificates in a path. As a matter of good practice, when replacing a key that is on the point of expiration, a CA should
request the issuance of any in-bound cross-certificates that it requires for its replacement public key before using the
key. Nevertheless, if self-issued certificates of this category are encountered in the path, they shall be processed as
intermediate certificates, with the following exception: they do not contribute to the path length for the purposes of
processing the pathLenConstraint component of the basicConstraints extension and the skip-certificates
values associated with the policy-mapping-inhibit-pending and explicit-policy-pending indicators.

If an authority uses the same key to sign certificates and CRLSs, a single self-issued certificate of category a) shall be
used. If an authority uses a different key to sign CRLs than that used to sign certificates, the authority may choose to
issue two self-issued certificates of category a), one for each of the keys. In this situation, relying parties would need

24 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

access to both self-issued certificates to establish separate trust anchors for certificates and CRLs signed by that
authority. Alternatively, an authority may issue one self-issued certificate of category a) for certificate signing and one
self-issued certificate of category b) for CRL signing. In this situation, relying parties use the key certified in the
certificate of category @) astheir single trust anchor for both certificates and CRLs signed by that authority. In this case,
if the self-issued certificate of category b) were to be used to verify signatures on CRLS, there is no means defined in
this standard to check the validity of that certificate.

If self-issued certificates of category b) are encountered within a path, they shall be ignored.
NOTE — Other mechanisms for distributing CA public keys are outside the scope of this Directory Specification.

8.2 Key and policy infor mation extensions

8.21 Requirements

The following requirements relate to key and policy information:

a) CA key pair updating can occur at regular intervals or in special circumstances. There is a need for a
certificate field to convey an identifier of the public key to be used to verify the certificate signature. A
relying party can use such identifiers in finding the correct CA-certificate for validating the certificate
issuer's public key.

b) In generd, a certificate subject has different public keys and, correspondingly, different certificates for
different purposes, e.g., digital signature and encipherment key agreement. A certificate field is needed to

assist arelying party in selecting the correct certificate for a given subject for a particular purpose or to
allow a CA to stipulate that a certified key may only be used for a particular purpose.

c) Subject key pair updating can occur at regular intervals or in special circumstances. Thereis a need for a
certificate field to convey an identifier to distinguish between different public keys for the same subject
used at different pointsin time. A relying party can use such identifiersin finding the correct certificate.

d) The private key corresponding to a certified public key is typically used over a different period from the
validity of the public key. With digital signature keys, the usage period for the signing private key is
typically shorter than that for the verifying public key. The validity period of the certificate indicates a
period for which the public key may be used, which is not necessarily the same as the usage period of the
private key. In the event of a private key compromise, the period of exposure can be limited if the relying
party knows the legitimate use period for the private key. There is therefore a requirement to be able to
indicate the usage period of the private key in a public-key certificate.

e) Because certificates may be used in environments where multiple certificate policies apply, provision
needs to be made for including certificate policy information in certificates.

f) When cross-certifying from one organization to another, it can sometimes be agreed that certain of the
two organizations' policies can be considered equivalent. A CA-certificate needs to allow the certificate
issuer to indicate that one of its own certificate policies is equivalent to another certificate policy in the
subject CA's domain. Thisis known as policy mapping.

g) A user of an encipherment or digital signature system which uses certificates defined in this Directory
Specification needs to be able to determine in advance the algorithms supported by other users.

8.2.2 Public-key certificate and CRL extension fields

The following extension fields are defined:
a) Authority key identifier;
b) Subject key identifier;
¢) Key usage;
d) Extended key usage;
e) Private key usage period;
f) Certificate policies;
g) Policy mappings.

These extension fields shall be used only as certificate extensions, except for authority key identifier which may also be
used as a CRL extension. Unless otherwise noted, these extensions may be used in both CA-certificates and end-entity
certificates.

Rec. ITU-T X.509 (10/2012) 25

| SO/l EC 9594-8:2014 (E)

8.22.1 Authority key identifier extension

Thisfield, which may be used as either a certificate extension or CRL extension, identifies the public key to be used to
verify the signature on this certificate or CRL. It enables distinct keys used by the same CA to be distinguished (e.g., as
key updating occurs). Thisfield is defined as follows:

authorityKeyIdentifier EXTENSION ::= {
SYNTAX AuthorityKeyIdentifier
IDENTIFIED BY id-ce-authorityKeyIdentifier }

AuthorityKeyIdentifier ::= SEQUENCE {
keyIdentifier [0] KeyIdentifier OPTIONAL,
authorityCertIssuer [1] GeneralNames OPTIONAL,
authorityCertSerialNumber [2] CertificateSerialNumber OPTIONAL,
e}
(WITH COMPONENTS { .., authorityCertIssuer PRESENT,

authorityCertSerialNumber PRESENT } |

WITH COMPONENTS {..., authorityCertIssuer ABSENT,

authorityCertSerialNumber ABSENT })

KeyIdentifier ::= OCTET STRING

The key may be identified by an explicit key identifier in the keyIdentifier component, by the identification of a
certificate for the key (giving certificate issuer in the authorityCertIssuer component and certificate serial number
inthe authorityCertSerialNumber component), or by both explicit key identifier and identification of a certificate
for the key. If both forms of identification are used then the certificate or CRL issuer shall ensure they are consistent. A
key identifier shall be unique with respect to all key identifiers for the issuing authority for the certificate or CRL
containing the extension. An implementation which supports this extension is not required to be able to process all
name formsin the authorityCertIssuer component. (See clause 8.3.2.1 for details of the GeneralNames type.)

Certification authorities shall assign certificate serial humbers such that every (issuer, certificate serial number) pair
uniquely identifies a single certificate. The keyIdentifier form can be used to select CA-certificates during path
construction. The authorityCertIssuer, authoritySerialNumber pair can only be used to provide preference to
one certificate over others during path construction.

This extension is always non-critical.

8.2.2.2 Subject key identifier extension

This field identifies the public key being certified. It enables distinct keys used by the same subject to be differentiated
(e.g., askey updating occurs). Thisfield is defined as follows:

subjectKeyIdentifier EXTENSION ::= {
SYNTAX SubjectKeyIdentifier
IDENTIFIED BY id-ce-subjectKeyIdentifier }

SubjectKeyIdentifier ::= KeyIdentifier

A key identifier shall be unique with respect to all key identifiers for the subject with which it is used. This extension is
always non-critical.

8.2.2.3 Key usage extension

This field identifies the intended usage for which the certificate has been issued. The intended usage may be further
constrained by policy. This policy may be stated in a certificate policy definition, a contract, or other specification.
However, a policy shall not override the constraint indicated by a keyUusage hit, e.g., a certificate policy could not
allow acertificate to be used for digital signature if KeyUsage indicated that it could only be used for key agreement.

Setting a specific value of keyUsage in a certificate does not in itself signal for an instance of communication that the
communicating parties are acting in accordance with this setting, e.g., when signing a document. The definition of
methods by which parties may signal their intent for a specific instance of communication (e.g., commitment to content
for that specific instance) is outside the scope of this Directory Specification, but it is anticipated that multiple methods
will exist. Although not recommended, it is possible to use the content of the certificate, e.g., certificate policy, to signal
the intent of the signing. However, since that signal was made when the certificate was issued by the CA, such use may
not meet the requirement that declaring the intent is made at the time of signing by the signer.

More than one bit may be set in an instance of the keyUsage extension. The setting of multiple bits shall not change the
meaning of each individual bit but shall indicate that the certificate may be used for all of the purposes indicated by the
set bits. There may be risks incurred when setting multiple bits. A review of those risks is documented in Annex I.

26 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

Thisfield is defined as follows:

subjectKeyIdentifier EXTENSION ::= {

SYNTAX

SubjectKeyIdentifier

IDENTIFIED BY id-ce-subjectKeyIdentifier }

SubjectKeyIdentifier ::= KeyIdentifier

keyUsage EXTENSION ::= {

SYNTAX

KeyUsage

IDENTIFIED BY id-ce-keyUsage }

KeyUsage :

:= BIT STRING ({

digitalSignature (0),
contentCommitment (1),
keyEncipherment (2),
dataEncipherment (3),

keyAgreement (4),
keyCertSign (5).,
cRLSign (6),
encipherOnly (7).,
decipherOnly (8) }

Bitsin the keyUsage type are as follows:

a)

b)

d)

€)

f)

0)

h)

digitalSignature: for verifying digital signatures that are used with an entity authentication service,
adata origin authentication service and/or an integrity service;

contentCommitment: for verifying digital signatures which are intended to signa that the signer is
committing to the content being signed. The type of commitment the certificate can be used to support
may be further constrained by the CA, e.g., through a certificate policy. The precise type of commitment
of the signer e.g., "reviewed and approved” or "with the intent to be bound”, may be signalled by the
content being signed, e.g., the signed document itself or some additional signed information.

Since a content commitment signing is considered a digitaly signed transaction, the
digitalSignature bit need not be set in the certificate. If it is set, it does not affect the level of
commitment the signer has endowed in the signed content.

Note that it is not incorrect to refer to this keyUsage bit using the identifier nonRepudiation.
However, the use of this identifier has been deprecated. Regardless of the identifier used, the semantics
of this bit are as specified in this Directory Specification;

keyEncipherment: for enciphering keys or other security information, e.g., for key transport;

dataEncipherment: for enciphering user data, but not keys or other security information as in c)
above;

keyAgreement: foOr use asa public key agreement key;
keyCertsign: for verifying a CA's signature on certificates.

Since certificate signing is considered a commitment to the content of the certificate by the CA, neither
the digitalSignature bit Nor the contentCommitment bit need be set in the certificate. If either (or
both) is set, it does not affect the level of commitment the signer has endowed in the signed certificate;

cRLSign: for verifying an authority's signature on CRLS.

Since CRL signing is considered to be commitment to the content of the CRL by the CRL issuer, neither
the digitalSignature bit nor the contentCommitment bit need be set in the certificate. If either (or
both) is set, it does not affect the level of commitment the signer has endowed in the signed CRL;

encipheronly: public key agreement key for use only in enciphering data when used with
keyAgreement bit aso set (meaning with other key usage bit set is undefined);

decipheronly: public key agreement key for use only in deciphering data when used with
keyAgreement bit aso set (meaning with other key usage bit set is undefined).

Application specifications should indicate which of the digitalsignature Or contentCommitment bits are
appropriate for their use. If a signing application has no knowledge of the signer's intent regarding commitment to
content, the application shall sign and support that signing with a certificate that has the digitalsignature bit setin
that certificate's keyUsage extension.

Even though a digital signature was verified using a certificate that has only the digitalsignature bit set, other
factors externa to the verification of the digital signature may also play arole in determining the intent of the signing.

Rec. ITU-T X.509 (10/2012) 27

| SO/l EC 9594-8:2014 (E)

Conversely, even though a digital signature was verified using a certificate that has only the contentCommitment bit
set, external factors may be used by the signer to disclaim commitment to the signed content.

The bit keycertsign is for use in CA-certificates only. If keyUsage iS Set t0 keyCertSign, the value of the ca
component of the basicConstraints extension shal be set to TRuUE. CAs may aso use other defined key usage bits
in KeyUsage, €.0., digitalSignature for providing authentication and integrity of online administration
transactions.

This extension may, at the option of the certificate issuer, be either critical or non-critical.

If the extension is flagged critical or if the extension is flagged non-critical but the relying party recognizes it, then the
certificate shall be used only for a purpose for which the corresponding key usage hit is set to one. If the extension is
flagged non-critical and the relying party does not recognize it, then this extension shall be ignored.

A bit set to zero indicates that the key is not intended for that purpose. If the extension is present with all bits set to zero,
the key isintended for a purpose other than those listed above.

8.2.2.4 Extended key usage extension

This field indicates one or more purposes for which the certified public key may be used, in addition to, or in place of
the basic purposes indicated in the key usage extension field. Thisfield is defined asfollows:

extKeyUsage EXTENSION ::= {
SYNTAX SEQUENCE SIZE (1..MAX) OF KeyPurposeId
IDENTIFIED BY id-ce-extKeyUsage }

KeyPurposeId ::= OBJECT IDENTIFIER

A CA may assert any-extended-key-usage by using the anyExtendedKeyUsage object identifier. This enables a CA to
issue a certificate that contains KeyPurposeId object identifiers for extended key usages that may be required by
certificate-using applications, without restricting the certificate to only those key usages. If extended key usage would
restrict key usage, then the inclusion of this object identifier removes that restriction.

anyExtendedKeyUsage OBJECT IDENTIFIER ::= { id-ce-extKeyUsage 0 }

Key purposes may be defined by any organization with a need. Object identifiers used to identify key purposes shall be
assigned in accordance with Rec. ITU-T X.660 | ISO/IEC 9834-1.

This extension may, at the option of theissuing CA, be either critical or non-critical.
If the extension is flagged critical, then the certificate shall be used only for one of the purposes indicated.

If the extension is flagged non-critical, then it indicates the intended purpose or purposes of the key, and may be used in
finding the correct key/certificate of an entity that has multiple key</certificates. If this extension is present, and the
relying party recognizes and processes the extendedkeyUsage extension type, then the relying party shall ensure that
the certificate shall be used only for one of the purposes indicated. (Using applications may nevertheless require that a
particular purpose be indicated in order for the certificate to be acceptable to that application.)

If a certificate contains both a critical key usage field and a critical extended key usage field, then both fields shall be
processed independently and the certificate shall only be used for a purpose consistent with both fields. If there is no
purpose consistent with both fields, then the certificate shall not be used for any purpose.

This Directory Specification defines the following key purpose that can be included in the extended key usage
extension. Other purposes that can also be included are defined in other specifications, such as IETF RFC 5280.

keyPurposes OBJECT IDENTIFIER ::= {id-kp 1}

8.2.2.5 Private key usage period extension

This field indicates the period of use of the private key corresponding to the certified public key. It is applicable only
for digital signature keys. Thisfield is defined as follows:

privateKeyUsagePeriod EXTENSION ::= {
SYNTAX PrivateKeyUsagePeriod
IDENTIFIED BY id-ce-privateKeyUsagePeriod }

PrivateKeyUsagePeriod ::= SEQUENCE {
notBefore [0] GeneralizedTime OPTIONAL,
notAfter [1] GeneralizedTime OPTIONAL,

(WITH COMPONENTS {..., notBefore PRESENT } |

28 Rec. ITU-T X.509 (10/2012)

| SO/IEC 9594-8:2014 (E)
WITH COMPONENTS {..., notAfter PRESENT })

The notBefore component indicates the earliest date and time at which the private key could be used for signing. If
the notBefore component is not present, then no information is provided as to when the period of valid use of the
private key commences. Thenotafter component indicates the latest date and time at which the private key could be
used for signing. If the notafter component is not present then no information is provided as to when the period of
valid use of the private key concludes.

This extension is always non-critical.

NOTE 1—The period of valid use of the private key may be different from the certified validity of the public key as indicated by
the certificate validity period. With digital signature keys, the usage period for the signing private key is typicaly shorter than
that for the verifying public key.

NOTE 2 —If the verifier of a digital signature wants to check that the certificate has not been revoked, for example, due to key
compromise, up to the time of verification, then avalid certificate will still exist for the public key at verification time. After the
certificate(s) for apublic key have expired, a signature verifier cannot rely on compromises being notified via CRLs.

8.2.2.6 Certificate policiesextension

This field lists certificate policies, recognized by the issuing CA, that apply to the certificate, together with optional
qualifier information pertaining to these certificate policies. The list of certificate policies is used in determining the
validity of a certification path, as described in clause 10. The optional qualifiers are not used in the certification path
processing procedure, but relevant qualifiers are provided as an output of that process to the certificate using application
to assist in determining whether a valid path is appropriate for the particular transaction. Typically, different certificate
policies will relate to different applications which may use the certified key. The presence of this extension in an end-
entity certificate indicates the certificate policies for which this certificate is valid. The presence of this extension in a
certificate issued by one CA to another CA indicates the certificate policies for which certification paths containing this
certificate may be valid. Thisfield is defined as follows:

certificatePolicies EXTENSION ::= {
SYNTAX CertificatePoliciesSyntax
IDENTIFIED BY id-ce-certificatePolicies }

CertificatePoliciesSyntax ::= SEQUENCE SIZE (1..MAX) OF PolicyInformation

PolicyInformation ::= SEQUENCE {
policyIdentifier CertPolicyId,
policyQualifiers SEQUENCE SIZE (1..MAX) OF PolicyQualifierInfo OPTIONAL,

CertPolicyId ::= OBJECT IDENTIFIER

PolicyQualifierInfo ::= SEQUENCE {
policyQualifierId CERT-POLICY-QUALIFIER.&id({SupportedPolicyQualifiers}),
qualifier CERT-POLICY-QUALIFIER.&Qualifier
({SupportedPolicyQualifiers}{@policyQualifierId}) OPTIONAL,

SupportedPolicyQualifiers CERT-POLICY-QUALIFIER ::= {...}

A value of the PolicyInformation type identifies and conveys qualifier information for one certificate policy. The
component policyIdentifier containsan identifier of acertificate policy and the component policyQualifiers
contains policy qualifier values for that element.

This extension may, at the option of the certificate issuer, be either critical or non-critical.

If the extension is flagged critical, it indicates that the certificate shall only be used for the purpose, and in accordance
with the rules implied by one of the indicated certificate policies. The rules of a particular policy may require the
relying party to process the qualifier value in a particular way.

If the extension is flagged non-critical, use of this extension does not necessarily constrain use of the certificate to the
policies listed. However, a relying party may require a particular policy to be present in order to use the certificate
(see clause 10). Policy qualifiers may, at the option of the relying party, be processed or ignored.

Rec. ITU-T X.509 (10/2012) 29

| SO/l EC 9594-8:2014 (E)

Certificate policies and certificate policy qualifier types may be defined by any organization with a need. Object
identifiers used to identify certificate policies and certificate policy qualifier types shall be assigned in accordance with
Rec. ITU-T X.660 | ISO/IEC 9834-1. A CA may assert any-policy by using the anyPolicy object identifier in order to
trust a certificate for all possible policies. Because of the need for identification of this special value to apply regardiess
of the application or environment, that object identifier is assigned in this Directory Specification. No object identifiers
will be assigned in this Directory Specification for specific certificate policies. That assignment is the responsibility of
the entity that defines the certificate policy.

anyPolicy OBJECT IDENTIFIER ::= {id-ce-certificatePolicies 0}
Theidentifier anyPolicy should not have any associated policy qualifiers.

Thefollowing ASN.1 object classis used in defining certificate policy qualifier types:

CERT-POLICY-QUALIFIER ::= CLASS {
&id OBJECT IDENTIFIER UNIQUE,
&Qualifier OPTIONAL }

WITH SYNTAX {
POLICY-QUALIFIER-ID &id
[QUALIFIER-TYPE &Qualifier] }

A definition of apolicy quaifier type shall include:
— astatement of the semantics of the possible vaues; and

— anindication of whether the qualifier identifier may appear in a certificate policies extension without an
accompanying value and, if so, the implied semanticsin such a case.
NOTE — A qualifier may be specified as having any ASN.1 type. When the qualifier is anticipated to be used primarily with
applications that do not have ASN.1 decoding functions, it is recommended that the type OCTET STRING be specified. The
ASN.1 OCTET STRING value can then convey a quaifier value encoded according to any convention specified by the policy
element defining organization.

8.2.2.7 Policy mappings extension

Thisfield, which shall be used in CA-certificates only, allows a certificate issuer to indicate that, for the purposes of the
user of a certification path containing this certificate, one of the issuer's certificate policies can be considered equivalent
to adifferent certificate policy used in the subject CA's domain. Thisfield is defined as follows:

policyMappings EXTENSION ::= {
SYNTAX PolicyMappingsSyntax
IDENTIFIED BY id-ce-policyMappings }

PolicyMappingsSyntax ::= SEQUENCE SIZE (1..MAX) OF SEQUENCE {
issuerDomainPolicy CertPolicyId,
subjectDomainPolicy CertPolicyId,

-}

The issuerDomainPolicy component indicates a certificate policy that is recognized in the issuing CA's domain and
that can be considered equivalent to the certificate policy indicated in the subjectDomainPolicy component that is
recognized in the subject CA's domain.

Policies shall not be mapped to or from the specia value anyPolicy.

This extension may, at the option of the certificate issuer, be either critical or non-critical. It is recommended that it be
critical, otherwise arelying party may not correctly interpret the stipulation of the issuing CA.
NOTE 1 — An example of policy mapping is as follows. The U.S. government domain may have a policy called Canadian Trade
and the Canadian government may have a policy called U.S. Trade. While the two policies are distinctly identified and defined,
there may be an agreement between the two governments to accept certification paths extending cross-border within the rules
implied by these policies for relevant purposes.
NOTE 2 — Policy mapping implies significant administrative overheads and the involvement of suitably diligent and authorized
personnel in related decision-making. In general, it is preferable to agree upon a more global use of common policiesthanitisto
apply policy mapping. In the above example, it would be preferable for the U.S., Canada and Mexico to agree upon a common
policy for North American Trade.

NOTE 3 — It isanticipated that policy mapping will be practical only in limited environments in which policy statements are very
simple.

30 Rec. | TU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

8.3 Subject and issuer information extensions

831 Requirements

Thefollowing
a)

b)

832 Cert
Thefollowing
a)
b)
0)

requirements relate to certificate subject and certificate issuer attributes:

Certificates need to be usable by applications that employ a variety of name forms, including Internet
electronic mail names, Internet domain names, ITU-T X.400 originator/recipient addresses, and EDI
party names. It is therefore necessary to be able securely to associate multiple names of avariety of name
forms with a certificate subject or a certificate or CRL issuer.

A relying party may need securely to know certain identifying information about a subject in order to
have confidence that the subject isindeed the person or thing intended. For example, information such as
postal address, position in a corporation, or a picture image may be required. Such information may be
conveniently represented as directory attributes, but these attributes are not necessarily part of the
distinguished name. A certificate field is therefore needed for conveying additional directory attributes
beyond those in the distinguished name.

ificateand CRL extension fields

extension fields are defined:
Subject alternative name;

I ssuer alternative name;
Subject directory attributes.

These fields shall be used only as public-key certificate extensions, except for issuer alternative name which may also
be used as a CRL extension. As certificate extensions, they may be present in CA-certificates or end-entity public-key

certificates.

8321 Subj

ect alter native name extension

This field contains one or more alternative names, using any of a variety of name forms, for the entity that is bound by
the CA to the certified public key. Thisfield is defined as follows:

subjectAltName EXTENSION ::= {

SYNTAX GeneralNames
IDENTIFIED BY id-ce-subjectAltName }
GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName
GeneralName ::= CHOICE {
otherName [0] INSTANCE OF OTHER-NAME,
rfc822Name [1] IA5String,
dNSName [2] IA5String,
x400Address [3] ORAddress,
directoryName [4] Name,
ediPartyName [5] EDIPartyName,
uniformResourceldentifier [6] IAS5String,
iPAddress [7] OCTET STRING,
registeredID [8] OBJECT IDENTIFIER,
-}
OTHER-NAME ::= TYPE-IDENTIFIER
EDIPartyName ::= SEQUENCE {
nameAssigner [0] UnboundedDirectoryString OPTIONAL,
partyName [1] UnboundedDirectoryString,
-}

Thevaluesint

he alternatives of the GeneralName type are names of various forms as follows:

the otherName alternative is a name of any form defined as an instance of the oTHER-NaME information
object class;

the rfc822Name aternative is an Internet electronic mail address defined in accordance with
IETF RFC 822;

the dnsName alternative is an Internet domain name defined in accordance with |ETF RFC 1035;

the x400address alternative is an O/R address defined in accordance with Rec. ITU-T X.411 |
ISO/IEC 10021-4;

Rec. ITU-T X.509 (10/2012) 31

| SO/l EC 9594-8:2014 (E)

— thedirectoryName alternative is a distinguished name defined in accordance with Rec. ITU-T X.501 |
I SO/IEC 9594-2;

— the edipartyName aternative is a name of a form agreed between communicating Electronic Data
Interchange partners, the nameassigner component identifies an authority that assigns unique values of
names in the partyName component;

— theuniformResourceIdentifier aternativeisaUniform Resource |dentifier for the worldwide web
defined in accordance with |ETF RFC 1630;

— the ipaddress dternative is an Internet Protocol address defined in accordance with IETF RFC 791,
represented as a binary string.

— the registeredID dlternative is an object identifier of any registered object assigned in accordance
with Rec. ITU-T X.660 | ISO/IEC 9834-1.

For every name form used in the GeneralName type, there shall be a name registration system that ensures that any
name used unambiguously identifies one entity to both the issuing CA and relying parties.

This extension may, at the option of the certificate issuer, be either critical or non-critical. An implementation which
supports this extension is not required to be able to process all name forms. If the extension is flagged critical, at least
one of the name forms that is present shall be recognized and processed, otherwise the certificate shall be considered
invalid. Apart from the preceding restriction, a relying party is permitted to ignore any name with an unrecognized or
unsupported name form. It is recommended that, provided the subject field of the public-key certificate contains a
distinguished name that unambiguously identifies the subject, this field be flagged non-critical.

NOTE 1—-Use of the TYPE-IDENTIFIER classis described in annexes A and C of Rec. ITU-T X.681 | ISO/IEC 8824-2.

NOTE 2 - If this extension field is present and is flagged critical, the subject field of an end-entity public-key certificate may

contain a null name (e.g., a sequence of zero relative distinguished names) in which case the subject is identified only by the
name or names in this extension (see clause 7.2).

8.3.2.2 Issuer alternative name extension

This field contains one or more alternative names, using any of a variety of name forms, for the certificate or CRL
issuer. Thisfield is defined as follows:

issuerAltName EXTENSION ::= {
SYNTAX GeneralNames
IDENTIFIED BY id-ce-issuerAltName }

This extension may, at the option of the certificate or CRL issuer, be either critical or non-critical. An implementation
which supports this extension is not required to be able to process all name forms. If the extension is flagged critical, at
least one of the name forms that are present shall be recognized and processed, otherwise the certificate or CRL shall be
considered invalid. Apart from the preceding restriction, a relying party is permitted to ignore any name with an
unrecognized or unsupported name form. It is recommended that, provided the issuer field of the certificate or CRL
contains a distinguished name that unambiguously identifies the issuing authority, thisfield be flagged non-critical.

8.3.2.3 Subject directory attributes extension

This field conveys any desired Directory attributes associated with the subject of the certificate. This field is defined as
follows:

subjectDirectoryAttributes EXTENSION ::= {
SYNTAX AttributesSyntax
IDENTIFIED BY id-ce-subjectDirectoryAttributes }

AttributesSyntax ::= SEQUENCE SIZE (1..MAX) OF Attribute{{SupportedAttributes}}

This extension may, at the option of the certificate issuer, be either critical or non-critical. A certificate-using system
processing this extension is not required to understand al attribute types included in the extension. If the extension is
flagged critical, at least one of the attribute types contained in the extension shall be understood for the certificate to be
accepted. If the extension is flagged critical and none of the contained attribute types is understood, the certificate shall
be rejected.

If this extension is present in a public-key certificate, some of the extensions defined in clause 15 may also be present.

32 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

8.4 Certification path constraint extensions

8.4.1 Requirements

For certification path processing:

a)

b)

0)

d)

f)

0)

h)

i)
)

End-entity public-key certificates need to be distinguishable from CA-certificates to protect against end-
entities establishing themselves as CAs without authorization. It also needs to be possible for a CA to
limit the length of a subsequent chain resulting from a certified subject CA, e.g., to no more than one
more certificate or no more than two more certificates.

A CA needsto be able to specify constraints which allow arelying party to check that less-trusted CAsin
a certification path (i.e., CAs further down the certification path from the CA with whose public key the
relying party starts) are not violating their trust by issuing certificates to subjects in an inappropriate
name space. Adherence to these constraints needs to be automatically checkable by the relying party.

Certification path processing needs to be implementable in an automated, self-contained module. Thisis
necessary to permit trusted hardware or software modules to be implemented which perform the
certification path processing functions.

It should be possible to implement certification path processing without depending upon real-time
interactions with the local user.

It should be possible to implement certification path processing without depending upon the use of
trusted local databases of policy-description information. (Some trusted local information — an initial
public key, at least — is needed for certification path processing but the amount of such information
should be minimized.)

Certification paths need to operate in environments in which multiple certificate policies are recognized.
A CA needs to be able to stipulate which CAs in other domains it trusts and for which purposes.
Chaining through multiple policy domains needs to be supported.

Complete flexibility in trust modelsis required. A strict hierarchical model which is adequate for asingle
organization is not adequate when considering the needs of multiple interconnected enterprises.
Flexibility isrequired in the selection of thefirst trusted CA in a certification path. In particular, it should
be possible to require that the certification path start in the local security domain of the public-key user
system.

Naming structures should not be constrained by the need to use names in certificates, i.e., distinguished
name structures considered natural for organizations or geographical areas shall not need adjustment in
order to accommodate CA requirements.

Certificate extension fields need to be backward-compatible with the unconstrained certification path
approach system as specified in earlier editions of this Directory Specification.

A CA needs to be able to inhibit the use of policy mapping and to require explicit certificate policy
identifiersto be present in subsequent certificates in a certification path.

NOTE —In any relying party, the processing of a certification path requires an appropriate level of assurance. This Directory
Specification defines functions that may be used in implementations that are required to conform to specific assurance
statements. For example, an assurance requirement could state that certification path processing shall be protected from
subversion of the process (such as software-tampering or data modification). The level of assurance should be commensurate
with business risk. For example:

— processing internal to an appropriate cryptographic module may be required for public keys used to validate
high value funds transfer; whereas

— processing in software may be appropriate for home banking balance inquiries.

Conseguently, certification path processing functions should be suitable for implementation in hardware cryptographic
modules or cryptographic tokens as one option.

k)

A CA needs to be able to prevent the special value any-policy from being considered a valid policy in
subsequent certificates in a certification path.

84.2 Certificate extension fields

The following extension fields are defined:

a)
b)
0
d)

basicConstraints;
nameConstraints;
policyConstraints; and

inhibitAnyPolicy.

Rec. I TU-T X.509 (10/2012) 33

| SO/l EC 9594-8:2014 (E)

These extension fields shall be used only as certificate extensions. Name constraints and policy constraints shall be used
only in CA-certificates; basic constraints may also be used in end-entity public-key certificates. Examples of the use of
these extensions are given in Annex G.

8.4.2.1 Basic constraintsextension

This field indicates if the subject may act as a CA, with the certified public key being used to verify certificate
signatures. If so, a certification path length constraint may also be specified. Thisfield is defined as follows:

basicConstraints EXTENSION ::= {
SYNTAX BasicConstraintsSyntax
IDENTIFIED BY id-ce-basicConstraints }

BasicConstraintsSyntax ::= SEQUENCE (
cA BOOLEAN DEFAULT FALSE,
pathLenConstraint INTEGER(0..MAX) OPTIONAL,

-}

The ca component with the value TRUE indicates that the certified public key may be used to verify public-key
certificate signatures.

The pathLenConstraint component may be present if ca is set to TRUE. Otherwise, it shall be absent. It gives the
maximum number of CA-certificates that may follow this CA-certificate in a certification path. Value 0 indicates that
the subject of this CA-certificate may issue public-key certificates only to end-entities and not to further CAs. If no
pathLenConstraint field appearsin any CA-certificate of a certification path, there is no limit to the allowed length
of the certification path. The constraint takes effect beginning with the next CA-certificate in the path. The constraint
restricts the length of the segment of the certification path between the CA-certificate containing this extension and the
end-entity public-key certificate. It has no impact on the number of CA-certificates in the certification path between the
trust anchor and the CA-certificate containing this extension. Therefore, the length of a complete certification path may
exceed the maximum length of the segment constrained by this extension. The constraint controls the number of non
self-issued CA-certificates between the CA-certificate containing the constraint and the end-entity certificate.
Therefore, the total length of this segment of the path, excluding self-issued certificates, may exceed the value of the
constraint by as many as two certificates. (This includes the certificates at the two endpoints of the segment plus the
CA-certificates between the two endpoints that are constrained by the value of this extension.)

This extension may, at the option of the issuing CA, be either critical or non-critical. It is recommended that it be
flagged critical, otherwise, an entity which is not authorized to be a CA may issue certificates and a relying party may
unwittingly use such acertificate.

If this extension is present and is flagged critical, or is flagged non-critical but is recognized by the relying party, then:
— if thevalue of ca is not set to TRUE then the certified public key shall not be used to verify a certificate
signature;

— if thevalue of ca is set to TRUE and pathLenConstraint iS present then the relying party shall check
that the certification path being processed is consistent with the value of pathLenConstraint.

If this extension is not present, or is flagged non-critical and is not recognized by a relying party, then the public-key
certificate is to be considered an end-entity public-key certificate and cannot be used to verify certificate signatures.

NOTE — To constrain a public-key certificate subject to being only an end-entity, i.e., not a CA, the issuer may include this
extension field containing only an empty SEQUENCE value.

8.4.2.2 Name constraints extension

This field, which shall be used only in a CA-certificate, indicates one or more name forms which have constraints
placed upon their name spaces, and in which all subject names in the same name form in subsequent certificates in a
certification path must be located. If this extension is absent, then no constraints are placed on any name form. If this
extension is present but a name form is not included in the extension, then no constraints are imposed on that name
form.

NOTE — Because there can be an unbounded set of registerediD name forms, then in general it is not possible to constrain every
possible name form of subject names with this extension.

Thisfield is defined as follows:

nameConstraints EXTENSION ::= {
SYNTAX NameConstraintsSyntax
IDENTIFIED BY id-ce-nameConstraints }

NameConstraintsSyntax ::= SEQUENCE {

34 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

permittedSubtrees [0] GeneralSubtrees OPTIONAL,
excludedSubtrees [1] GeneralSubtrees OPTIONAL,
cee }

(WITH COMPONENTS {..., permittedSubtrees PRESENT } |
WITH COMPONENTS {..., excludedSubtrees PRESENT })

GeneralSubtrees ::= SEQUENCE SIZE (1..MAX) OF GeneralSubtree
GeneralSubtree ::= SEQUENCE {
base GeneralName,

minimum [O] BaseDistance DEFAULT O,
maximum [1] BaseDistance OPTIONAL,

-}
BaseDistance ::= INTEGER(0..MAX)
At least one of permittedSubtrees and excludedSubtrees components shall be present.

If present, the permittedSubtrees component specifies one or more subtrees, for one or more name forms, within
which subject names in acceptable certificates shall be contained. If present, the excludedsubtrees component
specifies one or more subtrees for one or more name forms within which subject names in acceptable certificates shall
not be contained. Subject names that are compared against specified subtrees include those present in both the subject
field and the subjectaltNames extension of a certificate. Each subtree is defined by the name of the root of the
subtree, the base component, and, optionally, within that subtree, an areathat is bounded by upper and/or lower levels.

The minimum field specifies the upper bound of the area within the subtree. All hames whose final hame component is
above the level specified are not contained within the area. A value of minimum equal to zero (the default) corresponds
to the base, i.e., the top node of the subtree. For example, if minimum is Set to one, then the subtree excludes the base
node but includes subordinate nodes.

The maximum field specifies the lower bound of the area within the subtree. All names whose last component is below
the level specified are not contained within the area. A value of maximum Of zero corresponds to the base, i.e., the top of
the subtree. An absent maximum component indicates that no lower limit should be imposed on the area within the
subtree. For example, if maximum is set to one, then the subtree excludes all nodes except the subtree base and its
immediate subordinates.

The set of al permittedsubtrees and excludedSubtrees for aname form together comprise the constrained name
space for the name form. All subject names, in certificates issued by the subject CA and subsequent CAs in a
certification path, which are of a constrained name form, shall be located in the constrained name space for the
certificate to be acceptable.

permittedSubtrees, if present, specifies the subtrees within which al the subject names that are of a constrained
name form shall lie, for the certificate to be acceptable. If excludedsSubtrees is present, any certificate issued by the
subject CA or subsequent CAs in the certification path that has a subject name within these subtrees is unacceptable. If
both permittedsubtrees and excludedSubtrees are present for a name form and the name spaces overlap, the
exclusion statement takes precedence.

If none of the name forms of the subject name in the certificate is constrained by this extension, the certificate is
acceptable.

In some situations, more than one certificate may need to be issued to satisfy the name constraints requirements.
Annex G illustrates two of these situations. For example, if name constraints are defined for multiple name forms, but a
certificate needs to meet the name constraints for only one of the name forms (logical OR on constraints), then multiple
certificates should be issued, each constraining a single name form.

Of the name forms available through the GeneralName type, only those name forms that have a well-defined
hierarchical structure may be used in these fields.

The directoryName name form satisfies this requirement; when using this name form a naming subtree corresponds
to a DIT subtree. A certificate is considered subordinate to the base (and therefore a candidate to be within the
subtree) if the seQueENcE of rpNS, which forms the full DN in base, is identical to the initial sEQUENCE of the same
number of rRoNs which forms the first part of the DN of the subject (in the subject field or directoryName of
subjectAltNames extension) of the certificate. The DN of the subject of the certificate may have additional
trailing RDNS in its sequence that do not appear in the DN in base. The distinguishedNameMatch matching ruleis
used to compare the value of base with the initial sequence of RoNsin the DN of the subject of the certificate.

Conformant implementations are not required to recognize all possible name forms. If the extension is flagged as being
critical and a certificate-using implementation does not recognize a name form used in any base component, the

Rec. I TU-T X.509 (10/2012) 35

| SO/l EC 9594-8:2014 (E)

certificate shall be handled as if an unrecognized critical extension had been encountered. If the extension is flagged as
being non-critical and a certificate-using implementation does not recognize a name form used in any base
component, then that subtree may be ignored.

When testing certificate subject names for consistency with a name constraint, names in non-critical subject alternative
name extensions shall be processed, not ignored.

This extension may, at the option of the certificate issuer, be either critical or non-critical. It is recommended that it be
flagged as critical; otherwise, a relying party may not check that subsequent certificates in a certification path are
located in the constrained name spaces intended by the issuing CA.

If this extension is present and is flagged as being critical, then a relying party shall check that the certification path
being processed is consistent with the value in this extension.

Annex G contains examples of use of the name constraints extension.

8.4.2.3 Policy constraints extension

This field specifies constraints which may require explicit certificate policy identification or inhibit policy mapping for
the remainder of the certification path. Thisfield is defined as follows:

policyConstraints EXTENSION ::= {
SYNTAX PolicyConstraintsSyntax
IDENTIFIED BY id-ce-policyConstraints }

PolicyConstraintsSyntax ::= SEQUENCE {
requireExplicitPolicy [0] SkipCerts OPTIONAL,
inhibitPolicyMapping [1] SkipCerts OPTIONAL,

}

(WITH COMPONENTS {..., requireExplicitPolicy PRESENT } |
WITH COMPONENTS {..., inhibitPolicyMapping PRESENT })

SkipCerts ::= INTEGER(0..MAX)
At least one of the requireExplicitPolicy and inhibitPolicyMapping components shall be present.

If the requireExplicitPolicy component is present, and the certification path includes a certificate issued by a
nominated CA, it is necessary for all certificates in the path to contain, in the certificate policies extension, an
acceptable policy identifier. An acceptable policy identifier isthe identifier of a certificate policy required by the user of
the certification path, the identifier of a policy which has been declared equivalent to one of these policies through
policy mapping, or any-policy. The nominated CA is either the issuer CA of the certificate containing this extension (if
the value of requireExplicitPolicy iS0) or a CA which istheissuer of a subsequent certificate in the certification
path (as indicated by a non-zero value).

If the inhibitPolicyMapping component is present, it indicatesthat, in al certificates starting from a nominated CA
in the certification path until the end of the certification path, policy mapping is not permitted. The nominated CA is
either the subject CA of the certificate containing this extension (if the value of inhibitPolicyMapping is0) or aCA
which is the subject of a subsequent certificate in the certification path (asindicated by a non-zero value).

A value of type skipcerts indicates the number of certificates in the certification path to skip before a constraint
becomes effective.

This extension may, at the option of the certificate issuer, be either critical or non-critical. It is recommended that it be
flagged critical; otherwise, arelying party may not correctly interpret the stipulation of the issuing CA.

8.4.2.4 Inhibit any policy extension

Thisfield specifies a constraint that indicates any-policy is not considered an explicit match for other certificate policies
for all non-self-issued certificates in the certification path starting with a nominated CA. The nominated CA is either the
subject CA of the certificate containing this extension (if the value of inhibitAnyPolicy is0) or a CA which isthe
subject of a subsequent certificate in the certification path (as indicated by a non-zero value).

inhibitAnyPolicy EXTENSION ::= {
SYNTAX SkipCerts
IDENTIFIED BY id-ce-inhibitAnyPolicy }

This extension may, at the option of the certificate issuer, be either critical or non-critical. It is recommended that it be
critical, otherwise arelying party may not correctly interpret the stipulation of the issuing CA.

36 Rec. | TU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

8.5 Basic CRL extensions

85.1 Requirements

The following requirements relate to CRLS:

a)

b)

0)

d)

b)

e

f)

9)

h)

Relying parties need to be able to track all CRLsissued from a CRL issuer or CRL distribution point (see
clause 8.6) and be able to detect a missing CRL in the sequence. CRL sequence numbers are therefore
required.

Some CRL users may wish to respond differently to a revocation, depending upon the reason for the
revocation. Thereis therefore arequirement for a CRL entry to indicate the reason for revocation.

There is a requirement for an authority to be able to temporarily suspend validity of a certificate and
subsequently either revoke or reinstate it. Possible reasons for such an action include:

— desire to reduce liability for erroneous revocation when a revocation request is unauthenticated and
there is inadequate information to determine whether it is valid;

— other business needs, such as temporarily disabling the certificate of an entity pending an audit or
investigation.

A CRL contains, for each revoked certificate, the date when the authority posted the revocation. Further
information may be known as to when an actual or suspected key compromise occurred, and this
information may be valuableto arelying party. The revocation date is insufficient to solve some disputes
because, assuming the worgt, al signatures issued during the validity period of the certificate have to be
considered invalid. However, it may be important for a user that a signed document be recognized as
valid even though the key used to sign the message was compromised after the signature was produced.
To assist in solving this problem, a CRL entry can include a second date which indicates when it was
known or suspected that the private key was compromised.

Relying parties need to be able to determine, from the CRL itself, additional information including the
scope of certificates covered by this list, the ordering of revocation notices, and which stream of CRLs
the CRL number is unique within.

Issuers need the ability dynamically to change the partitioning of CRLs and to refer relying parties to the
new location for relevant CRLsiif the partitioning changes.

Delta CRLs may also be available that update a given base CRL. Relying parties need to be able to
determine, from a given CRL, whether delta CRLs are available, where they are located and when the
next delta CRL will be issued.

In addition to CRLs publishing a notification that certificates have been revoked, there is a requirement
to publish a notification that certificates will be revoked as of a specified date and time in the future.

There is a requirement to provide more efficient ways to indicate in a CRL that a set of certificates has
been revoked.

85.2 CRL extension fields

The following extension fields are defined:

a)
b)
c)
d)
)
f)
9)
h)
i)

CRL number;

CRL scope;

Status referral;

CRL stream identifier;

Ordered ligt;

Deltainformation;

To be revoked;

Revoked Group of certificates; and
Expired certificates on CRL.

85.2.1 CRL number extension

This CRL extension field conveys a monotonically increasing sequence number for each CRL issued by a given CRL
issuer through a given authority directory attribute or CRL distribution point. It allows a CRL user to detect whether
CRLsissued prior to the one being processed were also seen and processed. Thisfield is defined as follows:

cRLNumber EXTENSION ::= {

Rec. ITU-T X.509 (10/2012) 37

| SO/l EC 9594-8:2014 (E)

SYNTAX CRLNumber
IDENTIFIED BY id-ce-cRLNumber }

CRLNumber ::= INTEGER(0..MAX)

This extension is always non-critical.

8.5.22 CRL scopeextension
NOTE — Use of the CRL scope extension is deprecated.

The scope of a CRL is indicated within that CRL using the following CRL extension. In order to prevent a CRL
substitution attack against an application that does not support the scope extension, the scope extension, if present, shall
be marked critical.

This extension may be used to provide scope statements of various CRL types including:
— simple CRLsthat provide revocation information about certificates issued by a single authority;
— indirect CRLsthat provide revocation information about certificates issued by multiple authorities;
— deltaCRLsthat update previously issued revocation information;
— indirect delta-CRLs that provide revocation information that updates multiple base CRLs issued by a
single authority or by multiple authorities.

crlScope EXTENSION ::= {
SYNTAX CRLScopeSyntax
IDENTIFIED BY id-ce-cRLScope }
CRLScopeSyntax ::= SEQUENCE SIZE (1..MAX) OF PerAuthorityScope

PerAuthorityScope ::= SEQUENCE {

authorityName [0] GeneralName OPTIONAL,
distributionPoint [1] DistributionPointName OPTIONAL,
onlyContains [2] OnlyCertificateTypes OPTIONAL,
onlySomeReasons [4] ReasonFlags OPTIONAL,

serialNumberRange [5] NumberRange OPTIONAL,
subjectKeyIdRange [6] NumberRange OPTIONAL,

nameSubtrees [7] GeneralNames OPTIONAL,

baseRevocationInfo [9] BaseRevocationInfo OPTIONAL,
OnlyCertificateTypes ::= BIT STRING {

user (0),

authority (1),
attribute (2)}

NumberRange ::= SEQUENCE {
startingNumber [0] INTEGER OPTIONAL,

endingNumber [1] INTEGER OPTIONAL,
modulus INTEGER OPTIONAL,
}

BaseRevocationInfo ::= SEQUENCE {
cRLStreamIdentifier [0] CRLStreamIdentifier OPTIONAL,

cRLNumber [1] CRLNumber,
baseThisUpdate [2] GeneralizedTime,
}

If the CRL is an indirect CRL that provides revocation status information for multiple authorities, the extension will
include multiple PerauthorityScope constructs, one or more for each of the authorities for which revocation
information is included. Each instance of PerauthorityScope that relates to an authority other than that issuing this
CRL shall contain the authorityName component. If the CRL is a dCRL that provides delta revocation status
infformation for multiple base CRLs issued by a single authority, the extension will include multiple
PerAuthorityScope constructs, one for each of the base CRLs for which this dCRL provides updates. Even though
there would be multiple instances of the PerauthorityScope construct, the value of the authorityName
component, if present, would be the same for all instances.

If the CRL is an indirect dCRL that provides delta revocation status information for multiple base CRLs issued by
multiple authorities, the extension will include multiple PerauthorityScope constructs, one for each of the base

38 Rec. | TU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

CRLs for which this dCRL provides updates. Each instance of PerAuthorityScope that relates to an authority other
than that issuing thisindirect dCRL shall include the authorityName component.

For each instance of PerauthorityScope present in the extension, the fields are used as follows. Note that in the case
of indirect CRLs and indirect dCRLs, each instance of PerAuthorityScope may contain different combinations of
these fields and different values.

The authorityName field, if present, identifies the authority that issued the certificates for which revocation
information is provided. If authorityName isomitted, it defaults to the CRL issuer name.

ThedistributionPoint field, if present, isused as described in the issuingDistributionPoint extension.

The onlycontains field, if present, indicates the type(s) of certificates for which the CRL contains revocation status
information. If thisfield is absent, the CRL contains information about all certificate types.

The onlySomeReasons field, if present, is used as described inthe issuingDistributionPoint extension.

The serialNumberRange €lement, if present, is used as follows. When a modulus value is present, the serial humber
is reduced modulo the given value before checking for presence in the range. Then, a certificate with a (reduced) seria
number is considered to be within the scope of the CRL if it is:

— equal to or greater than startingNumber, and less than endingNumber, Where both are present; or
— equal to or greater than startingNumber, When endingNumber iS Not present; or
— lessthan endingNumber When startingNumber iS Not present.

The subjectKeyIdRange element, if present, is interpreted the same as serialNumberRange, except that the
number used is the value in the certificate's subjectkeyIdentifier extension. The DER encoding of the BIT
STRING (Oomitting the tag, length and unused bits octet) is to be regarded as the value of the DER encoding of an
INTEGER. If bit O of the BIT STRING is set, then an additional zero octet should be prepended to ensure the resulting
encoding represents a positive INTEGER. ...

03 02 01 f 7 (represents bits 0-6 set)
maps to
020200f7 (i.e., decimal 247)

Thenamesubtrees field, if present, uses the same conventions for name forms as specified in the nameConstraints
extension.

The baseRevocationInfo field, if present, indicates that the CRL isa dCRL with respect to the certificates covered
by that PerAauthorityScope construct. Use of the criscope extension to identify a CRL as a dCRL differs from use
of the deltacRLIdentifier extension in the following way. In the crlscope case, the information in the
baseRevocationInfo component indicates the point in time from which the CRL containing this extension provides
updates. Although this is done by referencing a CRL, the referenced CRL may or may not be one that is complete for
the applicable scope, whereas the deltacRLIdentifier extension references an issued CRL that is complete for the
applicable scope. However, the updated information provided in a dCRL containing the crlscope extension are
updates to the revocation information that is complete for the applicable scope regardiess of whether or not the CRL
referenced in baseRevocationInfo Was actually issued as one that is complete for that same scope. This mechanism
provides more flexibility than the deltacRLIndicator extension since users can be constructing full CRLs localy
and be constructing based on time rather than issuance of base CRL s that are complete for the applicable scope. In both
cases, a dCRL always provides updates to revocation status for certificates within a given scope since a specific point in
time. However, in the deltaCRLIndicator Ccase, that point in time shall be one for which a CRL that is complete for
that scope was issued and referenced. In the crlscope case, that point in time may be one for which the referenced
CRL that was issued may or may not be one that is complete for that scope.

Depending on the policy of the responsible authority, several dCRLs may be published before a new base CRL is
published. dCRLs containing the crlscope extension to reference their building point need not necessarily reference
the cRLNumber Of the most recently issued base CRL in the BaseRevocationInfo field. However, the cRLNumber
referenced in the BaseRevocationInfo field of a dCRL shall be less than or equal to the cRLNumber of the most
recently issued CRL that is complete for the applicable scope.

Note that the issuingDistributionPoint extension and crlscope extension can conflict with each other and are
not intended to be used together. However, if the CRL contains both an issuingDistributionPoint extension and
acrlscope extension, then a public-key certificate falls within the scope of the CRL if and only if it meets the criteria
of both extensions. If the CRL contains an AAissuingDistributionPoint extension, but does not contain an
issuingDistributionPoint Of crlScope extension, then the scope does not include public-key certificates. If the

Rec. I TU-T X.509 (10/2012) 39

| SO/l EC 9594-8:2014 (E)

CRL does not contain an issuingDistributionPoint, AAissuingDistributionPoint, Of crlScope extension,
then the scope is the entire scope of the authority, and the CRL may be used for any certificate from that authority.
Similarly, the AaissuingDistributionPoint extension and crlscope extension can conflict with each other and
are not intended to be used together. However, if the CRL contains both an aAaissuingDistributionPoint
extension and a crlscope extension, then an attribute certificate falls within the scope of the CRL if and only if it
meets the criteria of both extensions. If the CRL contains an issuingbistributionPoint extension, but does not
contain an AAissuingDistributionPoint OF crlScope extension, then the scope does not include attribute
certificates. If the CRL does not contain an issuingDistributionPoint, AAissuingDistributionPoint, OF
crlScope extension, then the scope is the entire scope of the authority, and the CRL may be used for any certificate
from that authority.

When a relying party uses a CRL that contains a crlscope extension to check the status of a certificate, it should
check that the certificate and reason codes of interest fall within the scope of the CRL as defined by the crlscope
extension, asfollows:

a) Therelying party shall check that the certificate falls within the scope indicated by the intersection of the
serialNumberRange, subjectKeyIdRange, and nameSubtrees Scopes, and is consistent with
distributionPoint, and onlyContains if present, for the relevant PerAuthorityScope
construct.

b) If the CRL contains an onlySomeReasons component in the crlscope extension, then the relying
party shall check that the reason codes covered by this CRL are adequate for the purposes of the
application. If not, additional CRLs may be required. Note that if the CRL contains both a crlscope
extension and an issuingDistributionPoint extension, and both contain an onlySomeReasons
component, then only those reason codes included in the onlySomeReasons components of both
extensions are covered by this CRL.

8.5.2.3 Statusreferral extension

This CRL extension is for use within the CRL structure as a means to convey information about revocation notices to
relying parties. As such, it would be present in a CRL structure that itself contains no certificate revocation notices. A
CRL structure containing this extension shall not be used by relying parties or relying parties as a source of revocation
notices, but rather as a tool to ensure that the appropriate revocation information is used. Any CRL containing this
extension shall not be used as the source for arelying party to check revocation status of any certificate. Rather, a CRL
containing this extension may be used by a relying party as an additional tool to locate the appropriate CRLSs for
checking revocation status.

This extension serves two primary functions:

— This extension provides a mechanism to publish a trusted "list of CRLS" including al the relevant
information to aid relying parties in determining whether they have sufficient revocation information for
their needs. For example, an authority may issue a new, authenticated CRL list periodically, typicaly
with a relatively high reissue frequency (in comparison with other CRL reissue frequencies). The list
might include a last-update time/date for every referenced CRL. A relying party, on obtaining this list,
can quickly determine if cached copies of CRLs are still up-to-date. This may eliminate the unnecessary
retrieval of CRLs. Furthermore, by using this mechanism, relying parties become aware of CRLS issued
by the authority between its usual update cycles, thereby improving the timeliness of the CRL system.

— This extension also provides a mechanism to redirect a relying party from a preliminary location
(e.g., one pointed to in a CRL distribution point extension, or the directory entry of the issuing authority)
to a different location for revocation information. This feature enables authorities to modify the CRL
partitioning scheme they use without impacting existing certificates or relying parties. To achieve this,
the authority would include each new location and the scope of the CRL that would be found at that
location. The relying party would compare the certificate of interest with the scope statements and follow
the pointer to the appropriate new location for revocation information relevant to that certificate it is
validating.

The extension is itself extensible and in future other non-CRL based revocation schemes may also be referred to, using
this extension.

statusReferrals EXTENSION ::= {
SYNTAX StatusReferrals
IDENTIFIED BY id-ce-statusReferrals }
StatusReferrals ::= SEQUENCE SIZE (1..MAX) OF StatusReferral

StatusReferral ::= CHOICE {

40 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

cRLReferral [0] CRLReferral,
otherReferral [1] INSTANCE OF OTHER-REFERRAL,
}
CRLReferral ::= SEQUENCE {
issuer [0] GeneralName OPTIONAL,
location [1] GeneralName OPTIONAL,
deltaRefInfo [2] DeltaRefInfo OPTIONAL,
cRLScope CRLScopeSyntax,
lastUpdate [3] GeneralizedTime OPTIONAL,
lastChangedCRL [4] GeneralizedTime OPTIONAL,
DeltaRefInfo ::= SEQUENCE ({
deltalocation GeneralName,
lastDelta GeneralizedTime OPTIONAL,
}

OTHER-REFERRAL ::= TYPE-IDENTIFIER

The issuer component identifies the entity that signs the CRL; this defaults to the issuer name of the encompassing
CRL.

The location component provides the location to which the referral isto be directed, and defaults to the same value as
the issuer name.

The deltaRefInfo component provides an optional alternative location from which a dCRL may be obtained and an
optional date of the previous delta.

The crLScope component provides the scope of the CRL that will be found at the referenced location.
The 1astUpdate component isthe value of the thisupdate field in the most recently issued referenced CRL.

The lastChangedCRL component is the value of the thisupdate field in the most recently issued CRL that has
changed content.

The OTHER-REFERRAL provides extensibility to enable other non-CRL based revocation schemes to be accommodated
in future.

This extension, is always flagged critical to ensure that the CRL containing this extension is not inadvertently relied on
by certificate-using systems as the source of revocation status information about certificates.

If this extension is present and is recognized by a certificate-using system, that system shall not use the CRL as a source
of revocation status information. The system should use either the information contained in this extension, or other
means outside the scope of this Directory Specification, to locate appropriate revocation status information.

If this extension is present but is not recognized by a relying party, that system shall not use the CRL as a source of
revocation status information. The system should use other means, outside the scope of this Directory Specification, to
locate appropriate revocation information.

85.24 CRL stream identifier extension
The CRL stream identifier field is used to identify the context within which the CRL number is unique.
cRLStreamIdentifier EXTENSION ::= {
SYNTAX CRLStreamIdentifier
IDENTIFIED BY id-ce-cRLStreamIdentifier }
CRLStreamIdentifier ::= INTEGER (0..MAX)

This extension is always non-critical.

Each value of this extension, per authority, shall be unique. The CRL stream identifier combined with a CRL Number
serve as a unique identifier for each CRL issued by any given authority, regardless of the type of CRL.

85.25 Ordered list extension

The ordered list extension indicates that the sequence of revoked certificates in the revokedcertificates field of a
CRL isin ascending order by either certificate serial number or revocation date. Thisfield is defined as follows:

orderedList EXTENSION ::= {

Rec. ITU-T X.509 (10/2012) 41

| SO/l EC 9594-8:2014 (E)

SYNTAX OrderedListSyntax
IDENTIFIED BY id-ce-orderedList }

OrderedListSyntax ::= ENUMERATED {
ascSerialNum (0),
ascRevDate (1),

)

This extension is always non-critical.

— ascSerialNum indicates that the sequence of revoked certificates in a CRL is in ascending order of
certificate serial number, based on the value of the serialNumber component of each entry in thelist.

— ascRevDate indicates that the sequence of revoked certificates in a CRL is in ascending order of
revocation date, based on the value of the revocationbDate component of each entry in thelist.

If orderedrist isnot present, no information is provided as to the ordering, if any, of the list of revoked certificatesin
the CRL.

85.2.6 Dedtalnformation extension

This CRL extension isfor usein CRLs that are not dCRLs and is used to indicate to relying parties that dCRLs are also
available for the CRL containing this extension. The extension provides the location at which the related dCRLs can be
found and optionally the time at which the next dCRL is to be issued.

deltaInfo EXTENSION ::= {
SYNTAX DeltaInformation
IDENTIFIED BY id-ce-deltaInfo }

DeltaInformation ::= SEQUENCE ({
deltalocation GeneralName,
nextDelta GeneralizedTime OPTIONAL,

This extension is always non-critical.

8.5.2.7 Toberevoked extension

This CRL extension allows for the notification that certificates will be revoked as of a specified date and time in the
future. The toBeRevoked extension is used to specify the reason for the certificate revocation, the date and time at
which the certificate will be revoked, and the group of certificates to be revoked. Each list can contain a single
certificate serial number, a range of certificate serial numbers or a named subtree. These certificates may be public-
key certificates or attribute certificates.

toBeRevoked EXTENSION ::= {
SYNTAX ToBeRevokedSyntax
IDENTIFIED BY id-ce-toBeRevoked }
ToBeRevokedSyntax ::= SEQUENCE SIZE (1l..MAX) OF ToBeRevokedGroup

ToBeRevokedGroup ::= SEQUENCE {
certificatelssuer [0] GeneralName OPTIONAL,

reasonInfo [1] ReasonInfo OPTIONAL,
revocationTime GeneralizedTime,
certificateGroup CertificateGroup,
}
ReasonInfo ::= SEQUENCE {
reasonCode CRLReason,
holdInstructionCode HoldInstruction OPTIONAL,
e}
CertificateGroup ::= CHOICE (
serialNumbers [0] CertificateSerialNumbers,
serialNumberRange [1l] CertificateGroupNumberRange,
nameSubtree [2] GeneralName,
CertificateGroupNumberRange ::= SEQUENCE {
startingNumber [0] INTEGER,
endingNumber [1] INTEGER,

42 Rec. ITU-T X.509 (10/2012)

| SO/IEC 9594-8:2014 (E)
-}
CertificateSerialNumbers ::= SEQUENCE SIZE (1l..MAX) OF CertificateSerialNumber

The certificateIssuer component, if present, identifies the authority (CA or AA) that issued al the certificates
listed in thisToBeRevokedGroup. If certificateIssuer isomitted, it defaultsto the CRL issuer name.

The reasonInfo component, if present, identifies the reason for the certificate revocations. If present, this field
indicates that all certificates identified in ToBeRevokedGroup Will be revoked for the reason indicated in this field. If
reasonCode contains the value certificateHold, the holdInstructionCode may aso be present. If present,
holdInstructionCode indicates the action to be taken on encountering any of the certificates identified in
RevokedGroup. This action should only be taken, after the revocation time indicated in the revocationTime field
has passed.

The revocationTime component indicates the date and time at which this group of certificates will be revoked and
should therefore be considered invalid. This date shall be later than the thisUpdate time of the CRL containing this
extension. If revocationTime iS before the nextUpdate time of the CRL containing this extension, the certificates
shall be considered revoked between the revocationTime and the nextUpdate time by arelying party using a CRL
containing this extension. Otherwise, this is a notice that at specified time in the future these certificates will be
revoked. Once the revocation time has passed, either the CA has revoked the certificate or not. If it has revoked the
certificate, future CRLs shall include this on the list of revoked certificates, at least until the certificate expires. If the
CA has not revoked the certificate, but still intends to revoke it in the future, it may include the certificate in this
extension on subsequent CRLs with arevised revocationTime. If the CA no longer intends to revoke the certificate,
it may be excluded from all subsequent CRL s and the certificate shall not be considered revoked.

The certificateGroup component liststhe set of public-key certificates to be revoked. This component identifies the
certificates issued by the authority identified in certificateIssuer to be revoked at the date/time identified in
revocationTime. This set of public-key certificates is not further refined by any outside controls (eg.,
issuingDistributionPoint).

The serialNumbers component, if present, shall hold the serial number(s) of the certificate(s) issued by the identified
certificate issuer that will be revoked at the specified time.

If the serialNumberRange cOmponent is present, al certificates in the range beginning with the starting serial number
and ending with the ending serial number and issued by the identified certificate issuer will be revoked at the specified
time.

If the namesubtree component is present, all public-key certificates with a subject/holder name that is subordinate to
the specified name and issued by the identified certificate issuer will be revoked at the specified time. If the
nameSubtree contains a distinguished name then al distinguished names associated with the subject of a public-key
certificate (i.e., subject field and subjectaltNames extension) or holder field of an attribute certificate need to be
considered. For other name forms, the subjectaltNames extension of public-key certificates and the holder field of
attribute certificates need to be considered. If at least one of the names associated with the subject/holder, contained in
the certificate, is within the subtree specified in namesSubtree, that certificate will be revoked at the specified time. As
with the namecConstraints extension, not all name forms are appropriate for subtree specification. Only those that
have recognized subordination rules should be used in this extension.

This extension may, at the option of the CRL issuer, be flagged critical or non-critical. As the information provided in
this extension applies to revocations, which will occur in the future, it is recommended that it be flagged non-critical,
reducing the risk of problems with interoperability and backward compatibility.

8.5.28 Revoked group of certificates extension

A set of certificates that have been revoked can be published using the following CRL extension. Each list of
certificates to be revoked is associated with a specific certificate issuer and revocation time. Each list can contain a
range of certificate serial numbers or a named subtree. These certificates may be public-key certificates or attribute
certificates.

revokedGroups EXTENSION ::= {
SYNTAX RevokedGroupsSyntax
IDENTIFIED BY id-ce-RevokedGroups }

RevokedGroupsSyntax ::= SEQUENCE SIZE (1l..MAX) OF RevokedGroup
RevokedGroup ::= SEQUENCE {
certificateIssuer [0] GeneralName OPTIONAL,
reasonInfo [1] ReasonInfo OPTIONAL,

Rec. I TU-T X.509 (10/2012) 43

| SO/l EC 9594-8:2014 (E)

invalidityDate [2] GeneralizedTime OPTIONAL,
revokedcertificateGroup [3] RevokedCertificateGroup,
-}

RevokedCertificateGroup ::= CHOICE {
serialNumberRange NumberRange,
nameSubtree GeneralName }

The certificateIssuer component, if present, identifies the authority (CA or AA) that issued al the certificates
listed in thisRevokedGroup. If certificateIssuer iSomitted, it defaultsto the CRL issuer name.

The reasonInfo component, if present, identifies the reason for the certificate revocations. If present, this field
indicates that all certificates identified in RevokedGroup were revoked for the reason indicated in this field. If
reasonCode contains the value certificateHold, the holdInstructionCode may aso be present. If present,
holdInstructionCode indicates the action to be taken on encountering any of the certificates identified in
RevokedGroup.

The invalidityDate component, if present, indicates the time from which al certificates identified in
RevokedGroup should be considered invalid. This date shall be earlier than the date contained in thisupdate field of
the CRL. If omitted, all certificates identified in RevokedGroup should be considered invalid at least from the time
indicated in the thisupdate field of the CRL. If the status of the certificate prior to the thisUpdate timeiscritical to
a certificate-using system (e.g., to determine whether a digital signature that was created prior to this CRL issuance
occurred while the certificate was still valid or after it had been revoked), additional revocation status checking
techniques will be required to determine the actual date/time from which a given certificate should be considered
invalid.

The revokedCertificateGroup component lists the set of certificates that have been revoked. This component
identifies the certificates issued by the authority identified in certificateIssuer revoked under the specified
conditions. This set of certificatesis not further refined by any outside controls (e.g., issuingDistributionPoint).

If serialNumberRange IS present, all certificates containing certificate serial numbers within the specified range,
issued by the identified certificate issuer are applicable.

If nameSubtree is present, al certificates with a subject/holder name that is subordinate to the specified name and
issued by the identified certificate issuer will be revoked at the specified time. If the namesubtree contains a DN then
all DNs associated with the subject of a public-key certificate (i.e., subject field and subjectaltNames extension)
or holder field of an attribute certificate need to be considered. For other name forms, the subjectAltNames
extension of public-key certificates and the holder field of attribute certificates need to be considered. If at |east one of
the names associated with the subject/holder, contained in the certificate, is within the subtree specified in
nameSubtree, that certificate has been revoked. As with the nameConstraints extension, not all nhame forms are
appropriate for subtree specification. Only those that have recognized subordination rules should be used in this
extension.

This extension is always flagged critical. Otherwise, a certificate-using system may incorrectly assume that certificates,
identified as revoked within this extension, are not revoked. When this extension is present it may be the only indication
of revoked certificates in a CRL (i.e., the revokedCertificates may be empty) or it may list revoked certificates
that are in addition to those indicated in the revokedcertificates field. A revoked certificate shall not be listed both
inthe revokedcertificates field and in this extension.

8.5.29 Expired certificateson CRL extension

This CRL extension field indicates that the CRL includes revocation notices for expired certificates.

expiredCertsOnCRL EXTENSION ::= {
SYNTAX ExpiredCertsOnCRL
IDENTIFIED BY id-ce-expiredCertsOnCRL }

ExpiredCertsOnCRL ::= GeneralizedTime
This extension is always non-critical.

The scope of a CRL containing this extension is extended to include the revocation status of certificates that expired at
the exact time specified in the extension or after that time. If limitations in the CRL's scope are specified (by either
reason codes or by distribution points), that applies to expired certificates as well. The revocation status of a certificate
shall not be updated once the certificate has expired.

44 Rec. | TU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

85.3 CRL entry extension fields

The following extension fields are defined:

a)
b)
0

Reason code;
Hold instruction code; and
Invalidity date.

8.5.3.1 Reason code extension

This CRL entry extension field identifies a reason for the certificate revocation. The reason code may be used by
applications to decide, based on local policy, how to react to posted revocations. Thisfield is defined as follows:

reasonCode EXTENSION ::= {

SYNTAX

CRLReason

IDENTIFIED BY id-ce-reasonCode }

CRLReason ::= ENUMERATED {
unspecified (0),
keyCompromise (1),
cACompromise (2),
affiliationChanged (3),
superseded (4),
cessationOfOperation (5),
certificateHold (6),
removeFromCRL (8),
privilegeWithdrawn (9),
aACompromise (10),

-}

The following reason code values indicate why a certificate was revoked:

unspecified can be used to revoke certificates for reasons other than the specific codes.

keyCompromise iS Used in revoking an end-entity certificate; it indicates that it is known or suspected
that the subject's private key, or other aspects of the subject validated in the certificate, have been
compromised.

cACompromise iS used in revoking a CA-certificate; it indicates that it is known or suspected that the
subject's private key, or other aspects of the subject validated in the certificate, have been compromised.

affiliationChanged indicates that the subject's name or other information in the certificate has been
modified but there is no cause to suspect that the private key has been compromised.

superseded indicates that the certificate has been superseded but there is no cause to suspect that the
private key has been compromised.

cessationOfOperation indicates that the certificate is no longer needed for the purpose for which it
was issued but there is no cause to suspect that the private key has been compromised.

privilegeWithdrawn indicates that a certificate (public-key or attribute certificate) was revoked
because a privilege contained within that certificate has been withdrawn.

aACompromise indicates that it is known or suspected that aspects of the AA validated in the attribute
certificate have been compromised.

A certificate may be placed on hold by issuing a CRL entry with a reason code of certificateHold. The certificate
hold notice may include an optiona hold instruction code to convey additional information to relying parties (see
clause 8.5.2.3). Once a hold has been issued, it may be handled in one of three ways:

a)

b)

0)

it may remain on the CRL with no further action, causing users to reject transactions issued during the
hold period,;

it may be replaced by a (final) revocation for the same certificate, in which case the reason shall be one
of the standard reasons for revocation, the revocation date shall be the date the certificate was placed on
hold, and the optional instruction code extension field shall not appear;

it may be explicitly released and the entry removed from the CRL.

The removeFromCRL reason code is for use with delta-CRL s (see clause 8.6) only and indicates that an existing CRL
entry should now be removed owing to certificate expiration or hold release. An entry with this reason code shall be
used in delta-CRLs for which the corresponding base CRL or any subseguent (delta or complete for scope) CRL
contains an entry for the same certificate with reason code certificateHold.

Rec. ITU-T X.509 (10/2012) 45

| SO/IEC 9594-8:2014 (E)
This extension is always non-critical.

8.5.3.2 Hold instruction code extension

This CRL entry extension field provides for the inclusion of aregistered instruction identifier to indicate the action to be
taken on encountering a held certificate. It is applicable only in an entry having acertificateHold reason code. This
field is defined as follows:

holdInstructionCode EXTENSION ::= {
SYNTAX HoldInstruction
IDENTIFIED BY id-ce-instructionCode }

HoldInstruction ::= OBJECT IDENTIFIER

This extension is always non-critical. No standard hold instruction codes are defined in this Directory Specification.
NOTE — Examples of hold instructions might be "please communicate with the CA" or "repossess the user's token™.

8.5.3.3 Invalidity date extension

This CRL entry extension field indicates the date at which it is known or suspected that the private key was
compromised or that the certificate should otherwise be considered invalid. This date may be earlier than the revocation
datein the CRL entry, which isthe date at which the authority processed the revocation. Thisfield is defined as follows:

invalidityDate EXTENSION ::= {
SYNTAX GeneralizedTime
IDENTIFIED BY id-ce-invalidityDate }

This extension is always non-critical.
NOTE 1 — The date in this extension is not, by itself, sufficient for non-repudiation purposes. For example, this date may be a
date advised by the private key holder, and it is possible for such a person fraudulently to claim that a key was compromised
sometime in the past, in order to repudiate a validly-generated signature.
NOTE 2 — When arevocation is first posted by an authority in a CRL, the invalidity date may precede the date of issue of earlier
CRLs. The revocation date should not precede the date of issue of earlier CRLS.

8.6 CRL distribution pointsand delta-CRL extensions

8.6.1 Requirements

As it is possible for revocation lists to become large and unwieldy, the ability to represent partiadl CRLS is required.
Different solutions are needed for two different types of implementations that process CRLs.

The first type of implementation is in individual workstations, possibly in an attached cryptographic token. These
implementations are likely to have limited, if any, trusted storage capacity. Therefore the entire CRL would need to be
examined to determine if it is valid, and then to see if the certificate is valid. This processing could be lengthy if the
CRL islong. Partitioning of CRLs is required to eliminate this problem for these implementations.

The second type of implementation is on high performance servers where a large volume of messages is processed,
e.g., a transaction processing server. In this environment, CRLs are typically processed as a background task where,
after the CRL is validated, the contents of the CRL are stored locally in a representation which expedites their
examination, e.g., one bit for each certificate indicating if it has been revoked. This representation is held in trusted
storage. Thistype of server will typically require up-to-date CRLs for alarge number of authorities. Since it already has
alist of previously revoked certificates, it only needs to retrieve alist of newly revoked certificates. This list, called a
dCRL, will be smaller and require fewer resourcesto retrieve and process than a complete CRL.

The following requirements therefore relate to CRL distribution points and dCRLS:

a) Inorder to control CRL sizes, it needs to be possible to assign subsets of the set of all certificates issued
by one authority to different CRLs. This can be achieved by associating every certificate with a CRL
distribution point which is either:

— aDirectory entry whose CRL attribute will contain a revocation entry for that certificate, if it has
been revoked; or

— alocation such as an electronic mail address or Internet Uniform Resource Identifier from which the
applicable CRL can be obtained.

b) For performance reasons, it is desirable to reduce the number of CRLs that need to be checked when
validating multiple certificates, e.g., a certification path. This can be achieved by having one CRL issuer
sign and issue CRL s containing revocations from multiple authorities.

46 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

¢) Thereisarequirement for separate CRLS covering revoked authority certificates and revoked end-entity
certificates. This facilitates the processing of certification paths as the CRL for revoked authority
certificates can be expected to be very short (usually empty). The authorityRevocationList and
certificateRevocationList altributes have been specified for this purpose. However, for this
separation to be secure, it is necessary to have an indicator in a CRL identifying which list it is.
Otherwise, illegitimate substitution of one list for the other cannot be detected.

d) Provision is needed for a different CRL to exist for potential compromise situations (when there is a
significant risk of private key misuse) than that including all routine binding terminations (when there is
no significant risk of private key misuse).

€) Provision is also needed for partial CRLs (known as dCRLS) which only contain entries for certificates
that have been revoked since the issuance of abase CRL.

f) For delta CRLs, provision is needed to indicate the date/time after which thislist contains updates.
g) Thereisarequirement to indicate within a certificate, where to find the freshest CRL (e.g., most recent
delta).

8.6.2 CRL distribution point and delta-CRL extension fields

The following extension fields are defined:
a) CRL distribution points;
b) Issuing distribution point;
¢) AAissuingDistributionPoint;
d) Certificate issuer;
e) DeltaCRL indicator;
f) Base update;
g) Freshest CRL.
CRL distribution points and freshest CRL shall be used only as a certificate extension. Issuing distribution point, AA

issuing distribution point, delta CRL indicator and base update shall be used only as CRL extensions. Certificate issuer
shall be used only asa CRL entry extension.

While the issuing distribution point extension and the AA issuing distribution point extension serve similar purposes,
they apply to different certificates. The issuing distribution point extension applies only to public-key certificates issued
to end-entities and/or CAs. The AA issuing distribution point extension applies only to attribute certificates issued to
users and AAs, as well as public-key certificates issued to SOAs. If a single CRL covers certificate types that span
these, then that CRL would need to include both extensions.

8.6.2.1 CRL distribution points extension

The CRL distribution points extension shall be used only as a certificate extension and may be used in authority-
certificates, end-entity public-key certificates and in attribute certificates. This field identifies the CRL distribution
point or points to which arelying party should refer to ascertain if the certificate has been revoked. A relying party can
obtain a CRL from an applicable distribution point or it may be able to obtain a current complete CRL from the
authority directory entry.

Thisfield is defined as follows:

cRLDistributionPoints EXTENSION ::= {
SYNTAX CRLDistPointsSyntax
IDENTIFIED BY id-ce-cRLDistributionPoints }

CRLDistPointsSyntax ::= SEQUENCE SIZE (1..MAX) OF DistributionPoint
DistributionPoint ::= SEQUENCE ({

distributionPoint [0] DistributionPointName OPTIONAL,

reasons [1] ReasonFlags OPTIONAL,

cRLIssuer [2] GeneralNames OPTIONAL,
DistributionPointName ::= CHOICE {

fullName [0] GeneralNames,

nameRelativeToCRLIssuer [1] RelativeDistinguishedName,

Rec. ITU-T X.509 (10/2012) 47

| SO/l EC 9594-8:2014 (E)

ReasonFlags ::= BIT STRING ({
unused (0),
keyCompromise (1),
cACompromise (2),
affiliationChanged (3),
superseded (4),
cessationOfOperation (5),
certificateHold (6),
privilegeWithdrawn (7).,
aACompromise (8) }

The distributionPoint component identifies the location from which the CRL can be obtained. If this component is
absent, the distribution point name defaults to the CRL issuer name.

When the fullName aternative is used or when the default applies, the distribution point name may have multiple
name forms. The same name, in at least one of its name forms, shall be present in the distributionPoint component
of the issuing distribution point extension of the CRL. A relying party is not required to be able to process all name
forms. It may use a distribution point provided at least one name form can be processed. If no name forms for a
distribution point can be processed, arelying party can still use the certificate provided requisite revocation information
can be obtained from another source, e.g., another distribution point or the authority's directory entry.

The nameRelativeToCRLIssuer component can be used only if the CRL distribution point is assigned a
distinguished name that is directly subordinate to the distinguished name of the CRL issuer. In this case, the
nameRelativeToCRLIssuer COmponent conveys the relative distinguished name with respect to the CRL issuer
distinguished name.

The reasons component indicates the revocation reasons covered by this CRL. If the reasons component is absent,
the corresponding CRL distribution point distributes a CRL which will contain an entry for this certificate if this
certificate has been revoked, regardless of revocation reason. Otherwise, the reasons value indicates which revocation
reasons are covered by the corresponding CRL distribution point.

The crRLIssuer component identifies the authority that issues and signs the CRL. If this component is absent, the CRL
issuer name defaults to the certificate i ssuer name.

This extension may, at the option of the certificate issuer, be either critical or non-critical. In the interests of
interoperability, it is recommended that it be flagged non-critical.

If this extension is flagged critical then arelying party shall not use the certificate without first retrieving and checking
a CRL from one of the nominated distribution points covering the reason codes of interest. Where the distribution points
are used to distribute CRL information for all revocation reason codes and al certificates issued by the CA include the
cRLDistributionPoints asacritical extension, the CA isnot required to also publish afull CRL at the CA entry.

If this extension is flagged non-critical and a relying party does not recognize the extension field type, then that system
should only use the certificate if:

— it can acquire and check a complete CRL from the authority (that the latter CRL is complete is indicated
by the absence of an issuing distribution point extension field in the CRL);

— revocation checking is not required under local policy; or

— revocation checking is accomplished by other means.
NOTE 1 -1t is possible to have CRLs issued by more than one CRL issuer for the one certificate. Coordination of these CRL
issuers and the issuing authority is an aspect of authority policy.
NOTE 2 — The meaning of each reason code is as defined in the Reason Code field in clause 8.5.3.1 of this Directory
Specification.

8.6.2.2 Issuingdistribution point extension

This CRL extension field identifies the CRL distribution point for public-key certificates for this particular CRL, and
indicates if the CRL isindirect, or if it is limited to covering only a subset of the revocation information. If using only
partitioned CRLSs, the full set of partitioned CRLs shall cover the complete set of certificates whose revocation status
will be reported using the CRL mechanism. Thus, the complete set of partitioned CRLs shall be equivalent to a full
CRL for the same set of certificates, if the CRL issuer was not using partitioned CRLs. The limitation may be based on
a subset of the certificate population or on a subset of revocation reasons. The CRL is signed by the CRL issuer's
private key — CRL distribution points do not have their own key pairs. However, for a CRL distributed via the
Directory, the CRL is stored in the entry of the CRL distribution point, which may not be the directory entry of the CRL
issuer. If the issuing distribution point field, the AA issuing distribution point field, and the CRL scope field are all
absent, the CRL shall contain entries for all revoked unexpired public-key certificates issued by the CRL issuer. If the

48 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

issuing distribution point field and the CRL scope field are both absent, but the AA issuing distribution point field is
present, the scope of the CRL does not include public-key certificates.

After acertificate appears on a CRL, it may be deleted from a subsequent CRL after the certificate's expiry. Thisfield is
defined asfollows:

issuingDistributionPoint EXTENSION ::= {
SYNTAX IssuingDistPointSyntax
IDENTIFIED BY id-ce-issuingDistributionPoint }

IssuingDistPointSyntax ::= SEQUENCE {
-- If onlyContainsUserPublicKeyCerts and onlyContainsCACerts are both FALSE,
-- the CRL covers both certificate types

distributionPoint [0] DistributionPointName OPTIONAL,
onlyContainsUserPublicKeyCerts [1] BOOLEAN DEFAULT FALSE,
onlyContainsCACerts [2] BOOLEAN DEFAULT FALSE,
onlySomeReasons [3] ReasonFlags OPTIONAL,
indirectCRL [4] BOOLEAN DEFAULT FALSE,

-}

The distributionPoint component contains the name of the distribution point in one or more name forms. If
onlyContainsUserPublicKeyCerts iS TRUE, the CRL only contains revocations for end-entity public-key
certificates. If onlyContainscacerts iS TRUE, the CRL only contains revocations for CA-certificates. If
onlyContainsUserPublicKeyCerts and onlyContainsCACerts are both Farsg, the CRL contains revocations
for both end-entity public-key certificates and CA-certificates. A CRL shall not contain this extension where both
onlyContainsUserPublicKeyCerts and onlyContainsCACerts are set to TRUE. If onlySomeReasons iS
present, the CRL only contains revocations of public-key certificates for the identified reason or reasons; otherwise, the
CRL contains revocations for all reasons. If indirectCRL iS TRUE, then the CRL may contain revocation notifications
for public-key certificates issued by authorities that have a name different from the name of the issuer of the CRL. The
particular authority responsible for each entry is as indicated by the certificateIssuer CRL entry extension in that
entry or in accordance with the defaulting rules described in clause 8.6.2.3. Consequently, a certificate using a system
that is capable of processing a CRL in which indirectCRL is set to TRUE shall also be capable of processing the
certificateIssuer CRL entry extension. In such a CRL, it is the responsibility of the CRL issuer to ensure that the
CRL is complete in that it contains all revocation entries, consistent with onlyContainsUserPublicKeyCerts,
onlyContainsCACerts, and onlySomeReasons indicators, from all authorities that identify this CRL issuer in their
public-key certificates.

If CRLs are partitioned by reason code, and the reason code changes for a revoked certificate (causing the certificate to
move from one CRL stream to another), it is necessary to continue to include the certificate on the CRL stream for the
old revocation reason until the nextupdate times of al CRLS, that do not list the certificate, on the CRL stream for the
new reason code have been reached.

If the CRL contains an issuingDistributionPoint extension with the distributionPoint cOmponent present,
at least one name for the distribution point in the certificate (e.g., cRLDistributionPoints, freshestCRL, issuer)
shal match a name for the distribution point in the CRL. Also, it may be the case that only the
nameRelativeToCRLIssuer field is present. In that case, a name comparison would be done on the full DN,
constructed by appending the value of the nameRelativeToCRLIssuer t0 the DN found in the issuer field of the
CRL. If the names being compared are DNs (as opposed to names of other forms within the GeneralNames construct),
the distinguishedNameMatch matching ruleis used to compare the two DNsfor equality.

For CRLs distributed via the Directory, the following rules apply. If the CRL is a dCRL it shal be distributed via the
deltaRevocationList attribute of the associated distribution point or, if no distribution point is identified, via the
deltaRevocationList atribute of the CRL issuer entry, regardless of the settings for certificate types covered by the
CRL. Unlessthe CRL isadCRL:

— a CRL which has onlyContainsCACerts S&t to TRUE and does not contain an
aAissuingDistributionPoint extension shall be distributed via the authorityRevocationList
attribute of the associated distribution point or, if no distribution point is identified, via the
authorityRevocationList attribute of the CRL issuer entry;

— a CRL which has onlycontainscAcerts set to TRUE and contans an
aAissuingDistributionPoint extension with containsUserAttributeCerts Set t0 FALSE shall
be distributed viathe authorityRevocationList attribute of the associated distribution point or, if no
distribution point isidentified, viathe authorityRevocationList attribute of the CRL issuer entry;

Rec. ITU-T X.509 (10/2012) 49

| SO/l EC 9594-8:2014 (E)

— a CRL which has only onlyContainsCACerts Set to FALSE shall be distributed via the
certificateRevocationList dttribute of the associated distribution point or, if no distribution point
isidentified, viathe certificateRevocationList attribute of the CRL issuer entry;

— a CRL which contains both an issuingDistributionPoint extension and an
aAissuingDistributionPoint extension with containsUserAttributeCerts Set to TRUE shall
be distributed viathe certificateRevocationList attribute of the associated distribution point or, if
no distribution point is identified, via the certificateRevocationList éttribute of the CRL issuer
entry.

This extension is aways critical. A relying party that does not understand this extension cannot assume that the CRL
contains a complete list of revoked certificates of the identified authority. CRLs not containing critical extensions shall
contain al current CRL entries for the issuing authority, including entries for all revoked end-entity certificates and
authority certificates.

NOTE — The means by which revocation information is communicated by authorities to CRL issuers is beyond the scope of this
Directory Specification.

If an authority publishes a CRL with onlyContainsUserPublicKeyCerts or onlyContainsCACerts set to TRUE, then the
authority shall ensure that all CA-certificates covered by this CRL contain the basicConstraints extension.

8.6.2.3 Certificateissuer extension

This CRL entry extension identifies the certificate issuer associated with an entry in an indirect CRL, i.e., a CRL that
has the indirectCRL indicator set in itsissuing distribution point extension. If this extension is not present on the first
entry in an indirect CRL, the certificate issuer defaults to the CRL issuer. On subsequent entriesin an indirect CRL, if
this extension is not present, the certificate issuer for the entry is the same as that for the preceding entry.

Thisfield is defined as follows:

certificateIssuer EXTENSION ::= {
SYNTAX GeneralNames
IDENTIFIED BY id-ce-certificateIssuer }

This extension is aways critical. If an implementation ignores this extension, it cannot correctly pair CRL entries to
certificate issuers.

8.6.2.4 DeltaCRL indicator extension

The delta CRL indicator field identifies a CRL as being a delta CRL (dCRL) that provides updates to a referenced base
CRL. The referenced base CRL is a CRL that was explicitly issued as a CRL that is complete for a given scope. The
CRL containing the delta CRL indicator extension contains updates to the certificate revocation status for that same
scope. This scope does not necessarily include all revocation reasons or all certificates issued by a CA, especially in the
case where the CRL is a CRL distribution point. However, the combination of a CRL containing the delta CRL
indicator extension plus the CRL referenced in the BaseCcRLNumber component of this extension is equivalent to a full
CRL, for the applicable scope, at the time of publication of the dCRL.

Thisfield is defined as follows:

deltaCRLIndicator EXTENSION ::= {
SYNTAX BaseCRLNumber
IDENTIFIED BY id-ce-deltaCRLIndicator }

BaseCRLNumber ::= CRLNumber

The value of type BaseCRLNumber identifies the CRL number of the base CRL that was used as the foundation in the
generation of this dCRL. The referenced CRL shall be a CRL that is complete for the applicable scope.

This extension is always critical. A relying party that does not understand the use of dCRLs should not use a CRL
containing this extension, as the CRL may not be as complete as the user expects.

8.6.25 Baseupdate extension

The base update field is for use in dCRLs and is used to identify the date/time after which this delta provides updates to
the revocation status. This extension should only be used in dCRLs that contain the deltaCRLIndicator extension. A
dCRL that instead contains the crl1scope extension does not require this extension as the baseThisupdate field of
the crlscope extension can be used for the same purpose.

baseUpdateTime EXTENSION ::= {
SYNTAX GeneralizedTime

50 Rec. | TU-T X.509 (10/2012)

| SO/IEC 9594-8:2014 (E)
IDENTIFIED BY id-ce-baseUpdateTime }

This extension is always non-critical.

8.6.26 Freshest CRL extension

The freshest CRL extension may be used as either a certificate or CRL extension. Within certificates, this extension
may be used in certificates issued to authorities, as well as certificates issued to users. This field identifies the CRL to
which arelying party should refer to obtain the freshest revocation information (e.g., latest dCRL). Thisfield is defined
asfollows:

freshestCRL EXTENSION ::= {
SYNTAX CRLDistPointsSyntax
IDENTIFIED BY id-ce-freshestCRL }

The value of type cRLDistPointsSyntax isasdefined in the CRL distribution points extension in clause 8.6.2.1.

This extension may, at the option of the certificate issuer, be either critical or non-critical. If the freshest CRL extension
is made critical, arelying party shall not use the certificate without first retrieving and checking the freshest CRL. If the
extension is flagged non-critical, the certificate-using system may use loca means to determine whether the freshest
CRL isrequired to be checked.

8.6.2.7 AA issuingdistribution point extension

This CRL extension field identifies the CRL distribution point for attribute certificates for this particular CRL, and
indicates if the CRL isindirect, or if it islimited to covering only a subset of the revocation information. The limitation
may be based on a subset of the certificate population or on a subset of revocation reasons. The CRL is signed by the
CRL issuer's private key — CRL distribution points do not have their own key pairs. However, for a CRL distributed via
the Directory, the CRL is stored in the entry of the CRL distribution point, which may not be the directory entry of the
CRL issuer. If the issuing distribution point extension, the AA issuing distribution point extension, and the CRL scope
field are all absent, the CRL shall contain entries for all revoked unexpired attribute certificates issued by the CRL
issuer. If the AA issuing distribution point field and the CRL scope field are both absent, but the issuing distribution
point field is present, the scope of the CRL does not include attribute certificates.

After acertificate appears on a CRL, it may be deleted from a subsequent CRL after the certificate's expiry.
Thisfield is defined asfollows:

aAissuingDistributionPoint EXTENSION ::= {
SYNTAX AAIssuingDistPointSyntax
IDENTIFIED BY id-ce-aAissuingDistributionPoint }

AATIssuingDistPointSyntax ::= SEQUENCE ({
distributionPoint [0] DistributionPointName OPTIONAL,
onlySomeReasons [1] ReasonFlags OPTIONAL,
indirectCRL [2] BOOLEAN DEFAULT FALSE,
containsUserAttributeCerts [3] BOOLEAN DEFAULT TRUE,
containsAACerts [4] BOOLEAN DEFAULT TRUE,
containsSOAPublicKeyCerts [5] BOOLEAN DEFAULT TRUE,
-}

The distributionPoint component contains the name of the distribution point in one or more name forms. If
onlySomeReasons iS present, the CRL only contains revocations for attribute certificates for the identified reason or
reasons; otherwise, the CRL contains revocations for all reasons.

If indirectCRL iS TRUE, then the CRL may contain revocation notifications for attribute certificates from authorities
other than the issuer of the CRL. The particular authority responsible for each entry is as indicated by the certificate
issuer CRL entry extension in that entry or in accordance with the defaulting rules described in clause 8.6.2.3. In such a
CRL, it is the responsibility of the CRL issuer to ensure that the CRL is complete in that it contains all revocation
entries, consistent with containsUserAttributeCerts, containsAACerts, containsSOAPublicKeyCerts and
onlySomeReasons indicators, from al authorities that identify this CRL issuer in their attribute certificates.

If containsUserAttributeCerts iS TRUE, the CRL contains revocations for attribute certificates issued to end
entities that are not themselves AAs. If containsAAcerts iS TRUE, the CRL contains revocations for attribute
certificates issued to subjects that are themselves AAs.

If containsSOAPublicKeyCerts iS TRUE, the CRL contains revocations for public-key certificates issued to an entity
that is an SOA for the purposes of privilege management (i.e., certificates that contain the soaIdentifier extension).
For CRLs distributed via the Directory, the following rules apply. If the CRL is a dCRL, it shall be distributed via the

Rec. ITU-T X.509 (10/2012) 51

| SO/l EC 9594-8:2014 (E)

deltaRevocationList dttribute of the associated distribution point or, if no distribution point is identified, via the
deltaRevocationList atribute of the CRL issuer entry, regardless of the settings for certificate types covered by the
CRL. Unlessthe CRL isadCRL:

— a CRL that does not contain an issuingDistributionPoint extension which has only
containsAACerts and/or containsSOAPublicKeyCerts Set to TRUE shall be distributed via the
attributeAuthorityRevocationList attribute of the associated distribution point or, if no
distribution point is identified, via the attributeAuthorityRevocationList attribute of the CRL
issuer entry;

— a CRL that does not contain an issuingDistributionPoint extension which has
containsUserAttributeCerts Set to TRUE (with or without containsAacerts and/or
containsSOAPublicKeyCerts also Set) shall be distributed via the
attributeCertificateRevocationList altribute of the associated distribution point or, if no
distribution point isidentified, viathe attributeCertificateRevocationList attribute of the CRL
issuer entry;

— aCRL which contains an issuingDistributionPoint extension shall be distributed as specified in
clause 8.6.2.2.

This extension is aways critical. A relying party that does not understand this extension cannot assume that the CRL
contains a complete list of revoked certificates of the identified authority. CRLs not containing critical extensions shall
contain all current CRL entries for the issuing authority, including entries for all revoked end-entity certificates and
authority certificates.

NOTE — The means by which revocation information is communicated by authorities to CRL issuers is beyond the scope of this
Directory Specification.

If an authority publishes a CRL with containsAACerts set to TRUE and containsUserAttributeCerts not set to TRUE,
then the authority shall ensure that all AA certificates covered by this CRL contain the basicAttConstraints extension.

If an authority publishes a CRL with containsSOAPublicKeyCerts set to TRUE, then the authority shall ensure that al
SOA certificates covered by this CRL contain the SOAldentifier extension.

9 Delta CRL relationship to base

A dCRL includes either a deltaCRLIndicator OF acrlScope extension to indicate the base revocation information
that is being updated with this dCRL.

If the deltaCRLIndicator is present in a dCRL, the base revocation information that is being updated is the base
CRL referenced in that extension. The base CRL referenced by a deltaCRLIndicator extension shall be a CRL that
isissued as complete for its scope (i.e., it is not itself adCRL).

If the crlscope extension is present and contains the baseRevocationInfo component to reference the base
revocation information that is being updated, this is a reference to a particular point in time from which this dCRL
provides updates. The baseRevocationInfo component references a CRL that may or may not have been issued as
one that is complete for that scope (i.e., the referenced CRL may only have been issued as a dCRL). However, the
dCRL containing the baseRevocationInfo component updates the revocation information that is complete for the
scope of the referenced CRL at the time that the referenced CRL was issued. The relying party may apply the dCRL to a
CRL that is complete for the given scope and that was issued at the same time as or after the CRL referenced in the
dCRL containing the baseRevocationInfo cOMponent was issued.

Because of the potential for conflicting information, a CRL shall not contain both the deltacRLIndicator extension
and a crlscope extension with the baseRevocationInfo component. A CRL may contain both the
deltaCRLIndicator extension and crlScope extension only if the baseRevocationInfo component is not
present in the crlscope extension.

A dCRL may also be an indirect CRL in that it may contain updated revocation information related to base CRLs issued
by one or more than one authorities. The crlscope extension shall be used as the means of identifying a CRL as an
indirect dCRL. The crlscope extension shal contain one instance of the PerAuthorityscope data type for each
base CRL for which the indirect dCRL provides updated information.

Application of a dCRL to the referenced base revocation information shall accurately reflect the current status of
revocation.

— A certificate's revocation notice, with revocation reason certificateHold, may appear on either a
dCRL or aCRL that is complete for a given scope. This reason code is intended to indicate a temporary

52 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

revocation of the certificate pending a further decision on whether to permanently revoke the certificate
or reinstate it as one that is not revoked.

a) If acertificate was listed as revoked with revocation reason certificateHold on a CRL (either a
dCRL or a CRL that is complete for a given scope), whose cRLNumber iS n, and the hold is
subsequently released, the certificate shall be included in all dCRLs issued after the hold is released
where the crRLNumber Of the referenced base CRL is less than or equal to n. Depending on the
extension used to indicate that this CRL is a dCRL, the CRL number of a referenced base CRL is
either the value of the BaseCRLNumber data type of the deltaCRLIndicator extension or the
cRLNumber element of the BaseRevocationInfo data type of the cRLScope extension. The
certificate shall be listed with revocation reason removeFromCRL unless the certificate is
subsequently revoked again for one of the revocation reasons covered by the dCRL, in which case
the certificate shall be listed with the revocation reason appropriate for the subsequent revocation.

b) If the certificate was not removed from hold, but was permanently revoked, then it shall be listed on
al subsequent dCRLs where the crLNumber of the referenced base CRL is less than the
cRLNumber Of the CRL (either adCRL or a CRL that is complete for the given scope) on which the
permanent revocation notice first appeared. Depending on the extension used to indicate that this
CRL is a dCRL, the CRL number of a referenced base CRL is either the value of the
BaseCRLNumber data type of the deltaCRLIndicator extension or the cRLNumber element of
the BaseRevocationInfo datatype of the cRLScope extension.

— A certificate's revocation notice may first appear on dCRL and it is possible that the certificate's validity
period might expire before the next CRL that is complete for the applicable scope is issued. In this
situation, that revocation notice shall be included in all subsequent dCRLSs until that revocation notice is
included on at least one issued CRL that is complete for the scope of that certificate.

A CRL that is complete for a given scope, at the current time, can be constructed locally in either of the following ways:

— by retrieving the current dCRL for that scope, and combining it with an issued CRL that is complete for
that scope and that has a cRLNumber greater than or equal to the cRLNumber of the base CRL referenced
in the dCRL ; or

— by retrieving the current dCRL for that scope and combining it with a locally constructed CRL that is
complete for that scope and that was constructed with a dCRL that has a cRLNumber greater than or
equal to the cRLNumber of the base CRL referenced in the current dCRL.

10 Certification path processing procedure

Certification path processing is carried out in a system which needs to use the public key of aremote end entity, e.g., a
system which is verifying a digital signature generated by a remote entity. The certificate policies, basic constraints,
name constraints and policy constraints extensions have been designed to facilitate automated, self-contained
implementation of certification path processing logic.

The following is an outline of a procedure for validating certification paths. An implementation shall be functionally
equivalent to the external behaviour resulting from this procedure. The algorithm used by a particular implementation to
derive the correct output(s) from the given inputs is not standardized.

101 Path processing inputs

The inputs to the certification path processing procedure are;

a) asetof certificates comprising a certification path;

b) a trusted public key value or key identifier (if the key is stored internaly to the certification path
processing module), for use in verifying the first public-key certificate in the certification path;

¢) aninitia-policy-set comprising one or more certificate policy identifiers, indicating that any one of these
policies would be acceptable to the relying party for the purposes of certification path processing; this
input can also take the special value any-policy, but it cannot be null;

d) an initia-explicit-policy indicator value, which indicates if an acceptable policy identifier needs to
explicitly appear in the certificate policies extension field of all public-key certificatesin the path;

€) an initial-policy-mapping-inhibit indicator value, which indicates if policy mapping is forbidden in the
certification path;

Rec. I TU-T X.509 (10/2012) 53

| SO/l EC 9594-8:2014 (E)

f)

0)
h)

)

an initial-inhibit-policy indicator value, which indicates if the special value anyPolicy, if present in a
certificate policies extension, is considered a match for any specific certificate policy value in a
constrained set;

the current date/time (if not available internally to the certification path processing module);

an initial-permitted-subtrees-set containing an initial set of subtree specifications defining subtrees within
which subject names (of the name form used to specify the subtrees) are permitted. In the certificates in
the certification path all subject names of a given name form, for which initial permitted subtrees are
defined, shall fall within the permitted subtrees set for that given name form. Thisinput may also contain
the special value unbounded to indicate that initially all subject names are acceptable. For clause 10,
subject names are those name values appearing in the subject field or the subjectAltName extension;

an initial-excluded-subtrees-set containing an initial set of subtree specifications defining subtrees within
which the subject names in the certificates in the certification path cannot fall. Thisinput may also be an
empty set to indicate that initially no subtree exclusions are in effect;

an initial-required-name-forms containing an initial set of name forms indicating that al certificates in
the path must include a subject name of at least one of the specified name forms. This input may also be
an empty set to indicate that no specific name forms are required for subject names in the certificates.

The values of ¢), d), €) and f) will depend upon the policy requirements of the user-application combination that needs
to use the certified end-entity public key.

Note that because these are individual inputs to the path validation process, a relying party may limit the trust it places
in any given trusted public key to a given set of certificate policies. This can be achieved by ensuring that a given public
key is the input to the process only when initial-policy-set input includes policies for which the relying party trusts that
public key. Since another input to the process is the certification path itself, this control could be exercised on a
transaction by transaction basis.

10.2 Path processing outputs

The outputs of the procedure are:

a)
b)
©)

d)
e

f)

an indication of success or failure of certification path validation;
if validation failed, a diagnostic code indicating the reason for failure;

the set of authorities-constrained policies and their associated qualifiers in accordance with which the
certification path isvalid, or the special value any-policy;

the set of user-constrained policies, formed from the intersection of the authorities-constrained-policy-set
and the initial-policy-set;

explicit-policy-indicator, indicating whether the relying party or an authority in the path requires that an
acceptable policy be identified in every certificate in the path; and

details of any policy mapping that occurred in processing the certification path.

NOTE — If validation is successful, the relying party may still choose not to use the certificate as a result of values of policy
qualifiers or other information in the certificate.

10.3 Path processing variables

The procedure makes use of the following set of state variables:

a)

b)

0)

d)

e

authorities-constrained-policy-set: A table of policy identifiers and qualifiers from the certificates of the
certification path (rows represent policies, their qualifiers and mapping history, and columns represent
certificates in the certification path).

permitted-subtrees. A set of subtree specifications defining subtrees within which al subject names in
subsequent certificates in the certification path need to fall, or may take the special value unbounded.

excluded-subtrees: A (possibly empty) set of subtree specifications (each comprising a subtree base name
and maximum and minimum level indicators) defining subtrees within which no subject name in a
subsequent certificate in the certification path may fall.

regquired-name-forms: A (possibly empty) set of sets of name forms. For each set of name forms, every
subsequent certificate must contain a name of one of the name formsin the set.

explicit-policy-indicator: Indicates whether an acceptable policy needs to be explicitly identified in every
certificate in the path.

54 Rec. ITU-T X.509 (10/2012)

f)

0)
h)

| SO/l EC 9594-8:2014 (E)

path depth: An integer equal to one more than the number of certificates in the certification path for
which processing has been compl eted.

policy-mapping-inhibit-indicator: Indicates whether policy mapping is inhibited.

inhibit-any-policy-indicator: Indicates whether the special value anyPolicy is considered a match for
any specific certificate policy.

pending-constraints: Details of explicit-policy inhibit-policy-mapping and/or inhibit-any-policy
constraints which have been stipulated but have yet to take effect. There are three one-bit indicators
called explicit-policy-pending, policy-mapping-inhibit-pending and inhibit-any-policy-pending together
with, for each, an integer called skip-certificates which gives the number of certificates yet to skip before
the constraint takes effect.

104 Initialization step

The procedure involves an initialization step, followed by a series of certificate-processing steps. The initialization step

comprises:
1)

2)
3
4)
5)
6)
7)
8)
9)

Write any-policy in the zeroth and first columns of the zeroth row of the authorities-constrained-policy-
set table.

Initialize the permitted-subtrees variabl e to the initial-permitted-subtrees-set value.
Initialize the excluded-subtrees variable to the initial-excluded-subtrees-set value.
Initialize the required-name-forms variabl e to the initial -required-name-forms val ue.
Initialize the explicit-policy-indicator to the initial-explicit-policy value.

Initialize path-depth to one.

Initialize the policy-mapping-inhibit-indicator to the initial-policy-mapping-inhibit value.
Initialize the inhibit-any-policy-indicator to the initial-inhibit-policy value.

Initialize the three pending-constraints indicators to unset.

105 Certificate processing

Each certificate is then processed in turn, starting with the certificate signed using the input trusted public key. The last
certificate is considered to be the end certificate; any other certificates are considered to be intermediate certificates.

10.5.1 Basic certificate checks

The following checks are applied to a certificate. Self-signed certificates, if encountered in the path, are ignored.

a)

b)

©)

d)

f)

Check that the signature verifies, that dates are valid, that the certificate subject and certificate issuer
names chain correctly, and that the certificate has not been revoked.

For an intermediate version 3 certificate, check that basicConstraints is present and that the ca
component in the basicConstraints extension is TRUE. If the pathLenConstraint component is
present, check that the current certification path does not violate that constraint (ignoring intermediate
self-issued certificates).

If the certificate policies extension is not present, then set the authorities-constrained-policy-set to null by
deleting all rows from the authorities-constrained-policy-set table.

If the certificate policies extension is present, then for each policy, P, in the extension other than
anyPolicy, attach the policy qualifiers associated with P to each row in the authorities-constrained-
policy-set table whose [path-depth] column entry contains the value P. If no row in the authorities-
constrained-policy-set table contains P in its [path-depth] column entry but the value in authorities-
constrained-policy-set[0, path-depth] is any-policy, then add a new row to the table by duplicating the
zeroth row and writing the policy identifier P along with its qualifiersin the [path-depth] column entry of
the new row.

If the certificate policies extension is present and does not include the value anypPolicy or if the
inhibit-any-policy-indicator is set and the certificate is not a self-issued intermediate certificate, then
delete any row for which the [path-depth] column entry contains the value any-policy along with any row
for which the [path-depth] column entry does not contain one of the values in the certificate policies
extension.

If the certificate policies extension is present and includes the value anyPolicy and the inhibit-any-
policy-indicator is not set, then attach the policy qualifiers associated with anyPolicy to each row in

Rec. I TU-T X.509 (10/2012) 55

| SO/l EC 9594-8:2014 (E)

105.2

9)

h)

the authorities-constrained-policy-set table whose [path-depth] column entry contains the value any-
policy or contains a value that does not appear in the certificate policies extension.

If the certificate is not an intermediate self-issued certificate, check that the subject name is within the
name-space given by the value of permitted-subtrees and is not within the name-space given by the
value of excluded-subtrees.

If the certificate is not an intermediate self-issued certificate, and if required-name-forms is not an empty
set, for each set of name forms in required-name-forms check that there is a subject name in the
certificate of one of the name formsin the set.

Processing intermediate certificates

For an intermediate certificate, the following constraint recording actions are then performed, in order to correctly set
up the state variables for the processing of the next certificate. Self-signed certificates, if encountered in the path, are

ignored.

56

1)

2)

3

4)

5)

6)

7)

If the nameConstraints extension with a permittedSubtrees component is present in the
certificate, set the permitted-subtrees state variable to the intersection of its previous value and the value
indicated in the certificate extension.

If the nameConstraints extension with an excludedSubtrees component is present in the
certificate, set the excluded-subtrees state variable to the union of its previous value and the value
indicated in the certificate extension.

If policy-mapping-inhibit-indicator is set:
— process any policy mappings extension by, for each mapping identified in the extension, locating all

rows in the authorities-constrained-policy-set table whose [path-depth] column entry is equal to the
issuer domain policy value in the extension and del ete the row.

If policy-mapping-inhibit-indicator is not set:

— process any policy mappings extension by, for each mapping identified in the extension, locating all
rows in the authorities-constrained-policy-set table whose [path-depth] column entry is equal to the
issuer domain policy value in the extension, and write the subject domain policy value from the
extension in the [path-depth+1] column entry of the same row. If the extension maps an issuer
domain policy to more than one subject domain policy, then the affected row is copied and the new
entry added to each row. If the value in authorities-constrained-policy-set[O, path-depth] is any-
policy, then write each issuer domain policy identifier from the policy mappings extension in the
[path-depth] column, making duplicate rows as necessary and retaining qualifiersif they are present,
and write the subject domain policy value from the extension in the [path-depth+1] column entry of
the same row;

— if the policy-mapping-inhibit-pending indicator is set and the certificate is not self-issued,
decrement the corresponding skip-certificates value and, if this value becomes zero, set the policy-
mapping-inhibit-indicator;

— if the inhibitPolicyMapping component of the policyConstraints extension is present in
the certificate, perform the following. For a skipcerts vaue of 0, set the policy-mapping-inhibit-
indicator. For any other skipcerts value, set the policy-mapping-inhibit-pending indicator, and set
the corresponding skip-certificates value to the lesser of the skipcerts value and the previous
skip-certificates value (if the policy-mapping-inhibit-pending indicator was already set).

For any row not modified in step c) above (and every row in the case that there is no mapping extension

present in the certificate), write the policy identifier from [path-depth] column in the [path-depth+1]
column of the row.

If inhibit-any-policy-indicator is not set:
— If the inhibit-any-policy-pending indicator is set and the certificate is not self-issued, decrement the

corresponding skip-certificates value and, if this value becomes zero, set the inhibit-any-policy-
indicator.

— If the inhibitAnyPolicy extension iSpresent in the certificate, perform the following. For a
SkipCerts vaue of O, set the inhibit-any-policy-indicator. For any other skipcerts value, set
the inhibit-any-policy-pending indicator, and set the corresponding skip-certificates value to the
lesser of the skipcerts value and the previous skip-certificates value (if the inhibit-any-policy-
pending indicator was already set).

Increment [path-depth].

Rec. | TU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

10.5.3 Explicit policy indicator processing
For all certificates, the following actions are then performed:
1) If explicit-policy-indicator is not set:

— if the explicit-policy-pending indicator is set and the certificate is not a self-issued intermediate
certificate, decrement the corresponding skip-certificates value and, if this value becomes zero, set
explicit-policy-indicator.

- If the requireExplicitPolicy component of the policyConstraints extension is
present in the certificate, perform the following. For a skipcerts vaue of 0, set the explicit-
policy-indicator. For any other skipcerts value, set the explicit-policy-pending indicator, and set
the corresponding skip-certificates value to the lesser of the skipcerts value and the previous
skip-certificates value (if the explicit-policy-pending indicator was already set).

— If the requireExplicitPolicy component of the policyConstraints iS present, and the
certification path includes a certificate issued by a nominated CA, it is necessary for al certificates
in the path to contain, in the certificate policies extension, an acceptable policy identifier. An
acceptable policy identifier is the identifier of the certificate policy required by the user of the
certification path, the identifier of a policy which has been declared equivalent to it through policy
mapping, or any-policy. The nominated CA is either the issuer CA of the certificate containing this
extension (if the value of requireExplicitPolicy is 0) or a CA which is the subject of a
subsequent certificate in the certification path (as indicated by a non-zero value).

1054 Final processing

Once al certificates in the path have been processed, the following actions are then performed:

1) Determine the authorities-constrained-policy-set from the authorities-constrained-policy-set table. If the
table is empty, then the authorities-constrained-policy-set is the empty or null set. If the authorities-
constrained-policy-set[0, path-depth] is any-policy, then the authorities-constrained-policy-set is any-
policy. Otherwise, the authorities-constrained-policy-set is, for each row in the table, the value in the | eft-
most cell which does not contain the identifier any-policy.

2) Cadculate the user-constrained-policy-set by forming the intersection of the authorities-constrained-
policy-set and the initial-policy-set.

3) If the explicit-policy-indicator is set, check that neither the authorities-constrained-policy-set nor the
user-constrained-policy-set is empty.

If any of the above checks were to fail, then the procedure shall terminate, returning a failure indication, an appropriate
reason code, the explicit-policy-indicator, the authorities-constrained-policy-set and the user-constrained-policy-set. If
the failure is due to an empty user-constrained-policy-set, then the path is valid under the authority-constrained
policy(s), but none is acceptable to the user.

If none of the above checks were to fail on the end certificate, then the procedure shall terminate, returning a success
indication together with the explicit-policy-indicator, the authorities-constrained-policy-set and the user-constrained-
policy-set.

11 PKI directory schema

This clause defines the directory schema elements used to represent PKI information in the Directory. It includes
specification of relevant object classes, attributes and attribute value matching rules.

11.1 PKI directory object classes and name forms

This subclause includes the definition of object classes used to represent PKI objectsin the Directory.

11.1.1 PKI user object class
The PKI user object classis used in defining entries for objects that may be the subject of public-key certificates.

pkiUser OBJECT-CLASS ::= {
SUBCLASS OF {top}
KIND auxiliary
MAY CONTAIN {userCertificate}
ID id-oc-pkiUser }

Rec. ITU-T X.509 (10/2012) 57

| SO/l EC 9594-8:2014 (E)

11.1.2 PKI CA object class

The PKI CA object classisused in defining entries for objects that act as certification authorities.

pkiCA OBJECT-CLASS ::= {
SUBCLASS OF {top}
KIND auxiliary

MAY CONTAIN {cACertificate |
certificateRevocationList |
authorityRevocationList |
crossCertificatePair}

ID id-oc-pkicCA }

11.1.3 CRL distribution points object class and name form

The CRL Distribution Point object classis used in defining entries for object which act as CRL Distribution Points.

cRLDistributionPoint OBJECT-CLASS ::= {
SUBCLASS OF {top}
KIND structural

MUST CONTAIN {commonName}

MAY CONTAIN {certificateRevocationList |
authorityRevocationList |
deltaRevocationList}

ID id-oc-cRLDistributionPoint }

The CRL Distribution Point name form specifies how entries of object class cRLDistributionPoint May be named.

cRLDistPtNameForm NAME-FORM ::= {
NAMES cRLDistributionPoint
WITH ATTRIBUTES {commonName }
ID id-nf-cRLDistPtNameForm }

11.1.4 Delta CRL object class
The delta CRL object classis used in defining entries for objects that hold deltarevocation lists (e.g., CAs, AAsetc.).

deltaCRL OBJECT-CLASS ::= {
SUBCLASS OF {top}
KIND auxiliary
MAY CONTAIN {deltaRevocationList}
ID id-oc-deltaCRL }

11.1.5 Certificate Policy and CPS object class

The CP CPS object class is used in defining entries for objects that contain certificate policy and/or certification
practice information.

cpCps OBJECT-CLASS ::= {
SUBCLASS OF {top}
KIND auxiliary

MAY CONTAIN {certificatePolicy |
certificationPracticeStmt}
ID id-oc-cpCps }

11.1.6 PKI certification path object class

The PKI cert path object class is used in defining entries for objects that contain PK1 paths. It will generally be used in
conjunction with entries that include auxiliary object classpkica or pkiUser.

pkiCertPath OBJECT-CLASS ::= {
SUBCLASS OF {top}
KIND auxiliary
MAY CONTAIN {pkiPath}
ID id-oc-pkiCertPath }

58 Rec. | TU-T X.509 (10/2012)

| SO/IEC 9594-8:2014 (E)
11.2 PKI1 directory attributes
This subclause includes the definition of directory attributes to store PKI information elements in the Directory.

11.2.1 User certificate attribute

A user may obtain one or more public-key certificates from one or more CAs. The usercertificate attribute type
contains the end-entity public-key certificates a user has obtained from one or more CAs.

userCertificate ATTRIBUTE ::= {
WITH SYNTAX Certificate
EQUALITY MATCHING RULE certificateExactMatch
ID id-at-userCertificate }

11.2.2 CA-certificate attribute

The cacertificate attribute of a CA's directory entry shall be used to store self-issued certificates (if any) and
certificates issued to this CA by CAsin the same realm as this CA. In the case of v3 certificates, these certificates shall
include abasicConstraints extension with the ca value set to TRUE. The definition of realm is purely a matter of
local policy.

cACertificate ATTRIBUTE ::= {
WITH SYNTAX Certificate
EQUALITY MATCHING RULE certificateExactMatch
ID id-at-cAcertificate }

11.2.3 Cross-certificate pair attribute

The issuedToThiscA component of the crosscertificatePair attribute of a CA's directory entry shall be used to
store al, except self-issued certificates issued to this CA. Optionaly, the issuedByThisca elements of the
crossCertificatePair atribute, of a CA's directory entry may contain a subset of certificates issued by this CA to
other CAs. If a CA issues a certificate to another CA, and the subject CA is not a subordinate to the issuer CA in a
hierarchy, then the issuer CA shal place that certificate in the issuedByThisca element of the
crossCertificatePair altribute of its own directory entry. When both the issuedToThisca and the
issuedByThisCA elements are present in a single attribute value, the issuer name in one certificate shall match the
subject name in the other and vice versa, and the subject public key in one certificate shall be capable of verifying the
digita signature on the other certificate and vice versa. The term forward was used in previous editions for
issuedToThisca and theterm reverse wasused in previous editionsfor issuedByThisCA.

When an issuedByThisca element is present, the issuedToThisca element value and the issuedByThisCa
element value need not be stored in the same attribute value; in other words, they can be stored in either a single
attribute value or two attribute values.

In the case of v3 certificates, these shall include abasicconstraints extension with the ca value set to TRUE.

crossCertificatePair ATTRIBUTE ::= {

WITH SYNTAX CertificatePair

EQUALITY MATCHING RULE certificatePairExactMatch

D id-at-crossCertificatePair }
CertificatePair ::= SEQUENCE {

issuedToThisCA [0] Certificate OPTIONAL,
issuedByThisCA [1] Certificate OPTIONAL,

}

(WITH COMPONENTS { ..., issuedToThisCA PRESENT} |
WITH COMPONENTS { ..., issuedByThisCA PRESENT})

11.2.4 Certificaterevocation list attribute

The following attribute contains a list of revoked certificates.

certificateRevocationList ATTRIBUTE ::= {
WITH SYNTAX CertificateList
EQUALITY MATCHING RULE certificateListExactMatch
ID id-at-certificateRevocationList }

Rec. I TU-T X.509 (10/2012) 59

| SO/l EC 9594-8:2014 (E)

11.25 Authority revocation list attribute

The following attribute contains a list of revoked authority certificates.

authorityRevocationList ATTRIBUTE ::= {
WITH SYNTAX CertificateList
EQUALITY MATCHING RULE certificateListExactMatch
ID id-at-authorityRevocationList }

11.2.6 Deltarevocation list attribute
The following attribute type is defined for holding adCRL in a directory entry:

deltaRevocationList ATTRIBUTE ::= {
WITH SYNTAX CertificateList
EQUALITY MATCHING RULE certificateListExactMatch
ID id-at-deltaRevocationList }

11.2.7 Supported algorithmsattribute

A Directory attribute is defined to support the selection of an algorithm for use when communicating with a remote end
entity using certificates as defined in this Directory Specification. The following ASN.1 defines this (multi-valued)
attribute:

supportedAlgorithms ATTRIBUTE ::= {
WITH SYNTAX SupportedAlgorithm
EQUALITY MATCHING RULE algorithmIdentifierMatch
ID id-at-supportedAlgorithms }
SupportedAlgorithm ::= SEQUENCE {
algorithmIdentifier AlgorithmIdentifier{{SupportedAlgorithms}},
intendedUsage [0] KeyUsage OPTIONAL,
intendedCertificatePolicies [1] CertificatePoliciesSyntax OPTIONAL,
}

Each value of the multi-valued attribute shall have a distinct algorithmIdentifier value. The value of the
intendedUsage component provides an indication of the intended usage of the algorithm (see clause 8.2.2.3 for
recognized uses). The value of the intendedCertificatePolicies component identifies the certificate policies
and, optionally, certificate policy qualifiers with which the identified algorithm may be used.

11.2.8 Certification practice statement attribute

The certificationPracticesStmt atribute is used to store information about an authority's certification practice
statement.

certificationPracticeStmt ATTRIBUTE ::= {

WITH SYNTAX InfoSyntax

ID id-at-certificationPracticeStmt }
InfoSyntax ::= CHOICE {

content UnboundedDirectoryString,
pointer SEQUENCE {
name GeneralNames,
hash HASH{HashedPolicyInfo} OPTIONAL,

.j }.
POLICY ::= TYPE-IDENTIFIER
HashedPolicyInfo ::= POLICY.&Type({Policies})
Policies POLICY ::= {...} -- Defined by implementors

If content is present, the complete content of the authority's certification practice statement is included.

If pointer iS present, the name component references one or more locations where a copy of the authority's
certification practice statement can be located. If the hash component is present, it contains a HASH of the content of
the certification practice statement that should be found at a referenced location. This hash can be used to perform an
integrity check of the referenced document.

60 Rec. | TU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

11.2.9 Certificate policy attribute

The certificatePolicy attributeis used to store information about a certificate policy.

certificatePolicy ATTRIBUTE ::= {
WITH SYNTAX PolicySyntax
ID id-at-certificatePolicy }

PolicySyntax ::= SEQUENCE {
policyIdentifier PolicyID,
policySyntax InfoSyntax,

PolicyID ::= CertPolicyId

ThepolicyIdentifier component includesthe object identifier registered for the particular certificate policy.
The policysyntax component (see clause 11.2.8) hasthe following alternatives:

a) If the content aternativeistaken, the complete content of the certificate policy isincluded.

b) If the pointer dternativeistaken, then

- the name component references one or more locations where a copy of the certificate policy can be located.

- If the hash component is present, it contains a HASH of the content of the certificate policy that should be
found at a referenced location. This hash can be used to perform an integrity check of the referenced
document.

NOTE — The option to include a hash in this attribute is purely to perform an integrity check against data located from a source
other than the directory. The HASH stored in the Directory needs to be protected. Directory security services, including strong
authentication, access control and/or signed attributes could be used for this purpose. In addition, even if the HASH matches the
original CP/CPS document, there are additional security requirements to ensure that the original specification itself is the correct
document (e.g., the document is signed by an appropriate authority).

11.2.10 PKI path attribute
The PKI path attribute is used to store certification paths, each consisting of a sequence of public-key certificates.

pkiPath ATTRIBUTE ::= {
WITH SYNTAX PkiPath
ID id-at-pkiPath }

An attribute of this type may be stored in a directory entry of object class pkica or pkiUser.

When stored in pkica entries, values of this attribute type contain certification paths excluding end-entity certificates.
As such, the attribute is used to store certification paths that are frequently used by relying parties associated with that
CA. A value of this attribute can be used in conjunction with any end-entity public-key certificate issued by the last
certificate subject in the attribute value.

When stored in pkiuser entries, values of this attribute contain certification paths that include the end-entity
certificate. In this case, the end-entity is the user whose entry holds this attribute. The values of the attribute represent
complete certification paths for public-key certificates issued to this user.

11.3 PK1 directory matching rules

This subclause defines matching rules for use with attribute types with syntax certificate, CertificatePair,
CertificatelList, CertificatePolicy, and SupportedAlgorithm, respectively. This subclause also defines
matching rules to facilitate the selection of certificates or CRLs with specific characteristics from multi-valued
attributes holding multiple certificates or CRLs. The enhanced certificate matching rule provides the ability to perform
more sophisticated matching against certificates held in directory entries.

11.3.1 Certificate exact match

The certificate exact match rule compares for equality a presented value with an attribute value with syntax
Certificate. It uniquely selectsasingle certificate.

certificateExactMatch MATCHING-RULE ::= {

SYNTAX CertificateExactAssertion
ID id-mr-certificateExactMatch }

Rec. ITU-T X.509 (10/2012) 61

| SO/l EC 9594-8:2014 (E)

CertificateExactAssertion ::= SEQUENCE {
serialNumber CertificateSerialNumber,
issuer Name,

This matching rule returns TRUE if the components in the attribute value match those in the presented value.

11.3.2 Certificate match

The certificate match rule compares a presented value with an attribute value with syntax certificate. It selects one
or more certificates on the basis of various characteristics.

certificateMatch MATCHING-RULE ::= {
SYNTAX CertificateAssertion
ID id-mr-certificateMatch }

CertificateAssertion ::= SEQUENCE {
serialNumber [0] CertificateSerialNumber OPTIONAL,
issuer [1] Name OPTIONAL,
subjectKeyIdentifier [2] SubjectKeyIdentifier OPTIONAL,
authorityKeyIdentifier [3] AuthorityKeyIdentifier OPTIONAL,
certificatevValid [4] Time OPTIONAL,
privateKeyValid [5] GeneralizedTime OPTIONAL,
subjectPublicKeyAlgID [6] OBJECT IDENTIFIER OPTIONAL,
keyUsage [7] KeyUsage OPTIONAL,
subjectAltName [8] AltNameType OPTIONAL,
policy [9] CertPolicySet OPTIONAL,
pathToName [10] Name OPTIONAL,
subject [11] Name OPTIONAL,
nameConstraints [12] NameConstraintsSyntax OPTIONAL,

}

AltNameType ::= CHOICE {
builtinNameForm ENUMERATED {

rfc822Name (1),
dNSName (2),
x400Address (3),
directoryName (4),
ediPartyName (5),
uniformResourceldentifier (6),
iPAddress (7).,
registeredId (8),
Y

otherNameForm OBJECT IDENTIFIER,

e}

CertPolicySet ::= SEQUENCE SIZE (1l..MAX) OF CertPolicyId

This matching rule returns TRUE if al of the components that are present in the presented value match the
corresponding components of the attribute value, as follows:

serialNumber matchesif the value of this component in the attribute value equals that in the presented value;
issuer matchesif the value of this component in the attribute value equals that in the presented value;

subjectKeyIdentifier matches if the value of this component in the stored attribute value equals that in the
presented value; there is no match if the stored attribute value contains no subject key identifier extension;

authorityKeyIdentifier matches if the value of this component in the stored attribute value equals that in the
presented value; there is no match if the stored attribute value contains no authority key identifier extension or if not all
components in the presented value are present in the stored attribute value;

certificatevalid matchesif the presented value falls within the validity period of the stored attribute value;

privateKeyValid matches if the presented value falls within the period indicated by the private key usage period
extension of the stored attribute value, or if thereis no private key usage period extension in the stored attribute value;

subjectPublicKeyAlgID matchesif it isequal to the algorithm component of the algorithmIdentifier of the
subjectPublicKeyInformation component of the stored attribute value;

keyUsage matches if al of the bits set in the presented value are also set in the key usage extension in the stored
attribute value, or if there is no key usage extension in the stored attribute value;

62 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

subjectAltName Mmatches if the stored attribute value contains the subject alternative name extension with an
AltNames component of the same name type as indicated in the presented value;

policy matches if at least one member of the certrolicyset presented appears in the certificate policies extension
in the stored attribute value or if either the presented or stored certificate contains the special value anyPolicy in the
policy component. Thereis no match if thereis no certificate policies extension in the stored attribute value;

pathToName matches unless the certificate has a name constraints extension which inhibits the construction of a
certification path to the presented name value;

subject matchesif the value of this component in the attribute value equals that in the presented value;

nameConstraints matches if the subject names in the stored attribute value are within the name space given by the
value of the permitted-subtrees component of the presented value and are not within the name space given by the value
of the excluded-subtrees component of the presented value.

11.3.3 Certificate pair exact match

The certificate pair exact match rule compares for equality a presented value with an attribute value of type
CertificatePair. It uniquely selects asingle cross-certificate pair.

certificatePairExactMatch MATCHING-RULE ::= {
SYNTAX CertificatePairExactAssertion
ID id-mr-certificatePairExactMatch }

CertificatePairExactAssertion ::= SEQUENCE {
issuedToThisCAAssertion [0] CertificateExactAssertion OPTIONAL,
issuedByThisCAAssertion [1] CertificateExactAssertion OPTIONAL,

.)
(WITH COMPONENTS { ..., issuedToThisCAAssertion PRESENT } |
WITH COMPONENTS { ..., issuedByThisCAAssertion PRESENT })

This matching rule returns TRUE if the components that are present in the issuedToThisCAAssertion and
issuedByThisCAAssertion components of the presented value match the corresponding components of the
issuedToThisCA and issuedByThisCA components, respectively, in the stored attribute value.

11.34 Certificate pair match

The certificate pair match rule compares a presented value with an attribute value of type certificatePair. It selects
one or more cross-certificate pairs on the basis of various characteristics of either the issuedToThisca or
issuedByThisca certificate of the pair.

certificatePairMatch MATCHING-RULE ::= {
SYNTAX CertificatePairAssertion
ID id-mr-certificatePairMatch }

CertificatePairAssertion ::= SEQUENCE {
issuedToThisCAAssertion [0] CertificateAssertion OPTIONAL,
issuedByThisCAAssertion [1l] CertificateAssertion OPTIONAL,

(WITH COMPONENTS {..., issuedToThisCAAssertion PRESENT } |
WITH COMPONENTS {..., issuedByThisCAAssertion PRESENT })

This matching rule returns TRUE if all of the components that are present in the issuedToThisCAAssertion and
issuedByThisCAAssertion components of the presented value match the corresponding components of the
issuedToThisCA and issuedByThisCA components, respectively, in the stored attribute value.

Rec. I TU-T X.509 (10/2012) 63

| SO/l EC 9594-8:2014 (E)

11.35 Certificatelist exact match

The certificate list exact match rule compares for equality a presented value with an attribute value of type
CertificateList. It uniquely selectsasingle CRL.

certificateListExactMatch MATCHING-RULE ::= {
SYNTAX CertificateListExactAssertion
ID id-mr-certificateListExactMatch }

CertificateListExactAssertion ::= SEQUENCE {
issuer Name,
thisUpdate Time,
distributionPoint DistributionPointName OPTIONAL }

The rule returns TRUE if the components in the stored attribute value match those in the presented vaue. If the
distributionPoint component ispresent, then it shall match in at least one name form.

11.3.6 Certificatelist match

The certificate list match rule compares a presented value with an attribute value of type certificateList. It selects
one or more CRLs based on various characteristics.

certificateListMatch MATCHING-RULE ::= {
SYNTAX CertificatelListAssertion
ID id-mr-certificateListMatch }
CertificateListAssertion ::= SEQUENCE {
issuer Name OPTIONAL,
minCRLNumber [0] CRLNumber OPTIONAL,
maxCRLNumber [1] CRLNumber OPTIONAL,
reasonFlags ReasonFlags OPTIONAL,
dateAndTime Time OPTIONAL,
distributionPoint [2] DistributionPointName OPTIONAL,
authorityKeyIdentifier [3] AuthorityKeyIdentifier OPTIONAL,
}

The matching rule returns TRUE if all of the components that are present in the presented value match the
corresponding components of the stored attribute value, as follows:

issuer matchesif the value of this component in the attribute value equals that in the presented value;

minCRLNumber Mmatches if its value is less than or equa to the value in the CRL number extension of the stored
attribute value; there is no match if the stored attribute value contains no CRL number extension;

maxCRLNumber matches if its value is greater than or equal to the value in the CRL number extension of the stored
attribute value; there is no match if the stored attribute value contains no CRL number extension;

reasonFlags matches if any of the hits that are set in the presented value are also set in the onlySomeReasons
components of the issuing distribution point extension of the stored attribute value; there is also a match if the stored
attribute value contains no reasonFlags in the issuing distribution point extension, or if the stored attribute value
contains no issuing distribution point extension;
NOTE — Even though a CRL matches on a particular value of reasonFlags, the CRL may not contain any revocation notices
with that reason code.

dateAndTime matches if the value is equal to or later than the value in the thisUpdate component of the stored
atribute value and is earlier than the value in the nextupdate component of the stored attribute value; there is no
match if the stored attribute value contains N0 nextUpdate cOmponent;

distributionPoint matches if the stored attribute value contains an issuing distribution point extension and the
value of this component in the presented value equals the corresponding value, in at least one name form, in that
extension;

authorityKeyIdentifier matches if the value of this component in the stored attribute value equals that in the
presented value; there is no match if the stored attribute value contains no authority key identifier extension or if not all
components in the presented value are present in the stored attribute value.

64 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

11.3.7 Algorithm identifier match

The agorithm identifier match rule compares for equality a presented value with an attribute value of type
SupportedAlgorithms.

algorithmIdentifierMatch MATCHING-RULE ::= {
SYNTAX AlgorithmIdentifier {{SupportedAlgorithms}}
ID id-mr-algorithmIdentifierMatch }

The rule returns TRUE if the presented value is equal to the algorithmIdentifier component of the stored attribute
value.

11.3.8 Policy match

The policy match rule compares for equality a presented value with an attribute value of type certificatePolicy Or
an attribute value of type privPolicy.

policyMatch MATCHING-RULE ::= {
SYNTAX PolicyID
ID id-mr-policyMatch }

The rule returns TRUE if the presented value is egqual to the policyIdentifier component of the stored attribute
vaue.

11.3.9 PKI path match

The pkiPathMatch match rule compares for equality a presented value with an attribute value of type pkiPath. A
certificate-using system may use this matching rule to select a path beginning with a certificate issued by a CA which it
trusts and ending with a certificate issued to the specified subject.

pkiPathMatch MATCHING-RULE ::= {
SYNTAX PkiPathMatchSyntax
ID id-mr-pkiPathMatch }

PkiPathMatchSyntax ::= SEQUENCE {
firstIssuer Name,
lastSubject Name,

)

This matching rule returns TRUE if the presented value in the £irstIssuer component matches the corresponding
elements of the issuer field of the first certificate in the sEQUENCE in the stored value and the presented value in the
lastSubject component matches the corresponding elements of the subject field of the last certificate in the
SEQUENCE in the stored value. This matching rule returns FALSE if either match fails.

11.3.10 Enhanced certificate match

The enhanced certificate match rule compares a presented value with an attribute value of type certificate. It selects
one or more certificates based on various characteristics.

enhancedCertificateMatch MATCHING-RULE ::= {
SYNTAX EnhancedCertificateAssertion
ID id-mr-enhancedCertificateMatch }

EnhancedCertificateAssertion ::= SEQUENCE {

serialNumber [0] CertificateSerialNumber OPTIONAL,
issuer [1] Name OPTIONAL,
subjectKeyIdentifier [2] SubjectKeyIdentifier OPTIONAL,
authorityKeyIdentifier [3] AuthorityKeyIdentifier OPTIONAL,
certificateValid [4] Time OPTIONAL,

privateKeyValid [5] GeneralizedTime OPTIONAL,
subjectPublicKeyAlgID [6] OBJECT IDENTIFIER OPTIONAL,
keyUsage [7] KeyUsage OPTIONAL,

subjectAltName [8] AltName OPTIONAL,

policy [9] CertPolicySet OPTIONAL,
pathToName [10] GeneralNames OPTIONAL,

subject [11] Name OPTIONAL,

nameConstraints [12] NameConstraintsSyntax OPTIONAL,
(ALL EXCEPT ({ -- none; at least one component shall be present --}))

Rec. I TU-T X.509 (10/2012) 65

| SO/l EC 9594-8:2014 (E)

AltName ::= SEQUENCE {
altnameType AltNameType,
altNameValue GeneralName OPTIONAL }

The directory search operation allows for multiple values of EnhancedCertificateAssertion to be combined in
filter specifications, including and/or logic. This matching rule returns TRUE if all of the components that are present in
the presented value match the corresponding components of the attribute value, as follows:

Matching for serialNumber; issuer; subjectKeyIdentifier; authorityKeyIdentifier;
certificateValid, privateKeyValid, policy, subject, and nameConstraints components is as defined for
the same componentsin the certificateMatch matching rule.

subjectAltName COMponent contains an altNameType and optional altNamevalue fields. If altNamevalue iS
present, the value shall be of the same name form asindicated in altNameType.

subjectaAltName Mmatchesif at least one of the following conditionsis true:

— The presented value contains only the altNameType component and the stored attribute value contains
the subject alternative name extension with an a1tNames component of the same type as indicated in the
presented value.

— The presented value contains both the altNameType and altNamevalue components and the stored
attribute value contains the subject alternative name extension with an A1tNames component of the same
type and value indicated in the presented value.

subjectAltName match failsif at least one of the following conditionsis true:
— The stored attribute value does not contain the subject alternative name extension.

— The stored attribute value contains the subject alternative name extension but the a1tNames component
does not include the same type as identified in the presented value.

— The presented value contains both the altNameType and altNamevalue components and the stored
attribute value contains the subject aternative name extension with an A1 tNames component of the same
type indicated in the presented value, but the stored value does not contain the same value of that type as
in the presented value.

subjectAltName Mmatch is undefined if the presented value contains both the altNameType and altNamevalue
components and the stored attribute value contains the subject alternative name extension with an AltNames
component of the same type indicated in the presented vaue, but the type is one for which the directory is unable to
compare values for the purposes of determining a match. This may be because the name form is not appropriate for
matching or because the directory is unable to perform the required comparisons.

pathToName matches unless the certificate has a name constraints extension which inhibits the construction of a
certification path to any of the presented name values. For example, if attempting to retrieve certificates that form a path
to an end-entity certificate which has a subject value of "dc=com; dc=corporate; cn=john.smith", it may be useful to
include an assertion in the search operation containing this DN in the pathToName component. A stored certificate that
contained a name constraints extension that excluded the complete subtree below base "dc=com; dc=company A"
would fail in certification path validation to that end-entity certificate and would therefore not be a matched value for
this sample assertion.

114 PKI directory syntax definitions
11.4.1 X.509 Certificate syntax

x509Certificate SYNTAX-NAME ::= {
DESC "X.509 Certificate"
DIRECTORY SYNTAX Certificate
ID id-1sx-x509Certificate }

A value which has LDAP x509certificate Syntax is the specification of a public-key certificate expressed in a
binary encoding as specified in IETF RFC 4523.

11.4.2 X.509 Certificate List syntax

x509CertificateList SYNTAX-NAME ::= {
DESC "X.509 Certificate List"
DIRECTORY SYNTAX CertificateList
ID id-1sx-x509CertificateList }

66 Rec. | TU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

A value which has LDAP x509CertificateList Syntax is the specification of a public-key certificate list expressed
in abinary encoding as specified in IETF RFC 4523.

11.4.3 X.509 Certificate Pair syntax

x509CertificatePair SYNTAX-NAME ::= {

DESC "X.509 Certificate Pair"
DIRECTORY SYNTAX CertificatePair
ID id-1sx-x509CertificatePair }

A vauewhich has LDAP x509CertificatePair Syntax isthe specification of a public-key certificate pair expressed
in abinary encoding as specified in IETF RFC 4523.

11.4.4 X.509 Supported Algorithm

x509SupportedAlgorithm SYNTAX-NAME ::= {
DESC "X.509 Supported Algorithm"
DIRECTORY SYNTAX SupportedAlgorithm
ID id-1sx-x509SupportedAlgorithm }

A value which has LDAP x509SupportedaAlgorithm Syntax is the specification of supported algorithms expressed in
abinary encoding as specified in IETF RFC 4523,

11.45 X.509 Certificate Exact Assertion

x509CertificateExactAssertion SYNTAX-NAME ::=

DESC "X.509 Certificate Exact Assertion"
DIRECTORY SYNTAX CertificateExactAssertion
ID id-1dx-x509CertificateExactAssertion }

A value which has LDAP x509CertificateExactAssertion Syntax is the specification of public-key exact
assertion expressed in a Generic String Encoding Rules encoding as specified in IETF RFC 4523.

11.4.6 X.509 Certificate Assertion

x509CertificateAssertion SYNTAX-NAME ::= {
DESC "X.509 Certificate Assertion"
DIRECTORY SYNTAX CertificateAssertion
ID id-1dx-x509CertificateAssertion }

A value which has LDAP x509certificateAssertion Syntax is the specification of public-key assertion expressed
in a Generic String Encoding Rules encoding as specified in IETF RFC 4523.

11.4.7 X.509 Certificate Pair Exact Assertion

x509CertificatePairExactAssertion SYNTAX-NAME ::=

DESC "X.509 Certificate Pair Exact Assertion"
DIRECTORY SYNTAX CertificatePairExactAssertion
ID id-1dx-x509CertificatePairExactAssertion }

A value which has LDAP x509CertificatePairExactAssertion Syntax is the specification of public-key
certificate pair exact assertion expressed in a Generic String Encoding Rules encoding as specified in IETF RFC 4523.

11.4.8 X.509 Certificate Pair Assertion

x509CertificatePairAssertion SYNTAX-NAME ::= {

DESC "X.509 Certificate Pair Assertion"
DIRECTORY SYNTAX CertificatePairAssertion
ID id-1dx-x509CertificatePairAssertion }

A value which has LDAP x509CertificatePairAssertion Syntax is the specification of a public-key certificate
pair assertion expressed in a Generic String Encoding Rules encoding as specified in IETF RFC 4523.

11.4.9 X.509 Certificate List Exact Assertion syntax

x509CertificatelListExactAssertion SYNTAX-NAME ::= {
DESC "X.509 Certificate List Exact Assertion"
DIRECTORY SYNTAX CertificateListExactAssertion
ID id-1dx-x509CertListExactAssertion }

Rec. ITU-T X.509 (10/2012) 67

| SO/l EC 9594-8:2014 (E)

A value which has LDAP x509CertificateListExactAssertion Syntax is the specification of a public-key
certificate list exact assertion expressed in a Generic String Encoding Rules encoding as specified in IETF RFC 4523.

11.4.10 X.509 Certificate List Assertion syntax

x509CertificatelListAssertion SYNTAX-NAME ::= {

DESC "X.509 Certificate List Assertion"
DIRECTORY SYNTAX CertificateListAssertion
ID id-1dx-x509CertificateListAssertion }

A vaue which has LDAP x509CertificateListAssertion Syntax is the specification of a public-key certificate
list assertion expressed in a Generic String Encoding Rules encoding as specified in IETF RFC 4523.

11.4.11 X.509 Algorithm Identifier syntax

x509AlgorithmIdentifier SYNTAX-NAME ::= {
DESC "X.509 Algorithm Identifier"
DIRECTORY SYNTAX AlgorithmIdentifier{{SupportedAlgorithms}}
ID id-1dx-x509AlgorithmIdentifier }

A value which has LDAP x509a1gorithmIdentifie Syntax is the specification of an algorithm identifier expressed
in abinary encoding as specified in IETF RFC 4523.

SECTION 3 — ATTRIBUTE CERTIFICATE FRAMEWORK

The attribute certificate framework defined here provides a foundation upon which Privilege Management
Infrastructures (PMI) can be built. These infrastructures can support applications such as access control.

The binding of a privilege to an entity is provided by an authority through a digitally signed data structure caled an
attribute certificate or through a public-key certificate containing an extension defined explicitly for this purpose. The
format of attribute certificates is defined here, including an extensibility mechanism and a set of specific certificate
extensions. Revocation of attribute certificates may or may not be needed. For example, in some environments, the
attribute certificate validity periods may be very short (e.g., minutes), negating the need for a revocation scheme. If, for
any reason, an authority revokes a previously issued attribute certificate, users need to be able to learn that revocation
has occurred so they do not use an untrustworthy certificate. Revocation lists are one scheme that can be used to notify
users of revocations. The format of revocation lists is defined in Section 2 of this Directory Specification, including an
extensibility mechanism and a set of revocation list extensions. Additional extensions are defined here. In both the
certificate and revocation list case, other bodies may also define additional extensions that are useful to their specific
environments.

An attribute certificate-using system needs to validate a certificate prior to using that certificate for an application.
Procedures for performing that validation are also defined here, including verifying the integrity of the certificate itself,
its revocation status, and its validity with respect to the intended use.

This framework includes a number of optional elements that are appropriate only in some environments. Although the
models are defined as complete, this framework can be used in environments where not all components of the defined
models are used. For example, there are environments where the revocation of attribute certificates is not required.
Privilege delegation and the use of roles are also aspects of this framework that are not universally applicable. However,
these are included in this Directory Specification so that those environments that do have requirements for them can
also be supported.

The Directory uses attribute certificates to provide rule-based access control to Directory information.

12 Attribute Certificates

Public-key certificates are principally intended to provide an identity service upon which other security services, such as
data integrity, entity authentication, confidentiality and authorization, may be built. There are two distinct mechanisms
provided in this Directory Specification for binding a privilege attribute to a holder.

Public-key certificates, used in combination with the entity authentication service, can provide an authorization service
directly, if privileges are associated with the subject through the practices of theissuing CA. Public-key certificates may
contain asubjectDirectoryAttributes extension that contains privileges associated with the subject of the public-
key certificate. This mechanism is appropriate in situations where the authority issuing the public-key certificate (CA) is
also the authority for delegating the privilege (AA) and the validity period of the privilege corresponds to the validity
period of the public-key certificate. End-entities cannot act as AAs. If any of the extensions defined in clause 15 are

68 Rec. | TU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

included in a public-key certificate, those extensions apply equally to al privileges assigned in the
subjectDirectoryAttributes extension of that public-key certificate.

In the more general case, entity privileges will have lifetimes that do not match the validity period for a public-key
certificate. Privileges will often have a much shorter lifetime. The authority for the assignment of privilege will
frequently be one other than the authority issuing that same entity a public-key certificate and different privileges may
be assigned by different Attribute Authorities (AA). Privileges may also be assigned based on a temporal context and
the 'turn on/turn off' aspect of privileges may well be asynchronous with the lifetime of the public-key certificate and/or
asynchronous with entity privileges issued from a different AA. The use of attribute certificates issued by an AA
provides a flexible Privilege Management Infrastructure (PMI) which can be established and managed independently
from a PKI. At the same time, there is a relationship between the two whereby the PKI1 is used to authenticate identities
of issuers and holdersin attribute certificates.

12.1 Attribute certificate structure

An attribute certificate is a separate structure from a subject's public-key certificate. A subject may have multiple
attribute certificates associated with each of its public-key certificates. There is no requirement that the same authority
create both the public-key certificate and attribute certificate(s) for a user; in fact, a separation of duties will frequently
dictate otherwise. In environments where different authorities have responsibility for issuing public key and attribute
certificates, the public-key certificate(s) issued by a CA and the attribute certificate(s) issued by an Attribute Authority
(AA) would be signed using different private signing keys. In environments where a single entity is both the CA,
issuing public key certificates, and the AA, issuing attribute certificates, it is strongly recommended that a different key
be used to sign attribute certificates than the key used to sign public-key certificates. Exchanges between the issuing
authority and the entity receiving an attribute certificate are outside the scope of this Directory Specification.

The attribute certificate is defined as follows.

AttributeCertificate ::= SIGNED{AttributeCertificateInfo}
AttributeCertificateInfo ::= SEQUENCE {
version AttCertVersion, -- version is v2
holder Holder,
issuer AttCertIssuer,
signature AlgorithmIdentifier{{SupportedAlgorithms}},
serialNumber CertificateSerialNumber,
attrCertValidityPeriod AttCertValidityPeriod,
attributes SEQUENCE OF Attribute{{SupportedAttributes}},
issuerUniqueID UniqueIdentifier OPTIONAL,
extensions Extensions OPTIONAL }
AttCertVersion ::= INTEGER {v2(1)}
Holder ::= SEQUENCE ({
baseCertificateID [0] IssuerSerial OPTIONAL,
entityName [1] GeneralNames OPTIONAL,
objectDigestInfo [2] ObjectDigestInfo OPTIONAL }

(WITH COMPONENTS {..., baseCertificateID PRESENT } |
WITH COMPONENTS {..., entityName PRESENT } |
WITH COMPONENTS {..., objectDigestInfo PRESENT })

IssuerSerial ::= SEQUENCE {

issuer GeneralNames,
serial CertificateSerialNumber,
issuerUID UniqueIdentifier OPTIONAL,

ObjectDigestInfo ::= SEQUENCE {
digestedObjectType ENUMERATED {
publicKey (0),
publicKeyCert (1),
otherObjectTypes (2)},
otherObjectTypeID OBJECT IDENTIFIER OPTIONAL,
digestAlgorithm AlgorithmIdentifier{{SupportedAlgorithms}},
objectDigest BIT STRING,

AttCertIssuer ::= [0] SEQUENCE {

Rec. I TU-T X.509 (10/2012) 69

| SO/l EC 9594-8:2014 (E)

issuerName GeneralNames OPTIONAL,

baseCertificatelID [0] IssuerSerial OPTIONAL,

objectDigestInfo [1] ObjectDigestInfo OPTIONAL,
}

(WITH COMPONENTS {..., issuerName PRESENT } |
WITH COMPONENTS {..., baseCertificateID PRESENT } |
WITH COMPONENTS {..., objectDigestInfo PRESENT })

AttCertValidityPeriod ::= SEQUENCE ({
notBeforeTime GeneralizedTime,
notAfterTime GeneralizedTime,

-}

The version field shall specify the version of the attribute certificate. For attribute certificates issued in accordance
with the syntax in this Directory Specification, version shall be v2.

Thenolder field shall convey the identity of the attribute certificate's holder by the following components:

ad) ThebasecCertificateID component, if present, shall identify a particular public-key certificate that is
to be used to authenticate the identity of this holder when asserting privileges with this attribute
certificate.

b) The entityName component, if present, shall hold one or more names for the holder. If entityName is
the only component present in holder, any public-key certificate that has one of these names as its
subject can be used to authenticate the identity of this holder when asserting privileges with this attribute
certificate. If the baseCertificateID and entityName cOmponents are both present, only the public-
key certificate specified by baseCertificateID may be used. In this case, the entityName
component is included only as a tool to help the privilege verifier locate the identified public-key
certificate.

NOTE 1 —Thereis arisk with the sole use of GeneralNames to identify the holder in that this points only to a name
for the holder. This is generaly insufficient to enable the authentication of a holder's identity for the purposes of
issuing privileges to that holder. Use of the issuer name and serial number of a specific public-key certificate,
however, enables the issuer of attribute certificates to rely on the authentication process performed by the CA when
issuing that particular public-key certificate. Also, some of the options in GeneralNames (e.g., |PAddress) are
inappropriate for use in naming an attribute certificate holder, especialy when the holder is a role and not an
individual entity. Another problem with GeneraNames alone as an identifier for a holder is that many name forms
within that construct do not have strict registration authorities or processes for the assignment of names.

¢) TheobjectDigestInfo component, if present, is used directly to authenticate the identity of a holder,
including an executable holder (e.g., an applet). The holder is authenticated by comparing a digest of the
corresponding information, created by the privilege verifier with the same agorithm identified in
objectDigestInfo With the content of objectpigest. If the two are identical, the holder is
authenticated for the purposes of asserting privileges with this attribute certificate.

— publicKey shal be indicated when a hash of an entity's public key is included. Hashing a public key
may not uniquely identify one certificate (i.e., the identical key value may appear in multiple
certificates). In order to link an attribute certificate to a public-key, the hash is calculated over the
representation of that public key which would be present in a public-key certificate. Specifically, the
input for the hash algorithm shall be the DER encoding of a subjectPublicKeyInfo representation of
the key. Note that this includes the AlgorithmIdentifier, as well asthe BIT sTRING. Also, note
that if the public key value used as input to the hash function has been extracted from a public-key
certificate, then it is possible (e.g., if parameters for the Digital Signature Algorithm were inherited) that
this may not be sufficient input for the HASH. The correct input for hashing in this context will include
the value of the inherited parameters and thus may differ from the subjectPublicKeyInfo present in
the public-key certificate.

— publicKeyCert shal be indicated when a public-key certificate is hashed; the hash is over the entire
DER encoding of the public-key certificate, including the signature bits.

— otherObjectTypes shall be indicated when objects other than public-keys or public-key certificates
are hashed (e.g., software objects). The identity of the type of object may optionaly be supplied. The
portion of the object to be hashed can be determined either by the explicitly stated identifier of the type
or, if the identifier is not supplied, by the context in which the object is used.

The issuer field shall convey the identity of the AA that issued the certificate.
— The issuerName component, if present, shall identify one or more names for the issuer.

— The basecCertificateID component, if present, shall identify the issuer by reference to a specific
public-key certificate for which thisissuer isthe subject.

70 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

— The objectDigestInfo component, if present, shall identify the issuer by providing a hash of
identifying information for the issuer.

The signature field shal identify the cryptographic algorithm used to digitally sign the attribute certificate.
NOTE 2 —Thisfield is redundant.

The serialNumber field shall be a serial number that uniquely identifies the attribute certificate within the scope of its
issuer.

The attrcertvalidityPeriod field shall convey the time period during which the attribute certificate is considered
valid, expressed in GeneralizedTime format.

The attributes field shall contain the attributes associated with the holder that are being certified (e.g., the
privileges).
NOTE 3 —In the case of attribute descriptor attribute certificates, this sequence of attributes can be empty.

The issuerUniqueID field may be used to identify the issuer of the attribute certificate in instances where the issuer
component is not sufficient.

NOTE 4 — The use of the issuerUniquel D field is deprecated. Thisfield was added because at one time there was some fear of the
reuse of distinguished names.

The extensions field alows the addition of new fields to the attribute certificate.

If unknown elements appear within the extension, and the extension is not marked critical, those unknown elements
shal be ignored according to the rules of extensibility documented in clause 12.2.2 of Rec. ITU-T X.519 |
ISO/IEC 9594-5.

The framework for attribute certificates described in this section is primarily focused on the model in which privilegeis
placed within attribute certificates. However, as mentioned earlier, the certificate extensions defined in this section can
also be placed in a public-key certificate using the subjectbDirectoryaAttributes extension.

12.2 Attribute certification paths

Just as with public-key certificates, there may be a requirement to convey an attribute certification path (e.g., within an
application protocol to assert privileges). The following ASN.1 data type can be used to represent an attribute
certification path:

AttributeCertificationPath ::= SEQUENCE {
attributeCertificate AttributeCertificate,
acPath SEQUENCE OF ACPathData OPTIONAL,
-}
ACPathData ::= SEQUENCE {
certificate [0] Certificate OPTIONAL,
attributeCertificate [1l] AttributeCertificate OPTIONAL,
-}

13 Attribute Authority, SOA and Certification Authority relationship

The Attribute Authority (AA) and Certification Authority (CA) are logicaly (and, in many cases, physicaly)
completely independent. The creation and maintenance of "identity" can (and often should) be separated from the PMI.
Thus the entire PKI, including CAs, may be existing and operational prior to the establishment of the PMI. The CA,
athough it is the source of authority for identity within its domain, is not automatically the source of authority for
privilege. The CA, therefore, will not necessarily itself be an AA and, by logical implication, will not necessarily be
responsible for the decision as to what other entities will be able to function as AAs.

The Source of Authority (SOA) is the entity that is trusted by a privilege verifier as the entity with ultimate
responsibility for the assignment of a set of privileges. A resource may limit the SOA authority by trusting certain
SOAs for specific functions (e.g., one for read privileges and a different one for write privileges). An SOA isitself an
AA as it issues attribute certificates to other entities in which privileges are assigned to those entities. An SOA is
analogous to a trust anchor in the PKI, in that a privilege verifier trusts certificates signed by the SOA. In some
environments there is a need for CAs to have tight control over the entities that can act as SOAs. This framework
provides a mechanism for supporting that requirement. In other environments, that control is not needed and
mechanisms for determining the entities that can act as SOASs in such environments may be outside the scope of this
Directory Specification.

Rec. ITU-T X.509 (10/2012) 71

| SO/l EC 9594-8:2014 (E)

This framework isflexible and can satisfy the requirements of many types of environments.

a) In many environments, al privileges will be assigned directly to individual entities by a single AA,
namely the SOA.

b) Other environments may require support for the optional roles feature, whereby individuals are issued
certificates that assign various roles to them. The privileges associated with the role are implicitly
assigned to such individuals. The role privileges may themselves be assigned in an attribute certificate
issued to theroleitsalf or through other means (e.g., locally configured).

¢) In some scenarios it might be required for an AA to issue privileges to a group of entities that share a
common property, for example, a set of web servers or ateam of people, rather than to asingle entity.

d) Another optional feature of this framework is the support of privilege delegation. If delegation is done,
the SOA assigns privilege to an entity that is permitted to also act as an AA and further delegate the
privilege. Delegation may continue through several intermediary AAs until it is ultimately assigned to an
end-entity that cannot further delegate that privilege. The intermediary AAs may or may not also be able
to act as privilege asserters for the privileges they delegate.

€) Insome environments, the same physical entity may be acting as both an AA and a CA. Thisdual logical
role for the same physical entity is aways the case when privilege is conveyed within the
subjectDirectoryAttributes extension of a public-key certificate. In other environments, separate
physical entities act as CAs and AAs. In the latter case, privilege is assigned using attribute certificates
instead of public-key certificates.

f) Some environments, such as virtual organizations, may need to link together their individual PMls to
form a federated PMI. This requirement is known as Recognition of Authority in this Directory
Specification since one PMI (the local PMI) recognizes the authority of the SOA (and optionally the
AAS) in the other PMI (the remote PMI) to have some control over the privilege management in the local
PMI. Such recognition of authority may or may not be mutual between PMIs.

When attribute certificates point to public-key certificates for their issuers and holders, the PKI is used to authenticate
holders (privilege asserters) and verify the digital signatures of the issuers.

Two delegation models are described in this Directory Specification. The first delegation model is one where the
privilege delegator is an AA that can issue certificates delegating that privilege to others. The second model alows for
an independent Delegation Service (DS) in which the entity issues certificates on behalf of another AA (that may or
may not be able to issue ACs itself). This DS cannot itself act as a claimant for that privilege. The DS modd is
particularly relevant to environments that wish to maintain some central management over the set of privileges
delegated within their domain. For example, a set of one or more DS servers performing delegation, rather than
individual privilege holders, allows the total set of privileges delegated within an environment to be determined from a
centralized facility and enables policy and management decisions to be modified accordingly. Two distinct deployment
models are possible for DS servers. In one model, a privilege is assigned by an SOA to privilege holders and those
holders are authorized to delegate that privilege to others. However, rather than issue the attribute certificates that
delegate the privilege themselves, the privilege holder requests the DS to delegate that privilege on their behalf. The DS
does not itself hold that privilege and therefore cannot act as a claimant for that privilege; however, the DS is authorized
by the SOA to issue attribute certificates on behalf of other privilege holders. The second deployment model is similar
to the first with the following exception. The DS is actualy a holder that is assigned the privilege to be delegated, but
the DS is not authorized to act as a claimant for the privilege, only as a delegator. In this case, the noAssertion
extension must be set in the AC issued to the DS by the SOA. The DSistermed an indirect issuer.

In both deployment models, the SOA issues attributes/privileges to subordinate AAs. The AAs then request the DS to
issue a subset of these privilege attributes to other holders. In the second deployment model, the DS can check that an
AA is delegating within the overall scope set by the SOA; in the first deployment model, the DS cannot check and the
relying party will have to check that delegation was performed correctly.

Two recognition of authority models are described in this Directory Specification, static RoA and dynamic RoA. With
static RoA, extra information is added into the local PMI policy that is loaded into the local Policy Decision Point
(PDP)s prior to them making access control decisions for users who originate from the remote domain. No support for
static ROA is provided in this Directory Specification. With dynamic RoA, the local SOA issues new supplementary
policy ACs that add additional information to the current policy. Remote SOAs may aso be recognized to issue
supplementary policy ACs for the local PDPs. In both cases, these new supplementary policy ACs need to be read in by
the local PDPs prior to them making access control decisions for requests from a user of the remote domain.

72 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

13.1 Privilegein attribute certificates

Entities may acquire privilege in two ways:

— An AA may unilateraly assign privilege to an entity through the creation of an attribute certificate
(perhaps totally on its own initiative, or at the request of athird party). This certificate may be stored in a
publicly accessible repository and may subsequently be processed by one or more privilege verifiers to
make an authorization decision. All of this may occur without the entity's knowledge or explicit action.

— Alternatively, an entity may request a privilege of an AA. Once created, this certificate may be returned
(only) to the requesting entity, which explicitly supplies it when requesting access to a protected
resource.

Note that in both procedures the AA needs to perform its due diligence to ensure that the entity should realy be
assigned this privilege. This may involve some out-of-band mechanisms, analogous to the certification of an
identity/key-pair binding by a CA.

The attribute certificate based PMI is suitable in environments where any one of the following is true:

— A different entity is responsible for assigning a particular privilege to a holder than for issuing public-key
certificates to the same subject;

— thereare anumber of privilege attributes to be assigned to a holder, from a variety of authorities;

— the lifetime of a privilege differs from that of the holder's public-key certificate validity (generaly the
lifetime of privilegesis much shorter); or

— theprivilegeisvalid only during certain intervals of time which are asynchronous with that user's public-
key validity or validity of other privileges.

132 Privilegein public-key certificates

In some environments, privileges are associated with the subject through the practices of a CA. Such privilege may be
put directly into public-key certificates (thereby reusing much of an already-established infrastructure), rather than
issuing attribute certificates. In such cases, the privilege isincluded in the subjectDirectoryAttributes extension
of the public-key certificate.
This mechanism is suitable in environments where one or more of the following are true:

— Thesame physica entity is acting both asa CA and an AA;

— thelifetime of the privilege is aligned with that of the public-key included in the certificate;

— delegation of privilegeis not permitted; or

— delegation is permitted, but for any one delegation, all privileges in the certificate (in the
subjectDirectoryAttributes extension) have the same delegation parameters and all extensions
relevant to delegation apply equally to all privilegesin the certificate.

14 PMI modeds

14.1 General model

The general privilege management model consists of three entities: the object, the privilege asserter and the privilege
verifier.

The object may be a resource being protected, for example, in an access control application. The resource being
protected is referred to as the object. This type of object has methods which may be invoked (for example, the object
may be a firewall which has an "Allow Entry" object method, or the object may be afile in a file system which has
Read, Write, and Execute object methods). Another type of object in this model may be an object that was signed in a
non-repudiation application.

The privilege asserter is the entity that holds a particular privilege and asserts its privileges for a particular context of
use.

The privilege verifier is the entity that makes the determination as to whether or not asserted privileges are sufficient for
the given context of use.

Rec. ITU-T X.509 (10/2012) 73

| SO/l EC 9594-8:2014 (E)

The pass/fail determination made by the privilege verifier is dependent upon four things:
— privilege of the privilege asserter;
— privilege policy in place;
— current environment variables, if relevant; and
— sendgitivity of the object method, if relevant.

The privilege of a privilege holder reflects the degree of trust placed in that holder, by the certificate issuer, that the
privilege holder will adhere to those aspects of policy which are not enforced by technical means. This privilege is
encapsulated in the privilege holder's attribute certificate(s) (or subjectDirectoryAttributes extension of its
public-key certificate), which may be presented to the privilege verifier in the invocation request, or may be distributed
by other means, such as via the Directory. Codifying privilege is done through the use of the attribute construct,
containing an AttributeType and a SET OF AttributeValue. Some attribute types used to specify privilege may
have very simple syntax, such as a single INTEGER Or an OCTET STRING. Others may have more complex syntaxes.
This Directory Specification defines one simple privilege attribute type. Other examples are provided in Annex E.

The privilege policy specifies the degree of privilege which is considered sufficient for a given object method's
sensitivity or context of use. The privilege policy needs to be protected for integrity and authenticity. A number of
possibilities exist for conveying policy. At one extreme is the idea that policy is not really conveyed at al, but is ssimply
defined and only ever kept locally in the privilege verifier's environment. At the other extreme is the idea that some
policies are "universal" and should be conveyed to, and known by, every entity in the system. Between these extremes
are many shades of variation. Schema components for storing privilege policy information in the Directory are defined
in this Directory Specification.

Privilege policy specifies the threshold for acceptance for a given set of privileges. That is, it defines precisely when a
privilege verifier should conclude that a presented set of privileges is "sufficient” in order that it may grant access
(to the requested object, resource, application, etc.) to the privilege asserter.

Syntax for the definition of privilege policy is not standardized in this Directory Specification. Annex E contains a
couple of examples of syntaxes that could be used for this purpose. However, these are examples only. Any syntax may
be used for this purpose, including clear text. Regardless of the syntax used to define the privilege policy, each instance
of privilege policy shall be uniquely identified. Object identifiers are used for this purpose.

PrivilegePolicy ::= OBJECT IDENTIFIER

The environment variables, if relevant, capture those aspects of policy required for the pass/fail determination
(eg., time of day or current account balance) which are available through local means to the privilege verifier.
Representation of environment variablesis entirely alocal matter.

The object method sensitivity, if relevant, may reflect attributes of the document or request to be processed, such as the
monetary value of a funds transfer that it purports to authorize, or the confidentiality of a document's content. The
object method's sensitivity may be explicitly encoded in an associated security label or in an attribute certificate held by
the object method, or it may be implicitly encapsulated in the structure and contents of the associated data object. It may
be encoded in one of a number of different ways. For instance, it may be encoded outside the scope of the PMI in the
ITU-T X.411 label associated with a document, in the fields of an EDIFACT interchange, or hard-coded in the privilege
verifier's application. Alternatively, it may be done within the PMI, in an attribute certificate associated with the object
method. For some contexts of use, no object method sensitivity is used.

There is not necessarily any binding relationship between a privilege verifier and any particular AA. Just as privilege
holders may have attribute certificates issued to them by many different AAs, privilege verifiers may accept certificates
issued by numerous AAs, which need not be hierarchically related to one another, to grant access to a particular
resource.

The attribute certificate framework can be used to manage privileges of various types and for a number of purposes.
The terms used in this Directory Specification, such as privilege asserter, privilege verifier, etc., are independent of the
particular application or use.

14.1.1 PMI in access control context

There is a standard framework for access control (Rec. ITU-T X.812 | ISO/IEC 10181-3) that defines a corresponding
set of terms that are specific to the access control application. A mapping of the generic terms used in this Directory
Specification to those in the access control framework is provided here, to clarify the relationship between this model
and that Directory Specification.

Service request in this Directory Specification corresponds to the 'access request’ defined in the access control
framework.

74 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

Privilege asserter in this Directory Specification would be acting in the role of an 'initiator' in the access control
framework.

Privilege verifier in this Directory Specification would be acting in the role of an 'access control decision function
(ADF)' in the access control framework.

Object method for which privilege is being asserted in this Directory Specification would correspond to the 'target'
defined in the access control framework.

Environmental variables in this Directory Specification would correspond to the ‘contextual information' in the access
control framework.

Privilege policy discussed in this Directory Specification could include ‘access control policy’, and ‘access control policy
rules as defined in the access control framework.

This model allows a PMI to be overlaid fairly seamlessly on an existing network of resources to be protected. In
particular, having the privilege verifier act as a gateway to a sensitive object method, granting or denying requests for
invocation of that object method, enables the object to be protected with little or no impact to the object itself. The
privilege verifier screens all requests and only those that are properly authorized are passed on to the appropriate object
methods.

14.1.2 PMI in anon-repudiation context

There is a standard framework for non-repudiation (Rec. ITU-T X.813 | ISO/IEC 10181-4) which defines a
corresponding set of terms that are specific to non-repudiation. A mapping of the generic terms used in this Directory
Specification to those in the non-repudiation framework is provided here, to clarify the relationship between this model
and that Directory Specification.

Privilege asserter in this Directory Specification would be acting in the role of an 'evidence subject’ or an 'originator' in
the non-repudiation framework.

Privilege verifier in this Directory Specification would be acting in the role of an 'evidence user' or a 'recipient' in the
non-repudiation framework.

Object method for which privilege is being asserted in this Directory Specification would correspond to the 'target'
defined in the non-repudiation framework.

Environmental variables in this Directory Specification would correspond to the date and time the evidence was
generated or verified' in the non-repudiation framework.

Privilege policy discussed in this Directory Specification could include 'non-repudiation security policy' in the non-
repudiation framework.

14.2 Control model

The control model illustrates how control is exerted over access to the sensitive object method. There are five
components of the model: the privilege asserter, the privilege verifier, the object method, the privilege policy, and
environmental variables (see Figure 4). The privilege asserter has privilege; the object method has sensitivity. The
techniques described here enable the privilege verifier to control access to the object method by the privilege asserter, in
accordance with the privilege policy. Both the privilege and the sensitivity may be multi-valued parameters.

Environmental
variables

Privilege
policy\
Privilege Object method
verifier (sendgitivity)
Privilege asserter Service
(privilege) request X.509(12)_F04

Figure 4 — Control model

The privilege asserter may be an entity identified by a public-key certificate, or an executable object identified by the
digest of its disk image, etc.

Rec. ITU-T X.509 (10/2012) 75

| SO/l EC 9594-8:2014 (E)

14.3 Delegation model

In some environments there may be a need to delegate privilege; however, thisis an optional aspect of the framework
and is not required in all environments. There are four components of the delegation model: the privilege verifier, the
SOA, other AAs and the privilege asserter (see Figure 5).

Source of authority

Assigns

privilege Trusis
Attribute Asserts privilege o o
atthority | (fadthorized) > Privilege verifier
Delegates Asserts
privilege privilege
'End-entity
privilege holder X509(12)_F05

Figure5— Delegation model

As with environments where delegation is not used, the SOA is the initial issuer of certificates that assign privilege to
privilege holders. However, in this case the SOA authorizes the privilege holder to act as AA and further delegate that
privilege to other entities through the issuance of certificates that contain the same privilege (or a subset thereof). The
SOA may impose constraints on the delegation that can be done (e.g., limit the path length, limit the name space within
delegation can be done). Each of these intermediary AAs may, in certificates that it issues to further privilege holders,
authorize further delegation to be done by those holders also acting as AAs. A universal restriction on delegation is that
no AA can delegate more privilege than it holds. A delegator may also further restrict the ability of downstream AAs.

When delegation is used, the privilege verifier trusts the SOA to delegate some or al of those privileges to holders,
some of which may further delegate some or al of those privileges to other holders.

The privilege verifier trusts the SOA as the authority for a given set of privileges for the resource. If the privilege
asserter's certificate is not issued by that SOA, then the privilege verifier shall locate a delegation path of certificates
from that of the privilege asserter to one issued by the SOA. The validation of that delegation path includes checking
that each AA had sufficient privileges and was duly authorized to delegate those privileges.

For the case in which privileges are conveyed by means of attribute certificates, the delegation path is distinct from the
certificate validation path used to validate the public-key certificates of the entities involved in the delegation process.
However, the quality of authenticity offered by the public-key certificate validation process shall be commensurate with
the sensitivity of the object method that is being protected.

A delegation path shall either consist completely of attribute certificates or completely of public-key certificates. A
delegator that obtains its privilege in an attribute certificate may only delegate, if authorized, by issuance of subsequent
attribute certificates. Similarly, a delegator that obtains its privilege in a public-key certificate, if authorized, may only
delegate by issuance of subsequent public-key certificates. Only AAs may delegate privilege. End-entities cannot.

144 Group assignment model

In some scenarios it might be required for an AA to issue privileges to agroup of entities that share a common property,
for example, a set of web servers or a team of people, rather than to a single entity. This is achieved by assigning a
group AC to the group.

There are two ways of identifying the members of a group who are assigned a group AC. These methods are called
direct group naming and group role naming.

1441 Direct group naming

In direct group naming, the holder field of the group AC shall take the enti tyName option, and the directoryName
of GeneralName shall name a subtreein the DIT. Each entry in the subtree is assigned the attribute(s) in this group AC.

76 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

14.4.2 Group role naming

In group role naming, the members of the group are identified by the attributes that they hold, such attributes being
assigned to them in role assignment attribute certificates. In group role naming, the holder field of the group AC takes
the entityName option and holds the role(s) of the group members who are being assigned the attributes in this
group AC. The GeneralNames should contain a single GeneralName cOntaining a directoryName With a single
RDN, whose attribute type is the role attribute defined in clause 14.5.1. If roleAuthority in the role attribute is
present, this identifies the attribute authorities who are responsible for issuing the role assignment certificates to holders
who are members of this group. If roleauthority is absent from the role attribute, the identity of the responsible
attribute authorities to issue the role assignment certificates shall be determined through means outside this Directory
Specification. The roleName component of the role attribute identifies the role(s) of the group who are being assigned
the attributes in this group attribute certificate.

NOTE 1 - Group role naming allows attribute based role assignments, role mappings and role hierarchies to be defined, by

specifying that members of other (more powerful) roles are assigned the roles of this group AC.

NOTE 2 —Where the rolein the holder field is the same astheroleinthe attributes field of thisgroup AC, thisis delegation

of authority from the issuer of the group AC to the roleAuthority in the role attribute. However, a much simpler way of
achieving the same effect isto use the roleAuthority as the holder.

14.5 Roles mode

Roles provide a means to indirectly assign privileges to individuals. Individuals are issued role assignment certificates
that assign one or more roles to them through the role attribute contained in the certificate. Specific privileges are
assigned to a role name through role specification certificates, rather than to individual privilege holders through
atribute certificates. This level of indirection enables, for example, the privileges assigned to a role to be updated,
without impacting the certificates that assign roles to individuals. Role assignment certificates may be attribute
certificates or public-key certificates. Role specification certificates may be attribute certificates, but not public-key
certificates. If role specification certificates are not used, the assignment of privileges to a role may be done through
other means (e.g., may be locally configured at a privilege verifier).

Thefollowing are all possible:
— Any number of roles can be defined by any AA;
— theroleitself and the members of arole can be defined and administered separately, by different AAS;
— role membership, just as any other privilege, may be delegated; and
— roles and membership may be assigned any suitable lifetime.

If the role assignment certificate is an attribute certificate, the role attribute is contained in the attributes
component of the attribute certificate. If the role assignment certificate is a public-key certificate, the role attribute is
contained in the subjectDirectoryAttributes extension. In the latter case, any additional privileges contained in
the public-key certificate are privileges that are directly assigned to the certificate subject, not privileges assigned to the
role.

Thus, a privilege asserter may present a role assignment certificate to the privilege verifier demonstrating only that the
privilege asserter has a particular role (e.g., "manager”, or "purchaser"). The privilege verifier may know a priori, or
may have to discover by other means, the privileges associated with the asserted role in order to make a pass/fail
authorization decision. The role specification certificate can be used for this purpose.

A privilege verifier needs to have an understanding of the privileges specified for the role. The assignment of those
privileges to the role may be done within the PMI in a role specification certificate or outside the PMI (e.g., localy
configured). If the role privileges are asserted in arole specification certificate, mechanisms for linking that certificate
with the relevant role assignment certificate for the privilege asserter are provided in this Directory Specification. A role
specification certificate cannot be delegated to any other entity. The issuer of the role assignment certificate may be
independent of the issuer of the role specification certificate and these may be administered (expired, revoked, and so
on) entirely separately. The same certificate (attribute certificate or public-key certificate) can be a role assignment
certificate, as well as contain assignment of other privileges directly to the same individual. However, a role
specification certificate shall be a separate certificate.

NOTE —The use of roles within an authorization framework can increase the complexity of path processing, because such

functionality essentially defines another delegation path which needs to be followed. The delegation path for the role assignment

certificate may involve different AAs and may be independent of the AA that issued the role specification certificate.

Rec. ITU-T X.509 (10/2012) 77

| SO/l EC 9594-8:2014 (E)

145.1 Roleattribute

The specification of privilege attribute types is generally an application-specific issue that is outside the scope of this
Directory Specification. The single exception to thisis an attribute defined here for the assignment of a holder to arole.
The specification of values for the role attribute is outside the scope of this Directory Specification.

role ATTRIBUTE ::= {
WITH SYNTAX RoleSyntax
ID id-at-role }
RoleSyntax ::= SEQUENCE {
roleAuthority [0] GeneralNames OPTIONAL,
roleName [1] GeneralName,
-}

This privilege attribute may be used to populate the attributes field of arole assignment certificate or to populate the
holder field of arole specification or group attribute certificate, or both.

If the role assignment certificate is a public-key certificate rather than an AC, the role attribute may be used to
populate the subjectDirectoryAttributes extension of that public-key certificate.

When the role attribute is used to populate the attributes field of a role assignment certificate, the
roleAuthority, if present, identifies the recognized authority that is responsible for issuing the role specification
certificate. If there are multiple occurrences of GeneralName, they shall al be aternative names for the same authority.

If roleauthority is present, and a privilege verifier uses a role specification certificate to determine the privileges
assigned to the role, at least one of the names in roleAuthority shall be present in the issuer field of that role
specification certificate. If the privilege verifier has used means other than a role specification certificate to determine
the privileges assigned to the role, mechanisms to ensure that those privileges were assigned by an authority named in
this component are outside the scope of this Directory Specification.

If roleAauthority is absent, the identity of the responsible authority shall be determined through other means. The
roleSpecCertIdentifier extension in arole assignment certificate is one way to achieve this binding, in the case
where arole specification certificate was used to assign privilegesto therole.

The roleName component identifies the role to which the holder of this role assignment certificate is assigned. If a
privilege verifier uses a role specification certificate to determine the privileges assigned to that role, this role name
shall also appear in the holder field of the role specification certificate.

When the role attribute is used to populate the holder field of a group attribute certificate, the roleauthority, if
present, identifies the recognized authorities that are responsible for issuing role assignment certificates to holders who
are members of the group being assigned the attributes in this group éttribute certificate. If roleauthority is absent,
the identity of the responsible authorities to issue the role assignment certificates shall be determined through other
means. The roleName component identifies the role(s) of the group of holders who are being assigned the attributes in
this group attribute certificate. This roleName shall also appear in the attributes field of the role assignment
certificates of the group of holders who are being assigned the attributes in this group attribute certificate. Where more
than one role value is present in roleName, a group member must be assigned all the role values (in one or more role
assignment certificates) in order to be assigned the attributes in this group attribute certificate.

When the role attribute is used to populate both the holder field and the attributes field, thisis a role mapping
attribute certificate.

146 Recognition of Authority Model
Figure 6 shows the control model for asingle domain ITU-T X.509 PMI.

78 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

Authentication
service

User's request i T

— \ AEFPEP |

User's Grant, deny
request or not applicable

ADF/PDP

Environmental
: parameters

X.509(12)_F06

Figure 6 — The control model for a singledomain PM|

The PMI policy contains information that directs the PDP in making its access control decisions. This information
typicaly includes data about the trusted SOA, the delegation rules, which attributes are known and used, and which
privileges are needed to gain access to which resources, etc. The policy information may be statically configured into

the PDP, or may be dynamically obtained, for example, by passing a protected privilege policy attribute certificate to
the PDP.

In order to support federations between organizations, and the construction of dynamic virtual organizations, it is
essential that PMIs can be plugged together, so that attribute certificates issued in one domain can be used effectively in
another PMI domain to gain access to its resources. Otherwise, the second PMI domain will have to issue another set of
attribute certificates to the users of the first domain. Thisis both inefficient and cumbersome for the users to manage.

Recognition of Authority is the feature that will facilitate the rapid integration of PMIs from different domains into a
single federated PMI.

Rec. ITU-T X.509 (10/2012) 79

I SO/ EC 9594-8:2014 (E)

service

i
watl 2¥ \ AEFPEP |

User's ! Grant, deny
request or not applicable

ADF/PDP

Authentication
service

AEF/PEP

ADF/PDP

X.509(12)_F07

Figure 7 — Two federated PM| domains

In Figure 7, the user, who is a member of the TopLeft domain, wishes to access the resources of the BottomRight
domain. He or she might contact the BottomRight domain directly, or his or her request may be relayed by the
gatekeeper (AEF/PEP) in the TopLeft domain. Either way, the PDP in the BottomRight domain needs to understand the
ACs issued by the TopLeft domain, and the BottomRight policy needs to tell the BottomRight PDP whether they are
sufficient to grant access to the requested resource or not.

The SOA in the trusting (local) domain (e.g., the BottomRight domain) needs to update its policy so that the SOA of the
remote domain (e.g., the TopLeft domain) becomes trusted or recognized. The local policy can be updated in (at least)
one of two ways:

a) daticaly, by adding extrainformation into the policy that is loaded into the local PDP prior to it making
access control decisions;

b) dynamically, by issuing a new supplementary policy that adds additional information to the current
policy. This dynamic addition to the local policy could be by the local SOA issuing a policy AC to the
remote SOA or by the local SOA issuing an administrative role AC to the remote SOA so that the remote
SOA may issue its own policy AC. In both cases, these need to be read in by the local PDP prior to
validating arequest from a user of the remote domain.

When the local SOA issues apolicy AC to the remote SOA, it may be asfollows:
— theholder field identifies the SOA of the remote domain;
— theissuer field identifies the local SOA;

— the attributes of the AC are the union of all the privilege attributes that the remote SOA s trusted to
issue. If any of these privilege attributes are newly defined roles, then new role specification ACs may
also need to be issued;

80 Rec. | TU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

basicAttConstraints extension isincluded with authority Set to TRUE to indicate that the remote
SOA isan AA. Path length constraint (pathLenConstraint) iS Set as appropriate to indicate the length
of the delegation chain that is allowed in the remote domain;

holderNameConstraints may be set to limit the name forms and namespaces in which the remote
SOA can assign privilege attributes to users;

allowedAttributeAssignments may be set to further constrain which groups of remote holders can
be assigned which sets of privilege attributes;

attributeMappings may be set to inform the local PDPs which remotely assigned attributes should be
considered equal to which locally assigned attributes.

When the local SOA issues an administrative role AC to the remote SOA, it may work as follows:

1)

2)

3

4)

The local SOA defines an administrative role for the local domain and the permissions that may be
administered by this administrative role. This may be defined in a role specification AC in which the
holder is the administrative role and the attribute is the permission attribute (defined in clause 14.8.1
below). The set of permissions for an administrative role is called the administrative scope of an
administrative role. These permissions may also be assigned to local roles, so that users with these local
roles will inherit these permissions. Issuing an administrative role specification AC alows remote
administrators to learn their administrative scope.

The local SOA delegates this administrative role to the remote SOA by issuing arole assignment AC to
the remote SOA containing the assigned administrative role. The remote SOA may aso be alowed to
delegate the administrative role to other administrators in the remote domain, as determined by
pathLenConstraint inthebasicAttConstraints extension in the role assignment AC.

The remote SOA (or subordinate AA) that has been assigned this administrative role is now recognized
as an entity able to issue two types of delegated policy AC, either a delegated role specification AC or a
delegated attribute mapping AC. In a delegated role specification AC, the remote SOA (or AA) directly
assigns the permissions from the administrative scope to new remotely defined attributes as described
below. In a delegated attribute mapping AC, new remotely defined attributes are mapped into existing
local roles as described below.

In order to ensure that the remote SOA (or AA) cannot overstep its delegated authority, the authorization
system has to validate that the privileges stated or implied by a delegated policy AC lie within the
administrative scope defined for the administrative role. If they do, the delegated policy AC is accepted,
and its policy rules become dynamically incorporated into the local SOA's policy. If they do not, the
delegated policy AC isrejected, and its policy ruleswill be ignored.

A delegated role specification AC comprises:

the holder is the newly specified remote role;
the issuer field identifies the remote SOA (or AA) of the remote domain that issued this AC;

the attributes of the AC are the privileges that will be assigned to users in the remote domain who are
assigned the remote role;

holderNameConstraints may be set to limit the name forms and namespaces of the users which may
be assigned these privilege attributes;

allowedAttributeAssignments may be set to further constrain which groups of remote holders can
be assigned which sets of remotely defined privilege attributes.

A delegated attribute mapping policy AC comprises:

the holder and the issuer field identify the remote SOA (or AA) of the remote domain that issued this
AC;

the attributes field is null;

holderNameConstraints may be set to limit the name forms and namespaces of the users which may
be assigned these privilege attributes;

allowedAttributeAssignments may be set to further constrain which groups of remote holders can
be assigned which sets of privilege attributes;

attributeMappings iS Set to inform the PDP which remotely assigned attributes should be considered
equal to which locally assigned attributes.

Rec. ITU-T X.509 (10/2012) 81

| SO/l EC 9594-8:2014 (E)

The remote SOA will subsequently issue privilege attribute ACs to end users and/or to AAs in its domain. Whether the
remote AAs are trusted or not, and if trusted, the number of AAs that are allowed in a delegation chain, may be set by
the pathLenConstraint in the AC issued to the remote SOA. The privilege attributes in the ACs issued by the
remote SOA may contain either:

— permissions that are understood by the PDPsin the local domain; or
— roleswhich may or may not be understood by the PDPsin the local domain.

When an AC contains roles that are not understood by the local PDPs, the latter must know how to map these unknown
rolesinto local permissions. This can be achieved in at least one of four ways. If the local SOA knows what these roles
are likely to be prior to recognizing the remote SOA, then if it issues a policy AC to the remote SOA an attribute
mapping extension can be placed in the policy AC issued to the remote SOA, or aternatively attribute mapping rules
can be added into the policy loaded by the local PDP. If the remote roles are not known prior to recognizing the remote
SOA, the remote SOA will need to either issue an attribute mapping policy AC or place the attribute mapping extension
inthe ACsthat it issuesto its users.

If the remote SOA issues an attribute mapping policy AC, this should contain:
— aholder and issuer name which isthat of the remote SOA,;
— theattributesfield is null;
— attributeMappings extension set to describe the attribute mappings.
NOTE — A remote SOA should not issue an attribute mapping AC in which both the holder and attributes are roles, since this
type of attribute mapping should be issued by the local SOA only.

This attribute mapping policy AC needs to be made available to the local PDPs at decision time. This can be done by
either storing the policy AC in the directory entry of the remote SOA and giving the local PDPs read access to it (the
pull model) or by including the policy AC in the set of ACs presented by the remote user when accessing the local
resource (the push model).

147 XML privilegeinformation attribute

The specification of privileges is generally an application-specific issue that is outside the scope of this Directory
Specification. While this attribute does not define any specific privilege information, it provides a container attribute in
which XML-encoded privileges can be conveyed in attribute certificates.

xmlPrivilegeInfo ATTRIBUTE ::= {
WITH SYNTAX UTF8String --contains XML-encoded privilege information
ID id-at-xMLPrivilegeInfo }

The XML schema for the role attribute type can be defined either with ASN.1 or with XML Schema Definition (XSD).
The XML contained within the uTF8string heeds to be self-identifying.

The following is an ASN.1 schema defining an XML role attribute type. It is followed by an XSD specification for the
same attribute type, and by an example XML instance. The example instance is avalid instance for both the ASN.1 and
the XSD schema instances, and can be validated by either ASN.1 or XSD tooals.

The example schema defines arole attribute with an D, an issuing authority and the name of therole.

CERTIFICATE-ATTRIBUTE DEFINITIONS ::=

BEGIN
Role ::= [UNCAPITALIZED] SEQUENCE {
id [ATTRIBUTE] XML-ID,
authorities SEQUENCE (1..MAX) OF
authority UTF8String,
name UTF8String }
XML-ID ::= UTF8String
END

The following XSD schemais an aternative (exactly equivalent) definition:

<schema xmlns="http://www.w3.0rg/2000/08/XMLSchema">
<element name="role">
<attribute name="id" type="ID"/>
complexType>
<sequence>
<element name="authorities">
<complexType>

82 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

<sequence>
<element name="authority" type="string" minOccurs="1" maxOccurs="*"/>
</sequence>
</complexType>
</element>
<element name="name" type="string"/>
</sequence>
</complexType>
</element>
</schema>

An example of an instance conforming to the above schema definitions, that would be a value of the
xMLPrivilegeInfo atribute typewould be:

<role id="123" xmlns="http://www.example.org/certificates/attribute">
<authorities>
<authority>Fictitious Organization</authority>
</authorities>
<name>manager</name>
</role>

14.8 Permission attribute and matching rule

14.8.1 Permission attribute

This attribute defines a general permission, which is an operation on an object, e.g., a read operation on a file object.
The specification of values for the operations or objects is outside the scope of this Directory Specification. Note that
the names of both operations and objects are case sensitive.

permission ATTRIBUTE ::= {
WITH SYNTAX DualStringSyntax
EQUALITY MATCHING RULE dualStringMatch
ID id-at-permission }

DualStringSyntax ::= SEQUENCE {
operation [0] UnboundedDirectoryString,
object [1] UnboundedDirectoryString,

-}

The permission attribute is intended to be used to populate the attributes field of an attribute certificate and is not
intended for storing as an attribute of a directory entry.

14.8.2 Dual string matching rule

The dualstringMatch matching ruleisa case sensitive matching rule and is defined as follows:

dualStringMatch MATCHING-RULE ::= {
SYNTAX DualStringSyntax
ID id-mr-dualStringMatch }

The dualstringMatch matching rule performs a case sensitive comparison for equality between a pair of presented
strings and an attribute value of type bualstringSyntazx, in which the first presented string is the operation and the
second presented string is the object.

15 Privilege management certificate extensions

The following certificate extensions may be included in certificates for the purposes of privilege management. Along
with the definition of the extensions themselves, the rules for certificate types in which the extension may be present are
also provided.

With the exception of the SOA identifier extension, any of the extensions that may be included in a public-key
certificate shall only be included if that public-key certificate is one that assigns privilege to its subject (i.e., the
subjectDirectoryAttributes extension shall be present). If any of these extensions is present in a public-key
certificate, that extension appliesto ALL privileges present in the subjectDirectoryAttributes extension.

Revacation lists used to publish revocation notices for attribute certificates (ACRLs and AARLS) may contain any CRL
or CRL entry extensions as defined for use in CRLs and CARLs in Section 2 of this Directory Specification.

Rec. I TU-T X.509 (10/2012) 83

| SO/l EC 9594-8:2014 (E)

This clause specifies extensions in the following areas:

a) Basic privilege management: These certificate extensions convey information relevant to the assertion of
aprivilege.

b) Privilege revocation: These certificate extensions convey information regarding the location of
revocation status information.

c) Source of Authority: These certificate extensions relate to the trusted source of privilege assignment by a
verifier for agiven resource.

d) Roles. These certificate extensions convey information regarding the location of related role
specification certificates.

e) Deéegation: These certificate extensions alow constraints to be set on the subsequent delegation of
assigned privileges.

f) Recognition of Authority: These certificate extensions allow PMIs to be federated together.

151 Basic privilege management extensions

15.1.1 Requirements

The following requirements relate to basic privilege management:
a) Issuersneed to be able to place constraints on the time during which a privilege can be asserted.
b) Issuersneed to be able to target attribute certificates to specific servers/services.

¢) It may be necessary for issuers to convey information intended for display to privilege asserters and/or
privilege verifiers using the certificate.

d) Issuers may need to be able to place constraints on the privilege policies with which the assigned
privilege can be used.

e) Issuers may need to be able to issue an AC that can only be asserted once within itslifetime.
f) Issuers may need to be able to issue privilege attributes to a group of entities that share a common
property.
15.1.2 Basic privilege management extension fields

The following extension fields are defined:
a) Time specification;
b) Targeting information;
c) User notice;
d) Acceptable privilege policies;
€) Indirect issuer;
f) Singleuse;
g) GroupAC.

15.1.2.1 Time specification extension

15.1.2.1.1 Time specification extension definition

The time specification extension can be used by an AA to restrict the specific periods of time during which the
privilege, assigned in the certificate containing this extension, can be asserted by the privilege holder. For example, an
AA may issue a certificate assigning privileges which can only be asserted between Monday and Friday and between
the hours of 9:00 am. and 5:00 p.m.. Another example, in the case of delegation, might be a manager delegating the
signing authority to a subordinate for the time that the manager will be away on vacation.

Thisfield is defined as follows:

timeSpecification EXTENSION ::= {
SYNTAX TimeSpecification
IDENTIFIED BY id-ce-timeSpecification }

This extension may be present in attribute certificates or public-key certificates issued by AAs, including SOAS, to
entities that may act as privilege asserters, including other AAs and end-entities. This extension shall not be included in
certificates that contain the SOA identifier extension or in certificates issued to AAs that may not also act as privilege
asserters.

84 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

If this extension is present in a certificate issued to an entity that isan AA, it applies only to that entity's assertion of the
privileges contained in the certificate. It does not impact the time period during which the AA is able to issue
certificates.

Because this extension is effectively specifying arefinement on the validity period of the certificate that containsit, this
extension shall be marked critical (i.e., the issuer, by including this extension, is explicitly defining the privilege
assignment to be invalid outside the time specified).

If this extension is present, but not understood by the privilege verifier, the certificate shall be rejected.

15.1.2.1.2 Time specification matching rule

The time specification matching rule compares for equality a presented value with an attribute value of type
AttributeCertificate.

timeSpecificationMatch MATCHING-RULE ::= {
SYNTAX TimeSpecification
ID id-mr-timeSpecMatch }

This matching rule returns TRUE if the stored value contains the timeSpecification extension and if components
that are present in the presented value match the corresponding components of the stored value.

15.1.2.2 Targeting information extension

The targeting information extension enables the targeting of an attribute certificate to a specific set of servers/services.
An attribute certificate that contains this extension should only be usable at the specified servers/services.

Thisfield is defined as follows.

targetingInformation EXTENSION ::= {
SYNTAX SEQUENCE SIZE (1l..MAX) OF Targets
IDENTIFIED BY id-ce-targetInformation }

Targets ::= SEQUENCE SIZE (1l..MAX) OF Target

Target ::= CHOICE {
targetName [0] GeneralName,
targetGroup [l] GeneralName,
targetCert [2] TargetCert,

-}

TargetCert ::= SEQUENCE {
targetCertificate IssuerSerial,
targetName GeneralName OPTIONAL,
certDigestInfo ObjectDigestInfo OPTIONAL }

The targetName component, if present, provides the name of target servers/services for which the containing attribute
certificate is targeted.

The targetGroup component, if present, provides the name of a target group for which the containing attribute
certificate is targeted. How the membership of atarget within a targetGroup is determined is outside the scope of this
Directory Specification.

The targetCert component, if present, identifies target servers/services by reference to their certificate.

This extension may be present in attribute certificates issued by AAs, including SOAS, to entities that may act as
privilege asserters, including other AAs and end-entities. This extension shall not be included in public-key certificates
or in attribute certificates issued to AAs that may not also act as privilege asserters.

If this extension is present in an attribute certificate issued to an entity that is an AA, it applies only to that entity's
assertion of the privileges contained in the certificate. It does not impact the AA ability to issue certificates.

This extension is always critical.

If this extension is present, but the privilege verifier is not among those specified, the attribute certificate should be
rejected.

If this extension is not present, then the attribute certificate is not targeted and may be accepted by any server.

Rec. I TU-T X.509 (10/2012) 85

| SO/l EC 9594-8:2014 (E)

15.1.2.3 User notice extension

The user notice extension enables an AA to include a notice that should be displayed to the holder, when asserting their
privilege, and/or to a privilege verifier when making use of the attribute certificate containing this extension.

Thisfield is defined as follows:

userNotice EXTENSION ::= {
SYNTAX SEQUENCE SIZE (1..MAX) OF UserNotice
IDENTIFIED BY id-ce-userNotice }

This extension may be present in attribute certificates or public-key certificates issued by AAs, including SOAS, to
entities that may act as privilege asserters, including other AAs and end-entities. This extension shall not be included in
certificates that contain the SOA identifier extension or in certificates issued to AAs that may not also act as privilege
asserters.

If this extension is present in a certificate issued to an entity that isan AA, it applies only to that entity's assertion of the
privileges contained in the certificate. It does not impact the AA ability to issue certificates.

This extension may, at the option of the certificate issuer, be either critical or non-critical.

If this extension is flagged critical, the user notices shall be displayed to a privilege verifier each time a privilege is
asserted. If the privilege asserter supplies the attribute certificate to the privilege verifier (i.e., the privilege verifier does
not retrieve it directly from arepository), the user notices shall also be displayed to the privilege asserter.

If this extension is flagged non-critical, the privilege asserted in the certificate may be granted by a privilege verifier
regardless of whether or not the user notices were displayed to the privilege asserter and/or privilege verifier.

15.1.2.4 Acceptable privilege policies extension

The acceptable privilege policies field is used to constrain the assertion of the assigned privileges for use with a specific
set of privilege policies.

Thisfield is defined as follows:

acceptablePrivilegePolicies EXTENSION ::= {
SYNTAX AcceptablePrivilegePoliciesSyntax
IDENTIFIED BY id-ce-acceptablePrivilegePolicies }

AcceptablePrivilegePoliciesSyntax ::= SEQUENCE SIZE (1l..MAX) OF PrivilegePolicy

This extension may be present in attribute certificates or public-key certificates issued by AAs, including SOAS, to
other AAs or to end-entities. If this extension is contained in a public-key certificate it relates only to the subject's
ability to act as a privilege asserter for the privileges contained in the subjectDirectoryAttributes extension.

If present, this extension shall be flagged critical.

If this extension is present and the privilege verifier understands it, the verifier shall ensure that the privilege policy that
these privileges are being compared to is one of those identified in this extension.

If this extension is present, but not understood by the privilege verifier, the certificate shall be rejected.

15.1.25 Single use extension

In some scenarios, an AA may wish to issue an AC that can only be asserted once to a relying party within the lifetime
of the AC. The singleUse extension is defined as follows:

singleUse EXTENSION ::= {
SYNTAX NULL
IDENTIFIED BY id-ce-singleUse }

This extension may be present in ACsissued by AAs and SOAs to end-entities. This extension shall not be included in
public-key certificates or in attribute certificates issued to AAs.

This extension is always critical.

Any relying party that accepts a singleuse AC should keep arecord of at least the issuer and serial number of the AC,
until after the expiry date of the AC in order to ensure that the holder cannot use the AC again. Idedly, al relying
parties for which the AC is valid should have a coordination capability to ensure that the holder is not able to use the
singleUse certificate with multiple relying parties. Alternatively the issuer of the singleuse AC should include a
targetingInformation extension inthe AC to limit the relying parties at which the AC isvalid.

86 Rec. | TU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

15.1.2.6 Group AC extension

In some scenarios it might be required for an AA toissue an AC to agroup of entities that share a common property, for
example, a set of web servers or ateam of people, rather than to a single entity. Each group AC may be flagged as such
by adding the group AC extension into the AC.

groupAC EXTENSION ::= {
SYNTAX NULL
IDENTIFIED BY id-ce-groupAC }

This extension may or may not be critical. This extension shall only be added to end-entity ACs, and not to AA ACs or
PKCs.

152 Privilege revocation extensions

1521 Requirements

The following requirements relate to the revocation of attribute certificates:

a) Inorder to control CRL sizes, it may be necessary to assign subsets of the set of all certificates issued by
one AA to different CRLs.

b) Attribute certificate issuers need to be able to indicate, in an attribute certificate, that no revocation
information is available for that certificate.

15.2.2 Privilegerevocation extension fields
The following extension fields are defined:

a) CRL distribution points;

b) No revocation information.
15.2.2.1 CRL distribution points extension

The CRL distribution points extension is defined in Section 2 of this Directory Specification, for use in public-key
certificates. This field may also be included in an attribute certificate. It may be present in certificates issued to AAS,
including SOAs, aswell as certificates issued to end-entities.

If present in a certificate, a privilege verifier shall process this extension in exactly the same manner as described in
Section 2 for public-key certificates.

15.2.2.2 No revocation information extension

In some environments (e.g., where attribute certificates are issued with very short validity periods), there may not be a
need to revoke certificates. An AA may use this extension to indicate that revocation status information is not provided
for this attribute certificate. Thisfield is defined asfollows:

noRevAvail EXTENSION ::= {
SYNTAX NULL
IDENTIFIED BY id-ce-noRevAvail }

This extension may be present in attribute certificates issued by AAs, including SOAS, to end-entities. This extension
shall not be included in public-key certificates or in attribute certificates issued to AAS.

This extension is always non-critical.

If this extension is present in an attribute certificate, a privilege verifier need not seek revocation status information.

153 Sour ce of Authority extensions

1531 Requirements

The following requirements relate to Sources of Authority:
a) Insomeenvironmentsthereisaneed for tight control by a CA, of the entities that can act as SOASs.

b) There is a need to make the valid syntax definitions and domination rules for privilege attributes
available by the responsible SOAs.

Rec. ITU-T X.509 (10/2012) 87

| SO/l EC 9594-8:2014 (E)

15.3.2 SOA extension fields

The following extension fields are defined:
a) SOA identifier;
b) Attribute descriptor.

15.3.2.1 SOA identifier extension

15.3.2.1.1 SOA identifier extension definition

The SOA identifier extension indicates that the certificate subject may act as an SOA for the purposes of privilege
management. As such, the certificate subject may define attributes that assign privilege, issue attribute descriptor
certificates for those attributes and use the private-key corresponding to the certified public-key to issue certificates that
assign privilege to holders. Those subsequent certificates may be attribute certificates or public-key certificates with a
subjectDirectoryAttributes extension containing the privileges.

In some environments, this extension is not required and other mechanisms may be used to determine the entities that
may act as SOAs. This extension isrequired only in environments where tight centralized control by a CA isrequired to
manage the entities that act as SOASs.

Thisfield is defined asfollows:

sOAIdentifier EXTENSION ::= {
SYNTAX NULL
IDENTIFIED BY id-ce-sOAIdentifier }

If this extension is not present in a certificate, the subject/holder ability to act as an SOA shall be determined by other
means.

This field may only be present in a public-key certificate issued to an SOA. It shal not be included in attribute
certificates or public-key certificates issued to other AAs or to end-entity privilege holders.

Cross-certification applies only to public-key certificates and not to attribute certificates. Therefore, a cross-certificate
issued to the CA that is the issuer of a certificate containing the SOA identifier extension does not provide transitive
trust to the SOA identified in this extension.

This extension is always non-critical.
15.3.2.1.2 SOA identifier matchingrule

The SOA identifier matching rule compares a presented value with an attribute value of type Certificate.

sOAIdentifierMatch MATCHING-RULE ::= {
SYNTAX NULL
ID id-mr-sOAIdentifierMatch }

This matching rule returns TRUE if the stored value contains an SOA ldentifier extension.
15.3.2.2 Attribute descriptor extension

15.3.2.2.1 Attribute descriptor extension definition

The definition of a privilege attribute, and the domination rules governing the subsequent delegation of that privilege,
are needed by privilege verifiers to ensure that authorization is done correctly. These definitions and rules may be
provided to privilege verifiersin a variety of ways outside the scope of this Directory Specification (e.g., they may be
locally configured at the privilege verifier).

This extension provides one mechanism that can be used by an SOA to make privilege attribute definitions and
associated domination rules available to privilege verifiers. An attribute certificate that contains this extension is called
an attribute descriptor certificate and is a specia type of attribute certificate. Although syntactically identical to an
AttributeCertificate, an attribute descriptor certificate:

— contains an empty SEQUENCE initSattributes field;
— isaself-issued certificate (i.e., the issuer and holder are the same entity); and
— includes the attribute descriptor extension.

88 Rec. | TU-T X.509 (10/2012)

| SO/IEC 9594-8:2014 (E)
Thisfield is defined asfollows:
attributeDescriptor EXTENSION ::= {
SYNTAX AttributeDescriptorSyntax

IDENTIFIED BY {id-ce-attributeDescriptor} }

AttributeDescriptorSyntax ::= SEQUENCE {

identifier Attributeldentifier,
attributeSyntax OCTET STRING(SIZE (1l..MAX)),
name [0] AttributeName OPTIONAL,
description [1] AttributeDescription OPTIONAL,
dominationRule PrivilegePolicyIdentifier,

-}

AttributeIdentifier ::= ATTRIBUTE.&id({AttributeIDs})
AttributeIDs ATTRIBUTE ::= {...}

AttributeName ::= UTF8String(SIZE (1..MAX))
AttributeDescription ::= UTF8String(SIZE (1..MAX))

PrivilegePolicyIdentifier ::= SEQUENCE {
privilegePolicy PrivilegePolicy,
privPolSyntax InfoSyntax,

The identifier component of a value of the attributeDescriptor extension is the object identifier identifying
the attribute type.

The attributeSyntax component contains the ASN.1 definition of the attribute's syntax. Such an ASN.1 definition
shall be given as specified for the information component of the Matching Rules operational attribute defined in
Rec. ITU-T X.501 | ISO/IEC 9594-2.

The name component optionally contains a user-friendly name by which the attribute may be recognized.
The description component optionally contains a user-friendly description of the attribute.

The dominationRule component specifies, for the attribute, what it means for a delegated privilege to be "less than"
the corresponding privilege held by the delegator. The privilegePolicy component identifies the instance of
privilege policy that contains the rules, by its object identifier. The privPolSyntax component contains either the
privilege policy itself or a pointer to a location where it can be located. If a pointer is included, an optional hash of the
privilege policy can also be included to allow an integrity check on the referenced privilege policy.

This extension may only be present in attribute descriptor certificates. This extension shall not be present in public-key
certificates or in attribute certificates other than self-issued certificates of SOAs.

This extension shall always be non-critical.

The attribute descriptor certificate, created by the SOA at the time of creation/definition of the corresponding attribute
type, is a means by which the universal constraint of delegating "down" can be understood and enforced in the
infrastructure. In the Directory, attribute certificates that contain this extension would be stored in the
attributeDescriptorCertificate attribute of the SOA's directory entry.

15.3.2.2.2 Attribute descriptor matching rule

The attribute descriptor matching rule compares for equality a presented value with an attribute value of type
AttributeCertificate.

attDescriptor MATCHING-RULE ::= {
SYNTAX AttributeDescriptorSyntax
ID id-mr-attDescriptorMatch }

This matching rule returns TRUE if the stored value containsthe attributebescriptor extension and if components
that are present in the presented value match the corresponding components of the stored value.

Rec. I TU-T X.509 (10/2012) 89

| SO/IEC 9594-8:2014 (E)
15.4 Role extensions

154.1 Requirements

The following requirement relates to roles:

— If a certificate is a role assignment certificate, a privilege verifier needs to be able to locate the
corresponding role specification certificate that contains the specific privileges assigned to the role itself.

154.2 Roleextension fields
The following extension field is defined:
— Role specification certificate identifier.

15.4.2.1 Role specification certificate identifier extension

15.4.2.1.1 Role specification certificate identifier extension definition

This extension may be used by an AA as a pointer to a role specification certificate that contains the assignment of
privilegesto arole. It may be present in arole assignment certificate (i.e., a certificate that contains the role attribute).

A privilege verifier, when dealing with arole assignment certificate, needs to obtain the set of privileges of that role in
order to determine whether to pass or fail the verification. If the privileges were assigned to the role in a role
specification certificate, thisfield may be used to locate that certificate.

Thisfield is defined as follows:

roleSpecCertIdentifier EXTENSION ::= {
SYNTAX RoleSpecCertIdentifierSyntax
IDENTIFIED BY {id-ce-roleSpecCertIdentifier} }

RoleSpecCertIdentifierSyntax ::=
SEQUENCE SIZE (1..MAX) OF RoleSpecCertIdentifier

RoleSpecCertIdentifier ::= SEQUENCE {
roleName [0] GeneralName,
roleCertIssuer [1] GeneralName,
roleCertSerialNumber [2] CertificateSerialNumber OPTIONAL,
roleCertLocator [3] GeneralNames OPTIONAL,
-}

The roleName identifies the role. This name would be the same as that in the holder component of the role
specification certificate being referenced by this extension.

The rolecertIssuer identifiesthe AA that issued the referenced role specification certificate.

The roleCertSerialNumber, if present, contains the serial number of the role specification certificate. Note that if
the privileges assigned to the role itself change, then a new role specification certificate would be issued to the role.
Any certificates that contain this extension, including the roleCertSerialNumber component, would then need to be
replaced by certificates that referenced the new seria number. Although this behaviour is required in some
environments, it is undesirable in many others. Typically, this component would be absent, enabling automatic updating
of the privileges assigned to the role itself, without impacting the role assignment certificates.

The rolecertLocator, if present, containsinformation that can be used to locate the role specification certificate.

This extension may be present in role assignment certificates that are attribute certificates or public-key certificates
issued by AAs, including SOAS, to other AAs or to end-entity privilege holders. This extension shall not be included in
certificates that contain the SOA identifier extension.

If present, this extension can be used by a privilege verifier to locate the role specification certificate.

If this extension is not present, either:
a) other meanswill be used to locate the role specification certificate; or

b) mechanisms other than arole specification certificate were used to assign privileges to the role (e.g., role
privileges may be locally configured at the privilege verifier).

This extension is always non-critical.

% Rec. | TU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

15.4.2.1.2 Role specification certificate |D matching rule

The role specification certificate identifier matching rule compares for equality a presented value with an attribute value
of typeattributeCertificate.

roleSpecCertIdMatch MATCHING-RULE ::= {
SYNTAX RoleSpecCertIdentifierSyntax
ID id-mr-roleSpecCertIdMatch }

This matching rule returns TRUE if the stored value contains the rolespecCertIdentifier extension and if
components that are present in the presented value match the corresponding components of the stored value.

155 Delegation extensions

155.1 Requirements

The following requirements rel ate to the delegation of privileges:

a) End-entity privilege certificates need to be distinguishable from AA certificates, to protect against end-
entities establishing themselves as AAs without authorization. It also needs to be possible for an AA to
limit the length of a subsequent delegation path.

b) An AA needs to be able to specify the appropriate name space within which the delegation of privilege
can occur. Adherence to these constraints needs to be checkable by the privilege verifier.

¢) AnAA needsto be able to specify the acceptable certificate policies that privilege asserters further down
a delegation path shall use to authenticate themselves when asserting a privilege delegation by thisAA.

d) A privilege verifier needs to be able to locate the corresponding attribute certificate for an issuer to
ensure that the issuer had sufficient privilege to delegate the privilege in the current certificate.

e) Thereis a requirement for an independent Delegation Service (DS) to issue certificates that delegate
privileges, whilst the DS server cannot itself act as a claimant for those privileges.

f) An independent Delegation Service may wish to insert the name of the authority that requested the
privilege assertion to be issued.

15.5.2 Delegation extension fields

The following extension fields are defined:
a) Basic attribute constraints;
b) Delegated name constraints;
¢) Acceptable certificate policies;
d) Authority attribute identifier;
e) Indirect Issuer;
f) Issued on behalf of;
g) No assertion.

15.5.2.1 Basic attribute constraints extension

15.5.2.1.1 Basic attribute constraints extension definition

This field indicates whether the subsequent delegation of the privileges assigned in the certificate containing this
extension is permitted. |f so, a delegation path length constraint may also be specified.

Thisfield is defined as follows:

basicAttConstraints EXTENSION ::= {
SYNTAX BasicAttConstraintsSyntax
IDENTIFIED BY {id-ce-basicAttConstraints} }

BasicAttConstraintsSyntax ::= SEQUENCE {
authority BOOLEAN DEFAULT FALSE,
pathLenConstraint INTEGER(0..MAX) OPTIONAL,

Rec. ITU-T X.509 (10/2012) 91

| SO/l EC 9594-8:2014 (E)

The authority component indicates whether or not the holder is authorized to further delegate privilege. If
authority iS TRUE the holder is also an AA and is authorized to further delegate privilege, dependent on relevant
constraints. If authority iSFALSE, the holder is an end-entity and is not authorized to delegate the privilege.

The pathLenConstraint component is meaningful only if authority is set to TRUE. It gives the maximum number
of AA certificates that may follow this certificate in a delegation path. Value o indicates that the subject of this
certificate may issue certificates only to end-entities and not to AAS. If Nno pathLenConstraint field appearsin any
certificate of a delegation path, there is no limit to the allowed length of the delegation path. Note that the constraint
takes effect beginning with the next certificate in the path. The constraint controls the number of AA certificates
between the AA certificate containing the constraint and end-entity certificate. The constraint restricts the length of the
segment of the delegation path between the certificate containing this extension and the end-entity certificate. It has no
impact on the number of AA certificates in the delegation path between the trust anchor and the certificate containing
this extension. Therefore, the length of a complete delegation path may exceed the maximum length of the segment
constrained by this extension. The constraint controls the number of AA certificates between the AA certificate
containing the constraint and the end-entity certificate. Therefore, the total length of this segment of the path may
exceed the value of the constraint by as many as two certificates. (This includes the certificates at the two endpoints of
the segment plus the AA certificates between the two endpoints that are constrained by the value of this extension.)

This extension may be present in attribute certificates or public-key certificates issued by AAs, including SOAS, to
other AAs or to end-entities. This extension shall not be included in certificates that contain the SOA identifier
extension.

If this extension is present in an attribute certificate, and authority iS TRUE, the holder is authorized to issue
subsequent attribute certificates delegating the contained privileges to other entities, but not public-key certificates.

If this extension is present in a public-key certificate, and if the basicConstraints extension indicates that the
subject isalso a CA, the subject is authorized to issue subsequent public-key certificates that del egate these privilegesto
other entities, but not attribute certificates. If a path length constraint is included, the subject may only delegate within
the intersection of the constraint specified in this extension and any specified in the basicConstraints extension. If
this extension is present in a public-key certificate but thebasicConstraints extension isabsent, or indicates that the
subject is an end-entity, the subject is not authorized to delegate the privileges.

This extension may, at the option of the certificate issuer, be either critical or non-critical. It is recommended that it be
flagged critical, otherwise a holder that is not authorized to be an AA may issue certificates and the privilege verifier
may unwittingly use such a certificate.

If this extension is present and is flagged critical, then:

— if the value of authority is not set to TRUE, then the delegated attribute shall not be used to further
delegate;

— if the value of authority iS set to TRUE and pathLenConstraint iS present, then the privilege
verifier shall check that the delegation path being processed is consistent with the value of

pathLenConstraint.

If this extension is present, flagged non-critical, and is not recognized by the privilege verifier, then that system should
use other means to determine if the delegated attribute may be used to further delegate.

If this extension is not present, or if the extension is present with an empty sEQUENCE value, the holder is constrained to
being only an end-entity and not an attribute authority and no delegation of the privileges contained in the attribute
certificate is permitted by the holder.

15.5.2.1.2 Basic attribute constraints matching rule

The basic attribute constraints matching rule compares for equality a presented value with an attribute value of type
AttributeCertificate.

basicAttConstraintsMatch MATCHING-RULE ::= {
SYNTAX BasicAttConstraintsSyntax
ID id-mr-basicAttConstraintsMatch }

This matching rule returns TRUE if the stored value containsthe basicAttConstraints extension and if components
that are present in the presented value match the corresponding components of the stored value.

92 Rec. ITU-T X.509 (10/2012)

| SO/IEC 9594-8:2014 (E)
15.5.2.2 Delegated name constraints extension

15.5.2.2.1 Delegated name constraints extension definition

The delegated name constraints field indicates a name space within which all holder names in subsequent certificates in
a delegation path need to be located.

Thisfield is defined as follows:

delegatedNameConstraints EXTENSION ::= {
SYNTAX NameConstraintsSyntax
IDENTIFIED BY id-ce-delegatedNameConstraints }

This extension is processed in the same manner as the nameConstraints extension for public-key certificates. If
permittedSubtrees is present, of al the attribute certificates issued by the holder AA and subsequent AAs in the
delegation path, only those attribute certificates with holder names within these subtrees are acceptable. If
excludedSubtrees iS present, any attribute certificate issued by the holder AA or subsequent AAs in the delegation
path that has a holder name within these subtrees is unacceptable. If both permittedSubtrees and
excludedSubtrees are present and the name spaces overlap, the exclusion statement takes precedence.

This extension may be present in attribute certificates or public-key certificates issued by AAs, including SOAs, to
other AAs. This extension shall not be included in certificates issued to end-entities or certificates that contain the SOA
identifier extension.

If this extension is present in a public-key certificate, and if the nameConstraints extension is also present, the
subject may only delegate within the intersection of the constraint specified in this extension and that specified in the
nameConstraints extension.

This extension may, at the option of the attribute certificate issuer, be either critical or non-critical. It is recommended
that it be flagged critical, otherwise an attribute relying party may not check that subsequent attribute certificates in a
delegation path are located in the name space intended by the issuing AA.

15.5.2.2.2 Delegated name constraints matching rule

The delegated name constraints matching rule compares for equality a presented value with an attribute value of type
AttributeCertificate.

delegatedNameConstraintsMatch MATCHING-RULE ::= {
SYNTAX NameConstraintsSyntax
ID id-mr-delegatedNameConstraintsMatch }

This matching rule returns TRUE if the stored value contains the attributeNameConstraints extension and if
components that are present in the presented value match the corresponding components of the stored value.

15.5.2.3 Acceptable certificate policies extension

15.5.2.3.1 Acceptable certificate policies extension definition

The acceptable certificate policies field is used, in delegation with attribute certificates, to control the acceptable
certificate policies under which the public-key certificates for subsequent holders in a delegation path need to have been
issued. By enumerating a set of policies in this field, an AA is requiring that subsequent issuers in a delegation path
only delegate the contained privileges to holders that have public-key certificates issued under one or more of the
enumerated certificate policies. The policies listed here are not policies under which the attribute certificate was issued,
but policies under which acceptable public-key certificates for subsequent holders need to have been issued.

Thisfield isdefined as follows:

acceptableCertPolicies EXTENSION ::= {
SYNTAX AcceptableCertPoliciesSyntax
IDENTIFIED BY id-ce-acceptableCertPolicies }

AcceptableCertPoliciesSyntax ::= SEQUENCE SIZE (1l..MAX) OF CertPolicyId

CertPolicyId ::= OBJECT IDENTIFIER

Rec. I TU-T X.509 (10/2012) 93

| SO/l EC 9594-8:2014 (E)

This extension may only be present in attribute certificates issued by AAs, including SOAs, to other AAs. This
extension shall not be included in end-entity attribute certificates or in any public-key certificates. In the case of
delegation using public-key certificates, this same functionality is provided by the certificatePolicies and other
related extensions.

If present, this extension shall be flagged critical.

If this extension is present and the privilege verifier understands it, the verifier shall ensure that all subsequent privilege
asserters in the delegation path are authenticated with a public-key certificate under one or more of the enumerated
certificate policies.

If this extension is present, but not understood by the privilege verifier, the certificate shall be rejected.

15.5.2.3.2 Acceptable certificate policies matching rule

The acceptable certificate policies matching rule compares for equality a presented value with an attribute value of type
AttributeCertificate.

acceptableCertPoliciesMatch MATCHING-RULE ::= {
SYNTAX AcceptableCertPoliciesSyntax
ID id-mr-acceptableCertPoliciesMatch }

This matching rule returns TRUE if the stored value contains the acceptableCertPolicies extension and if
components that are present in the presented value match the corresponding components of the stored value.

15.5.2.4 Authority attributeidentifier extension

15.5.2.4.1 Authority attributeidentifier extension definition

In privilege delegation, an AA that delegates privileges shall itself have at least the same privilege and the authority to
delegate that privilege. An AA that is delegating privilege to another AA or to an end-entity may place this extension in
the AA or end-entity certificate that it issues. The extension is a back pointer to the certificate in which the issuer of the
certificate containing the extension was assigned its corresponding privilege. The extension can be used by a privilege
verifier to ensure that the issuing AA had sufficient privilege to be able to delegate to the holder of the certificate
containing this extension.

Thisfield is defined asfollows:

authorityAttributeIdentifier EXTENSION ::= {
SYNTAX AuthorityAttributeIdentifierSyntax
IDENTIFIED BY {id-ce-authorityAttributeIdentifier} }

AuthorityAttributeIdentifierSyntax ::= SEQUENCE SIZE (1..MAX) OF AuthAttId

AuthAttId ::= IssuerSerial

A certificate that contains this extension may include the delegation of multiple privileges to the certificate holder. If the
assignment of those privileges to the AA that issued this certificate was done in more than one certificate, then this
extension would include more than one pointer.

This extension may be present in attribute certificates or public-key certificates issued by AAsto other AAs or to end-
entity privilege holders. This extension shall not be included in certificates issued by an SOA or in public-key
certificates that contain the SOA identifier extension.

This extension is always non-critical.

15.5.2.4.2 AA identifier matchingrule

The authority attribute identifier matching rule compares for equality a presented value with an attribute value of type
AttributeCertificate.

authAttIdMatch MATCHING-RULE ::= {
SYNTAX AuthorityAttributeIdentifierSyntax
ID id-mr-authAttIdMatch }

This matching rule returns TRUE if the stored value contains the authorityAttributeIdentifier extension and if
components that are present in the presented value match the corresponding components of the stored value.

94 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

15.5.2.5 Indirect issuer extension

In some environments, privilege may be delegated indirectly. In such cases, the delegator requests that a DS server issue
a certificate delegating privilege on their behalf to another entity. The indirect issuer field is used in either an attribute
certificate or a public-key certificate issued to aDS server by an SOA. Presence of this extension means that the subject
AA (the DS server) is authorized by that SOA to act as a proxy and issue certificates that delegate privilege, on behalf
of other delegators.

indirectIssuer EXTENSION ::= {
SYNTAX NULL
IDENTIFIED BY id-ce-indirectIssuer }

This extension is always non-critical.

The presence of this extension within an attribute certificate may be determined by applying the
extensionPresenceMatch matching rule.

15.5.2.6 Issued on behalf of extension

This extension is inserted into an AC by an indirect issuer (DS server). It indicates the AA that has requested the DS
server to issue the AC, and allows the delegation chain to be constructed and validated.

issuedOnBehalfOf EXTENSION ::= {
SYNTAX GeneralName
IDENTIFIED BY id-ce-issuedOnBehalfOf }

The GeneralName isthe name of the AA who has asked the indirect issuer (DS server) to issue thisAC.

Theissuer of this AC must have been granted the privilege to issue ACs on behalf of other AAs by an SOA, through the
IndirectIssuer extensioninits AC.

This extension may be critical or non-critical as necessary to ensure del egation path validation.

15.5.2.7 No assertion extension

If present, this extension indicates that the AC holder cannot assert the privileges indicated in the attributes of the AC.
This field can only be inserted into AA ACs, and not into end-entity ACs. If present, this extension shall aways be
marked as being critical.

noAssertion EXTENSION ::= {
SYNTAX NULL
IDENTIFIED BY id-ce-noAssertion }

15.6 Recognition of Authority Extensions

15.6.1 Requirements

The following requirements relate to recognition of authority:

a) thelocal SOA may wish to specify how attributes assigned in a remote domain are mapped into roles
known to relying partiesin the local domain;

b) the loca SOA may want to constrain which privilege attributes a remote SOA is trusted to assign to
which users;

¢) thelocal SOA may need to be able to constrain the name forms and name spaces within which a remote
SOA can assign privilege attributes to users.

15.6.2 ROA extension fields

The following extension fields are defined:
a) Allowed attribute assignments;
b) Attribute mappings;
c) Holder name constraints.

Rec. I TU-T X.509 (10/2012) 95

| SO/IEC 9594-8:2014 (E)

15.6.2.1 Allowed attribute assignments extension

This extension says which privilege attributes a remote domain SOA is trusted to issue to whom.
allowedAttributeAssignments EXTENSION ::= {

SYNTAX AllowedAttributeAssignments
IDENTIFIED BY id-ce-allowedAttAss }

AllowedAttributeAssignments ::= SET OF SEQUENCE {
attributes [0] SET OF CHOICE {
attributeType [0] AttributeType,

attributeTypeandValues [1l] Attribute{{SupportedAttributes}},

’

holderDomain [1] GeneralName,

}

Each allowed attribute assignment comprises a set of attribute types and/or values, together with the name space which
defines the holder domain. Of the name forms available through the GeneralName type, only those name forms that
have a well-defined hierarchical structure may be used for the holder domain. The value that is specified for the holder
domain forms the superior node of a subtree within which all the holder names must fall.

All the allowed attributes specified in this extension should also be specified in the attributes component of the attribute
certificate. If an attribute is specified in this extension, but it is not in the attributes component, then it isignored (i.e., it
is not trusted). If an attribute is in the attributes component, but not in this extension, then it istrusted and has no further
constraints on the holders to which it can be issued (other than that which might optionally be specified in the name
constraints extension).

If this extension is present, it shall be flagged as being critical.

15.6.2.2 Attribute mappings extension

This extension says how the attributes in the remote, trusted domain map into attributes in the local domain.
attributeMappings EXTENSION ::= {

SYNTAX AttributeMappings
IDENTIFIED BY id-ce-attributeMappings }

AttributeMappings ::= SET OF CHOICE {

typeMappings [0] SEQUENCE {
local [0] AttributeType,
remote [1] AttributeType,
...}

typeValueMappings [1] SEQUENCE {
local [0] AttributeTypeAndValue,
remote [1] AttributeTypeAndValue,
... 1)

An attribute mapping can be at the type or value level.

When attribute mapping is at the attribute value level, each attribute value in the remote domain is mapped into an
equivalent attribute value in the local domain.

NOTE 1 — Attribute value mappings may have a many-to-many relationship.

When attribute mapping is at the attribute type level, all the values assigned in the remote domain must already be
understood by, and have an equal valuein, the local domain.

NOTE 2 — This attribute mapping is a one-to-one mapping.

15.6.2.3 Holder name constraints extension

This extension constrains the name forms and name spaces in which a subordinate AA or a remote SOA and its
subordinate AAs can issue ACs.

This extension indicates that constraints are being placed on the name forms and name spaces of all name formsin ACs
issued by this AA and all subsequent AAsin the AC chain. If this extension is absent from al ACsin an AC chain, then
no constraints are placed on any name spaces in the AC chain. If this extension is present in an AC certificate, then
constraints are automatically placed on the name spaces of every name form in the AC chain from this point onwards,
regardless of whether the name form is explicitly included in the extension or nat, i.e., the default constraint on each
name form excludes the entire name space.

% Rec. | TU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

NOTE — Because there can be an unbounded set of registeredlD name forms, then it is not possible for new name forms to be
unconstrained once this extension is present, without the name form being explicitly included in this extension via a permitted
subtree.

Thisfield is defined asfollows:

holderNameConstraints EXTENSION ::= {
SYNTAX HolderNameConstraintsSyntax
IDENTIFIED BY id-ce-holderNameConstraints }

HolderNameConstraintsSyntax ::= SEQUENCE {
permittedSubtrees [0] GeneralSubtrees,
excludedSubtrees [1] GeneralSubtrees OPTIONAL,

-}
GeneralSubtrees ::= SEQUENCE SIZE (1l..MAX) OF GeneralSubtree

GeneralSubtree ::= SEQUENCE {
base GeneralName,
minimum [0] BaseDistance DEFAULT 0,
maximum [1] BaseDistance OPTIONAL,

-}
BaseDistance ::= INTEGER (0. .MAX)

The permittedsSubtrees and excludedSubtrees COMponents each specify one or more naming subtrees of one or
more name forms. Each subtree is defined by the name of the root of the subtree, i.e., the base component, and,
optionally, within that subtree, an areathat is bounded by upper and/or lower levels.

An empty DN sequence is equivalent to awildcard and means that all DNsfall within the subtree.

The minimum component specifies the upper bound of the area within the subtree. All names whose fina name
component is above the level specified are not contained within the area. A value of minimum equal to zero (the default)
corresponds to the base, i.e., the top node of the subtree. For example, if minimum is set to one, then the naming subtree
excludes the base node but includes subordinate nodes.

The maximum component specifies the lower bound of the area within the subtree. All names whose last component is
below the level specified are not contained within the area. A value of maximum of zero corresponds to the basg, i.e., the
top of the subtree. An absent maximum component indicates that no lower limit should be imposed on the area within
the subtree. For example, if maximum iS Set to one, then the naming subtree excludes all nodes except the subtree base
and its immediate subordinates.

ThepermittedsSubtrees component isused to reduce the constraints placed on the name spaces of one or more name
forms. Since the entire name space of each form is automatically fully excluded when this extension appears in an AA
certificate, the permittedsubtrees component describes the name space(s) that is(are) permitted. If an entire name
space of a particular name form is to be permitted, this is achieved by setting the base component to the root of the
name space.

The optional excludedsubtrees component is used to exclude one or more subordinate subtrees from the
permittedSubtrees. For example, if in the ITU-T X.500 distinguished name space, the subtree C=GB is permitted,
but the subtrees C=GB, O=XYZ and C=GB, O=ABC are not permitted, then the permittedsubtrees Will be set to
C=GB and the excludedsubtrees Will be set to C=GB, O=XYZ and C=GB, O=ABC. If the excludedSubtrees iS
present and its name spaces overlap with the permittedSubtrees, the excludedSubtrees Statement takes
precedence.

All holder names in subsequent ACs in a certification path shall be located in the permitted name spaces for the
certificate to be acceptable. When a certificate holder has multiple names of the same name form then all such names
shall be located in the permitted name space of that name form for the certificate to be acceptable. When a certificate
holder has multiple namesin different name forms, each name shall be located in the permitted name space of that name
form for the certificate to be acceptable.

Of the name forms available through the GeneralName type, only those name forms that have a well-defined
hierarchical structure may be used in these fields.

The directoryName name form satisfies this requirement; when using this name form, a naming subtree corresponds
to aDIT subtree. An AC is considered subordinate to the base (and therefore a candidate to be within the subtree) if the
sequence of RDNs, which forms the full DN in base, matches the initial sequence of the same number of RDNs which
forms the first part of the DN of the holder of the AC. The DN of the holder of the certificate may have additional

Rec. ITU-T X.509 (10/2012) 97

| SO/l EC 9594-8:2014 (E)

trailing RDNs in its sequence that do not appear in the DN in base. The distinguishedNameMatch matching ruleis
used to compare the value of base with the initial sequence of RDNs in the DN of the subject of the certificate.

Conformant implementations are not required to recognize al possible name forms. If an AC using implementation
does not recognize a name form used in any base component, and

— that name form also occurs in the holder field of a subsequent AC in the chain, then that AC shall be
handled asif an unrecognized critical extension had been encountered; or

— that name form does not occur in the holder field of a subsequent AC in the chain, then this name form
can beignored.

If an AC using implementation does not recognize a name form that occurs in the holder field of a subsequent AC in
the chain from that in which this extension appeared, but that name form does not occur in any base component of this
extension, then that AC shall be rejected.

This extension shall always be critical.

An AC using system shall check that the attribute certification path being processed is within the constraints specified
by the valuein this extension.

15.6.2.4 Relationship of delegated name constraintsto holder name constraints

The delegatedNameConstraints extension described in clause 15.5.2.2 has the same semantics as the
nameConstraints extension of public-key certificates, which is that every name form is allowed unless specifically
constrained. The holderNameConstraints extension on the other hand, whilst having the same syntax, has the
opposite semantics, which is that, once the extension is present, every name form is denied unless specifically
permitted. If both the delegatedNameConstraints extension and the holderNameConstraints extension appear
in the same AC, then the excluded name spaces are the union of the excluded name spaces from both extensions, whilst
the included name spaces are the intersection of the name spaces from both extensions.

16 Privilege path processing procedure

Privilege path processing is carried out by a privilege verifier. The path processing rules for attribute certificates are
somewhat analogous to those for public-key certificates.

Other components of the path processing that are not addressed in this clause include verification of certificate
signatures, validation of certificate validity periods, etc.

For privilege paths consisting of a single certificate (i.e., the privileges were assigned directly to the privilege asserter
by the SOA), only the basic procedure, as described in clause 16.1 below is required, unless the privilege is assigned to
arole. In that case, if the privilege verifier is not configured with the specific privileges of the role, it may need to
obtain the role specification certificate that assigns the specific privileges to the role as described in clause 16.2 below.
If the privilege asserter was delegated its privilege by an intermediary AA, then the delegation path procedure in
clause 16.3 is also required. These procedures are not performed sequentially. The role processing procedure and
delegation processing procedure are done prior to the determination of whether or not the asserted privileges are
sufficient for the context of use within the basic procedure.

16.1 Basic processing procedure

The signature on every certificate in the path shall be verified. Procedures related to validating signatures and public-
key certificates are not repeated in this clause. The privilege verifier shall verify the identity of every entity in the path,
using the procedures of clause 10. Note that checking the signature on an attribute certificate necessarily involves
checking the referenced public-key certificate for its validity. Where privileges are assigned using attribute certificates,
path processing engines will need to consider elements of both the PMI and the PKI in the course of determining the
ultimate validity of a privilege asserter's attribute certificate. Not all AC issuers need have PKCs issued by the same
trust anchor CA (or one of its subordinate CAs), in which case multiple PKI certification paths will need to be followed.
Once that validity has been confirmed, the privileges contained in that certificate may be used depending on a
comparison with the relevant privilege policy and other information associated with the context in which the certificate
is being used.

The context of use shall determine if the privilege holder actually intended to assert the contained privilege for use with
that context. The fact that a chain of certificates to atrusted SOA existsis not in itself enough upon which to make this
determination. The willingness of the privilege holder to use that certificate has to be clearly indicated and verified.
However, mechanisms to ensure that such a privilege assertion has been adequately demonstrated by the privilege
holder are outside the scope of this Directory Specification. As an example, such a privilege assertion may be verifiable

98 Rec. | TU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

if the privilege holder signed areference to that certificate, thereby indicating their willingness to use that certificate for
that context.

For each attribute certificate in the path that does not contain the norevavail extension, the privilege verifier shall
ensure that the attribute certificate has not been revoked.

The privilege verifier shall ensure that the asserted privilege is valid for the time called "time of evaluation™ which can
be done for any time, i.e., the current time of checking or any time in the past. In the context of an access control
service, the checking is always done for the present time. However, in the context of non-repudiation, the checking can
be done for atime in the past or the current time. When certificates are validated, the privilege verifier shall ensure that
the time of evaluation falls within all the validity periods of all the certificates used in the path. Also, if any of the
certificates in the path contain the timeSpecification extension, the constraints placed over the times the privilege
can be asserted need to also allow the privilege assertion to be valid at the time of evaluation.

If the targetingInformation extension is present in the certificate used to assert a privilege, the privilege verifier
shall check that the server/service for which it is verifying isincluded in the list of targets.

If the singleUse extension that is present in the AC is used to assert a privilege, the privilege verifier shall check that
the AC has not been asserted prior to the current use.

If the certificate is a role assignment certificate, the processing procedure described in clause 16.2 is needed to ensure
that the appropriate privileges are identified. If the privilege was delegated to the entity rather than assigned directly by
the SOA trusted by the privilege verifier, the processing procedure described in clause 16.3 is needed to ensure that
delegation was done properly.

The privilege verifier shall aso determine whether or not the privileges being asserted are sufficient for the context of
use. The privilege policy establishes the rules for making this determination and includes the specification of any
environmental variables that need to be considered. The privileges asserted, including those resulting from the role
procedure in clause 16.2 and the delegation procedure in clause 16.3 and any relevant environmental variables
(e.g., time of day or current account balance) are compared against the privilege policy to determine whether or not they
are sufficient for the context of use. If the acceptablePrivilegePolicies extension is present, the privilege
assertion can only succeed if the privilege policy the privilege verifier is comparing against is one of those contained in
this extension.

If the comparison succeeds, any relevant user notices are provided to the privilege verifier.

16.2 Role processing procedure

If the asserted certificate is a role assignment certificate, the privilege verifier shall obtain the specific privileges
assigned to that role. The name of the role to which the privilege asserter is assigned is contained in the role attribute
of the certificate. The privilege verifier, if not already configured with the privileges of the named role, may need to
locate the role specification certificate that assigns the privileges to that role. Information in the role attribute and in
the rolespecCertIdentifier extension may be used to locate that certificate.

The privileges assigned to the role are implicitly assigned to the privilege asserter and are therefore included among the
asserted privileges that are compared against the privilege policy in the basic procedure in clause 16.1 to determine
whether or not the asserted privileges are sufficient for the context of use.

16.3 Delegation processing procedure

If the privileges asserted are delegated to the privilege asserter by an intermediary AA, the privilege verifier shall ensure
that the path is avalid delegation path, by ensuring that:

— each AA that issued a certificate in the delegation path was authorized to do so;
— each certificate in the delegation path is valid with respect to path and name constraints imposed on it;

— each entity in the delegation path is authenticated with a public-key certificate that is valid according to
any imposed policy constraints;

— no AA delegation privilege is greater than the privilege held by that AA.

In complex delegation-of-authority scenarios, where the delegations form a directed graph, with multiple trusted root
SOAs, it is possible for an AA to combine the privilege attributes it holds in two or more ACs and to delegate a
combination of these attributes to a subordinate in a single, delegated AC. Validating these split delegation paths in
directed graphs is much more complex than validating a simple path through a hierarchical tree of ACsthat lead from a
single root SOA. Implementations need to consider carefully whether to allow directed graph type delegations or to
limit delegations to a simple tree structure.

Rec. I TU-T X.509 (10/2012) 99

| SO/l EC 9594-8:2014 (E)

Prior to commencing delegation path validation, the privilege verifier shall obtain the following. Any of these may be
provided by the privilege asserter, or obtained by the privilege verifier from another source, such as the Directory. The
attributes of the service may be provided to the privilege verifier in a structured document or by other means.

— Established trust in the public verification key used to validate the trusted SOA's signature. This trust can
either be established through out-of-band means or through a public-key certificate issued to the SOA by
a CA in which the privilege verifier already has established trust. Such a certificate would contain the
sOAIdentifier extension.

— The privilege asserter's privilege, encoded in their attribute certificate or subject directory attributes
extension of their public-key certificate.

— Delegation path of certificates from the privilege asserter to the trusted SOA.

— Domination rule for the privilege being asserted; this may be obtained from the attribute descriptor
issued by the SOA responsible for the attribute in question or it may be obtained through out-of-band
means.

— Privilege policy; this may be obtained from the Directory or from some out-of-band means.
— Environmental variables, including for example, current date/time, current account balance, etc.

An implementation shall be functionally equivalent to the external behaviour resulting from this procedure; however,
the algorithm used by a particular implementation to derive the correct output(s) from the given inputs is not
standardized.

In the case where attribute certificates are issued by an indirect issuer (DS), which does not have a full set of privileges
directly assigned to it, the relying party should fully validate the delegation chain as follows:

i) Starting with the end entity AC, the RP extracts the issuer name and the i ssuedonBehal £0£ hame.

ii) The RP retrieves the AC of the issuer and validates that the issuer is an indirect issuer of the SOA
(i.e., hasthe indirectIssuer extension).

iii) The RP retrieves the AC of the issuedonBehal£fof AA and validates that the AA has a superset of the
privilege attributes issued to the end entity.

However, in order to aid path determination and validation, certificates may contain the authority information access
and authority key identifier extensions, whose usage is described in clause 16.3.1 below.

The RP recurses to step ii) using the AC of the AA, and thereby moves up the chain until it arrives at the AC of an AA
that isissued by the SOA.

16.3.1 Verifyintegrity of domination rule

The domination rule is associated with the privilege being delegated. The syntax and method for obtaining the
domination rule is not standardized. However, the integrity of the retrieved domination rule can be verified. The
attribute descriptor certificate issued by the SOA responsible for the attribute being delegated may contain a HASH of
the domination rule. The privilege verifier may reproduce the HASH function on the retrieved copy of the domination
rule and compare the two hashes. If they areidentical, the privilege verifier has the accurate domination rule.

16.3.2 Establish valid delegation path

The privilege verifier shall find the delegation path and obtain certificates for every entity in the path. The delegation
path extends from the direct privilege asserter to the SOA. Each intermediary certificate in the delegation path shall
contain thebasicAttConstraints extension with the authority component set to TrRUE. The issuer of each certificate
shall be the same as the holder/subject of the certificate which is adjacent to it in the delegation path. The
authorityAttributeIdentifier extension is used to identify the certificate(s) of the issuer of the current
certificate in the delegation path. The authorityInformationAccess extension may be used to locate the
appropriate certificates of the issuer of the current certificate in the delegation path, as described in clause 16.3.2.1
below. The authorityKeyIdentifier extension may be used to locate and identify the public key of the issuer of
the current certificate in the delegation path, as described in clause 16.3.2.2 below. The number of certificates in the
path from each entity to the direct privilege asserter (inclusive) shall not exceed the value of the pathLenConstraint
value in the entity's basicAttConstraints extension by more than 2. This is because the pathLenConstraint
limits the number of intermediary certificates between the two endpoints (i.e., the certificate containing the constraint
and the end-entity certificate) so the maximum length is the value of that constraint plus the certificates that are the
endpoints.

If delegatedNameConstraints extension is present in any of the certificates in the delegation path, the constraints
are processed in the same way as the nameConstraints extension is processed in the certification path processing
procedure in clause 10.

100 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

If the acceptableCertPolicies extension is present in any of the certificates in the delegation path, the privilege
verifier shall ensure that the authentication of each subsequent entity in the delegation path is done with a public-key
certificate that contains at least one of the acceptable policies.

16.3.2.1 Use of authority information access extension
The authority information access (AlIA) extension is defined in RFC 5280.

The AIA extension indicates how to access information and services for the issuer of the certificate in which the
extension appears. In the context of attribute certificates, it is used to point to information about the AA that issued the
AC in which it appears. This information may include online validation services and AA policy data. (Note that the
location of ACRLs is not specified in this extension.) This extension may be included in end-entity or AA ACs, and it
MUST be non-critical.

Each entry in the sequence AuthorityInfoAccessSyntax describes the format and location of additional
information provided by the AA that issued the AC in which this extension appears. The type and format of the
additional information is specified by the AccessMethod field; the accessLocation field specifies the location of
this additional information. The retrieval mechanism may be implied by the accessMethod or specified by
accessLocation.

In an attribute certificate, the id-ad-caIssuers OID is used when the additional information lists ACs that were
issued to and used by the AA to issue the AC containing this extension. The referenced AC(s) is/are intended to aid
relying parties in the selection of an attribute certification path that terminates at a point (SOA or AA) trusted by the
relying party.

When the id-ad-caIssuers OID appears as an accessMethod, the accessLocation field describes the referenced
description server and the access protocol to obtain the referenced ACs. The accessLocation field is defined as a
GeneralName, Which can take severa forms. Where the information is available via http, ftp, or Idap,
accessLocation should be auniformResourceIdentifier.

The ldap URI should specify a distinguishedName and an attribute and may specify a host name, for example:
|dap://Idap.exampl e.com/cn=Some%20M anager,dc=exampl e,dc=com?attributeCertificateAttribute; binary

Omitting the host name (e.g., |dap:///cn=Some%20M anager,dc=example,dc=com?attributeCertificateAttribute;binary)
has the effect of specifying the use of whatever LDAP server islocally configured. The URI should list the appropriate
attribute description for the attribute holding DER encoded ACs. Note that in LDAP it is generally not possible to
specify the exact set of ACs that were used to issue the AC containing this extension, but rather the accessLocation
pointsto all the ACs belonging to the issuer of the AC containing this extension.

The ftp and http URIs should specify either the single DER encoded attribute certificate that was used to issue the AC
containing this extension, or afilestore directory containing the set of ACs belonging to the issuer of the AC containing
this extension. Individual DER encoded attribute certificates should have afile name ending in .ace, for example:

http://www.example.com/A Cs/dc=com/dc=exampl e/cn=Some%20M anager/leader.ace
The filestore directory containing the complete set of ACsfor the same entity might be;
ftp:/lwww.exampl e.com/A Cs/dc=com/dc=exampl &/cn=Some%20M anager/

Where the information is available via the Directory Access Protocol (DAP), accessLocation should be a
directoryName. The entry for that directoryName contains AA ACsin the attributeCertificateAttribute
attribute. When the information is available via electronic mail accessLocation should be an rf£c822Name. The
semantics of other caIssuers accessLocation Nnameforms are not defined.

16.3.2.2 Useof authority key identifier

The AKI isused to identify the public key to be used to verify the signature on the AC in which this extension occurs. It
is recommended that the authorityCertIssuer component and the authorityCertSerialNumber COmMponent
are used together to identify and optionally locate the public-key certificate of the AC issuer as follows. The
GeneralNames Of the authorityCertIssuer component should be used to name the CA which issued the public-
key certificate and also to optionally identify where the public-key certificate can be found when it is available via http,
ftp, or Idap. In the latter case, one of the GeneralNames should be a uniformResourceIdentifier as specified in
clause 16.3.2.1 above, and should point to either the LDAP entry holding the public key-certificate or the filestore
directory holding the public-key certificate or the actual file containing the public-key certificate of the AC issuer. The
authorityCertSerialNumber component isused to specify the serial number of the specific public-key certificate
to be used, from the possible set of public-key certificates issued to the AC issuer.

Rec. ITU-T X.509 (10/2012) 101

| SO/l EC 9594-8:2014 (E)

16.3.3 Verify privilege delegation

No delegator can delegate privilege that is greater than the privilege they own. The domination rule in the attribute
descriptor attribute provides the rules for when a given value is 'less than' another value for the attribute being
delegated.

For each certificate in the delegation path, including the direct privilege asserter's certificate, the privilege verifier shall
ensure that the delegator was authorized to delegate the privilege they own and that the privilege delegated was not
greater than the privilege owned.

For each of these certificates, the privilege verifier shall compare the delegated privilege with the privilege owned by
that delegator, in accordance with the domination rule for the privilege. The privilege owned by the delegator is
obtained from the adjacent certificate in the delegation path, as described in clause 16.2. The comparison of the two
privilegesis done based on the domination rule discussed in clause 16.3.1.

16.3.4 Pasdfail determination

Assuming that a valid delegation path is established, the privileges of the direct privilege asserter are provided as input
for the comparison against the privilege policy as discussed in clause 16.1 to determine whether or not the direct
privilege asserter has sufficient privilege for the context of use.

17 PMI directory schema

This clause defines the directory schema elements used to represent PMI information in the Directory. It includes
specification of relevant object classes, attributes and attribute value matching rules.

171 PMI directory object classes
This subclause defines object class definitions for representing PMI objects in the Directory.

17.1.1 PMI user object class
The PMI user object classis used in defining entries for objects that may be the holder of attribute certificates.

pmiUser OBJECT-CLASS ::= {
SUBCLASS OF {top}
KIND auxiliary
MAY CONTAIN {attributeCertificateAttribute}
ID id-oc-pmiUser }

17.1.2 PMI AA object class
The PMI AA object classisused in defining entries for objects that act as attribute authorities.

pmiAA OBJECT-CLASS ::= { -- a PMI AA
SUBCLASS OF {top}
KIND auxiliary

MAY CONTAIN {aACertificate |
attributeCertificateRevocationList |
attributeAuthorityRevocationList}

ID id-oc-pmiAA }

17.1.3 PMI SOA object class

The PMI SOA object class is used in defining entries for objects that act as sources of authority. Note that if the object
was authorized to act as an SOA through issuance of a public-key certificate containing the soaTdentifier extension,
adirectory entry representing that object would also contain the pkica object class.

pmiSOA OBJECT-CLASS ::= { -- a PMI Source of Authority
SUBCLASS OF {top}
KIND auxiliary

MAY CONTAIN {attributeCertificateRevocationList |
attributeAuthorityRevocationList |
attributeDescriptorCertificate}

ID id-oc-pmiSOA }

102 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

17.1.4 Attribute certificate CRL distribution point object class

The attribute certificate CRL distribution point object class is used in defining entries for objects that contain attribute
certificate and/or attribute authority revocation list segments. This auxiliary class is intended to be combined with the
crlDistributionPoint Structural object class when instantiating entries. Sincethe certificateRevocationList
and authorityRevocationList attributes are optional in that class, it is possible to create entries which contain, for
example, only an attribute authority revocation list or entries which contain revocation lists of multiple types, depending
on the requirements.

attCertCRLDistributionPt OBJECT-CLASS ::
SUBCLASS OF {top}
KIND auxiliary
MAY CONTAIN {attributeCertificateRevocationList |
attributeAuthorityRevocationList}
ID id-oc-attCertCRLDistributionPts }

{

17.1.5 PMI delegation path

The PMI delegation path object class is used in defining entries for objects that may contain delegation paths. It will
generally be used in conjunction with entries of structural object classpmiaa.

pmiDelegationPath OBJECT-CLASS ::= {
SUBCLASS OF {top}
KIND auxiliary
MAY CONTAIN {delegationPath}
ID id-oc-pmiDelegationPath }

17.1.6 Privilege policy object class

The privilege policy object classis used in defining entries for objects that contain privilege policy information.

privilegePolicy OBJECT-CLASS ::= {
SUBCLASS OF {top}
KIND auxiliary
MAY CONTAIN {privPolicy}
ID id-oc-privilegePolicy }

17.1.7 Protected privilege policy object class

The protected privilege policy object class is used in defining entries for objects that contain privilege policies protected
within attribute certificates.

protectedPrivilegePolicy OBJECT-CLASS ::= {
SUBCLASS OF {top}
KIND auxiliary
MAY CONTAIN {protPrivPolicy}
ID id-oc-protectedPrivilegePolicy }

17.2 PMI Directory attributes
This subclause defines directory attributes used to store PMI datain directory entries.

17.2.1 Attribute certificate attribute

The following attribute contains attribute certificates issued to a specific holder and is stored in the directory entry of
that holder.

attributeCertificateAttribute ATTRIBUTE ::= {

WITH SYNTAX AttributeCertificate
EQUALITY MATCHING RULE attributeCertificateExactMatch
ID id-at-attributeCertificate }

Rec. ITU-T X.509 (10/2012) 103

| SO/l EC 9594-8:2014 (E)

17.2.2 AA certificate attribute

The following attribute contains attribute certificates issued to an AA and is stored in the directory entry of the
holder AA.

aACertificate ATTRIBUTE ::= {
WITH SYNTAX AttributeCertificate
EQUALITY MATCHING RULE attributeCertificateExactMatch
ID id-at-aACertificate }

17.2.3 Attributedescriptor certificate attribute

The following attribute contains attribute certificates issued by an SOA that contain the attributeDescriptor
extension. These attribute certificates contain the valid syntax and domination rule specification of privilege attributes
and is stored in the directory entry of the issuing SOA.

attributeDescriptorCertificate ATTRIBUTE ::= {
WITH SYNTAX AttributeCertificate
EQUALITY MATCHING RULE attributeCertificateExactMatch
ID id-at-attributeDescriptorCertificate }

17.2.4 Attribute certificate revocation list attribute

The following attribute contains a list of revoked attribute certificates. These lists may be stored in the directory entry of
the issuing authority, or other directory entry (e.g., adistribution point).

attributeCertificateRevocationList ATTRIBUTE ::= {
WITH SYNTAX CertificateList
EQUALITY MATCHING RULE certificateListExactMatch
ID id-at-attributeCertificateRevocationList }

17.25 AA certificaterevocation list attribute

The following attribute contains a list of revoked attribute certificates issued to AAs. These lists may be stored in the
directory entry of the issuing authority or other directory entry (e.g., adistribution point).

attributeAuthorityRevocationList ATTRIBUTE ::= {

WITH SYNTAX CertificateList
EQUALITY MATCHING RULE certificateListExactMatch
ID id-at-attributeAuthorityRevocationList }

17.2.6 Delegation path attribute
The delegation path attribute contains delegation paths, each consisting of a sequence of attribute certificates.

delegationPath ATTRIBUTE ::= {

WITH SYNTAX AttCertPath

ID id-at-delegationPath }
AttCertPath ::= SEQUENCE OF AttributeCertificate

This attribute can be stored in the AA directory entry and would contain some delegation paths from that AA to other
AAs. This attribute, if used, enables a more efficient retrieval of delegated attribute certificates that form frequently
used delegation paths. As such, there are no specific requirements for this attribute to be used and the set of values that
are stored in the attribute is unlikely to represent the complete set of delegation paths for any given AA.

17.2.7 Privilege policy attribute
The privilege policy attribute contains information about privilege policies.

privPolicy ATTRIBUTE ::= {
WITH SYNTAX PolicySyntax
ID id-at-privPolicy }

ThepolicyIdentifier component includesthe object identifier registered for the particular privilege policy.
If content is present, the complete content of the privilege policy isincluded.

If pointer is present, the name component references one or more locations where a copy of the privilege policy can
be located. If the hash component is present, it contains a HASH of the content of the privilege policy that should be
found at areferenced location. This hash can be used to perform an integrity check of the referenced document.

104 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

17.2.8 Protected privilege policy attribute
The protected privilege policy attribute contains privilege policies, protected within attribute certificates.

protPrivPolicy ATTRIBUTE ::= {
WITH SYNTAX AttributeCertificate
EQUALITY MATCHING RULE attributeCertificateExactMatch
ID id-at-protPrivPolicy }

Note that unlike typical attribute certificates, those within the protPrivPolicy attribute contain privilege policies, not
privileges. The issuer and holder components of these attribute certificates identify the same entity. The attribute that is
included in the attribute certificate contained within the protPrivPolicy attributeis either the privpolicy attribute
or the xmlprivPolicy attribute.

17.29 XML Protected privilege policy attribute
The XML protected privilege policy attribute contains XML encoded privilege policy information.

xmlPrivPolicy ATTRIBUTE ::= {
WITH SYNTAX UTF8String -- XML-encoded privilege policy information
ID id-at-xmlPrivPolicy }

17.3 PMI general directory matchingrules
This subclause defines matching rules for PMI directory attributes.

17.3.1 Attribute certificate exact match

The attribute certificate exact match rule compares for equality a presented value with an attribute value of type
AttributeCertificate

attributeCertificateExactMatch MATCHING-RULE ::= {
SYNTAX AttributeCertificateExactAssertion
ID id-mr-attributeCertificateExactMatch }

AttributeCertificateExactAssertion ::= SEQUENCE {
serialNumber CertificateSerialNumber,
issuer AttCertIssuer,

}

This matching rule returns TRUE if the components in the attribute value match those in the presented value.

17.3.2 Attribute certificate match

The attribute certificate matching rule compares a presented vaue with an attribute value of type
AttributeCertificate. Thismatching rule allows more complex matching than the certificateExactMatch.

attributeCertificateMatch MATCHING-RULE ::= {
SYNTAX AttributeCertificateAssertion
ID id-mr-attributeCertificateMatch }

AttributeCertificateAssertion ::= SEQUENCE {

holder [0] CHOICE {

baseCertificateID [0] IssuerSerial,

holderName [1] GeneralNames,

...} OPTIONAL,
issuer [1] GeneralNames OPTIONAL,
attCertValidity [2] GeneralizedTime OPTIONAL,
attType [3] SET OF AttributeType OPTIONAL,

}

-- At least one component of the sequence shall be present

The matching rule returns TRUE if all of the components that are present in the presented value match the
corresponding components of the attribute value, as follows:

— baseCertificateID matches if it is equal to the Issuerserial component of the stored attribute
value,

— holderName matchesif the stored attribute value contains the name extension with the same name type
asindicated in the presented value;

Rec. ITU-T X.509 (10/2012) 105

| SO/l EC 9594-8:2014 (E)

— issuer Mmatches if the stored attribute value contains the name component of the same name type as
indicated in the presented value;

— attCertvalidity matchesif it falls within the specified validity period of the stored attribute value;
and

— for each attType in the presented value, there is an attribute of that type present in the attributes
component of the stored value.

17.3.3 Holder issuer match

The attribute certificate holder issuer match rule compares for equality a presented value of the holder and/or issuer
components of a presented value with an attribute value of type AttributeCertificate.

holderIssuerMatch MATCHING-RULE ::= {
SYNTAX HolderIssuerAssertion
ID id-mr-holderIssuerMatch }

HolderIssuerAssertion ::= SEQUENCE {
holder [0] Holder OPTIONAL,
issuer [1] AttCertIssuer OPTIONAL,

-}

This matching rule returns TRUE if al the components that are present in the presented value match the corresponding
components of the attribute value.

17.3.4 Delegation path match

The delegationPathMatch match rule compares for equality a presented value with an attribute value of type
delegationPath. A privilege verifier may use this matching rule to select a path beginning with a certificate issued
by its SOA and ending with a certificate issued to the AA that issued the end-entity holder certificate being validated.

delegationPathMatch MATCHING-RULE ::= {
SYNTAX DelMatchSyntax
ID id-mr-delegationPathMatch }

DelMatchSyntax ::= SEQUENCE {
firstIssuer AttCertIssuer,
lastHolder Holder,

-}

This matching rule returns TRUE if the presented value in the firstIssuer component matches the corresponding
elements of the issuer field of the first certificate in the sEQUENCE in the stored value and the presented value in the
lastHolder component matches the corresponding elements of the holder field of the last certificate in the SEQUENCE
in the stored value. This matching rule returns FALSE if either match fails.

17.35 Extension presence match

The extension presence match rule compares for equality a presented object identifier value, identifying a particular
extension, with the extensions component of a certificate.

extensionPresenceMatch MATCHING-RULE ::= {
SYNTAX EXTENSION.&id

ID id-mr-extensionPresenceMatch }

This matching rule returns TRUE if the certificate contains the particular extension.

106 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

SECTION 4 — DIRECTORY USE OF PUBLIC-KEY &
ATTRIBUTE CERTIFICATE FRAMEWORKS

The Directory uses the public-key certificate framework as the foundation for a number of security services including
strong authentication and protection of Directory operations, as well as protection of stored data. The Directory uses the
attribute certificate framework as the foundation for rule-based access control scheme. The relationship of the elements
of the public-key certificate framework and of the attribute certificate framework to the various Directory security
services is defined here. The specific security services provided by the Directory are fully specified over the complete
set of Directory Specifications.

18 Directory authentication

The Directory supports the authentication of users accessing the Directory via DUASs and the authentication of directory
systems (DSAS) to users and to other DSAs. Depending on the environment, either simple or strong authentication may
be used. The procedures to be used for simple and strong authentication in the Directory are described in the following
subclauses.

181 Simple authentication procedure

Simple authentication is intended to provide local authorization based upon the distinguished name of a user, a
bilaterally agreed (optional) password, and a bilateral understanding of the means of using and handling this password
within a single domain. The utilization of simple authentication is primarily intended for loca use only, i.e., for peer
entity authentication between one DUA and one DSA or between one DSA and one DSA. Simple authentication may be
achieved by several means.

a) thetransfer of the user's distinguished name and (optional) password in the clear (non-protected) to the
recipient for evaluation;

b) the transfer of the user's distinguished name, password, and a random number and/or a timestamp, all of
which are protected by applying a one-way function;

c) the transfer of the protected information described in b) together with a random number and/or a
timestamp, all of which is protected by applying a one-way function.
NOTE 1 — There is no requirement that the one-way functions applied be different.
NOTE 2 —The signalling of procedures for protecting passwords may be a matter for an extension to the document.
Where passwords are not protected, a minimal degree of security is provided for preventing unauthorized access. It
should not be considered a basis for secure services. Protecting the user's distinguished name and password provides

greater degrees of security. The algorithms to be used for the protection mechanism are typically non-enciphering one-
way functionsthat are very simple to implement.

The general procedure for achieving simple authentication is shown in Figure 8.

Directory

X.509(12)_F08

Figure 8 — The unprotected simple authentication procedure

Rec. ITU-T X.509 (10/2012) 107

| SO/l EC 9594-8:2014 (E)

The following steps are involved:
1) Anoriginating user A sends its distinguished name and password to a recipient user B.

2) B sends the purported distinguished name and password of A to the Directory, where the password is
checked against that held as the userprassword attribute within the directory entry for A (using the
Compare operation of the Directory).

3) The Directory confirms (or denies) to B that the credentials are valid.

4) The success (or failure) of authentication may be conveyed to A.
The most basic form of simple authentication involves only step 1) and after B has checked the distinguished name and
password, may include step 4).
18.1.1 Generation of protected identifying information

Figure 9 illustrates two approaches by which protected identifying information may be generated. f1 and f2 are one-way
functions (either identical or different) and the timestamps and random numbers are optional and subject to bilateral
agreements.

Annex K provides a suggested algorithm to be used for protected passwords.

A »
A Protectedl

passw Y >

1’ > L’

qlA > £ Protected?

v » g

@’ >

X.509(12)_F09

A User's distinguished name
t Timestamps
passw* Password of A
d Random numbers, optionally with a counter included

Figure 9 — Protected smple authentication

18.1.2 Procedurefor protected simple authentication

Figure 10 illustrates the procedure for protected simple authentication.

X.509(12)_F10

Figure 10 — The protected ssmple authentication procedure

The following steps are involved (initially using f1 only):

1) An originating user, user A, sends its protected identifying information (Authenticatorl) to user B.
Protection is achieved by applying the one-way function (f1) of Figure 9, where the timestamp and/or
random number (when used) is used to minimize replay and to conceal the password.

The protection of A's password is of the form:
Protected = f1 (t1*, q1*, A, passw”)

The information conveyed to B is of the form:
Authenticatorl = t1*, q1®, A, Protected1

108 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

2) B verifies the protected identifying information offered by A by generating (using the distinguished
name and optional timestamp and/or random number provided by A, together with a local copy of A's
password) alocal protected copy of A's password (of the form Protectedl). B compares for equality the
purported identifying information (Protectedl) with the locally generated value.

3) B confirmsor deniesto A the verification of the protected identifying information.

The procedure can be modified to afford greater protection using f1 and f2. The main differences are as follows:

1) A sendsitsadditionally protected identifying information (Authenticator2) to B. Additional protection is
achieved by applying a further one-way function, f2, as illustrated in Figure 9. The further protection is
of the form:

Protected? = f2 (t2*, q2", Protected)
The information conveyed to B is of the form:
Authenticator2 = t1*, t2*, q1#, g2*, A, Protected2

For comparison, B generates alocal value of A's additionally protected password and compares it for equality with that
of Protected2.
2) B confirmsor deniesto A the verification of the protected identifying information.

NOTE — The procedures defined in these clauses are specified in terms of A and B. As applied to the Directory (specified in Rec.
ITU-T X.511 | ISO/IEC 9594-3 and Rec. ITU-T X.518 | ISO/IEC 9594-4), A could be a DUA binding to a DSA, B; aternatively,
A could be aDSA binding to another DSA, B.

18.1.3 User Password attributetype

The multi-valued User Passwords attribute type contains the current and possibly previous passwords of an object. An
attribute value for a user password is a string specified by the object.

userPassword ATTRIBUTE ::= {
WITH SYNTAX OCTET STRING(SIZE (0..MAX))
EQUALITY MATCHING RULE octetStringMatch
LDAP-SYNTAX octetString.&id
LDAP-NAME {"userpPassword"}
ID id-at-userPassword }

18.2 Password policy

18.2.1 Introduction

Password policy is a set of rules that controls how passwords are used and administered in the Directory. It improves
the security of the Directory and makes it difficult for password cracking programs to break into the Directory. These
rules ensure that users change their passwords periodically, that passwords meet quality requirements, that the reuse of
old password is restricted, and that users are locked out after a certain number of failed attempts. This policy also forces
the user to update its password after it has been set for the first time, or has been reset by a password administrator.
However, in some cases, it is desirable to disallow users from adding and updating their own passwords.

A password is supposed not to be well known. If a password is frequently changed, the chance of misuse is minimized.
Password policy administrators may deploy a password policy that causes passwords to expire after a given amount of
time thus forcing users to change their passwords periodically. There must be away to make users aware of the need to
change their password before being locked out of their accounts. One or both of the following methods could be used:

— A warning may be returned to the user sometime before the password is due to expire. If the user ignores
this warning before the expiration time, the account will be locked.

— Theuser may Bind to the directory a certain number of times after the password has expired. If the user
fails to change the password following one of the 'grace’ authentications, the account will be locked.

Password quality rules are rules for how a password shall be constructed. It is not the intention to provide a
specification for password qualities, as requirements on quality may change over time. Password quality includes things
like:

— minimum length;
— amixture of characters (uppercase, lowercase, figures, punctuations, etc.); and
— avoidance of trivial passwords.

Rec. ITU-T X.509 (10/2012) 109

| SO/l EC 9594-8:2014 (E)

A particular quality rule requires specialized code within the implementation. It may therefore be advantage to
standardize password quality rules and assign object identifiers to such rules. An implementation may then claim
support to one or more of such standardized quality rules.

An intruder may try to guess a password to get access to protected information. Currently, two different safeguards have
been identified:
— Spexification of the maximum number of failed attempts before a successful attempt within a given time
span (which could be indefinitely). This approach alows for "denial of service attacks'. One or more
genuine users could have their access to the directory barred by the action of an attacker.

— The other mechanism is to insert a delay before returning information on authentication failure, and
increasing this delay for repeated failed authentications on the same connection. This approach slows
authentication, and makes brute force attacks impractical.

Password history is a mechanism to prevent password reuse. Previously used passwords should be stored to allow the
Directory to ensure that a new password has not been previously used. Old passwords are stored for a time specified by
the password policy, and after this time a password may be reused. The history is maintained in a userPwdHistory
multi-valued operational attribute. A value is purged after a specific time, and the purged password may in principle be
reused. The maximum time a password is kept in the in userPwdHistory atribute is specified in the
pwdMaxTimelnHistory operationa attribute, and the minimum time is specified in the pwdMinTimelnHistory
operationa attribute. The number of passwords stored is limited by the pwdHistoryslots operational attribute and
the password cannot be changed if there is no free slot in the history and no passwords in the history have been for less
than the pwdMinTimelnHistory, so a user cannot revert to a "preferred password” simply by making lots of password
changes.

The password policy can be used with clear passwords (using the clear aternative of the userpwd attribute), or with
encrypted passwords (using the encrypted aternative of the userpwd attribute) or with another password attribute.
All entriesin the same specific password administrative area shall use the same password attribute type.

18.2.2 Operational attributesand procedures

The password policy uses specific operational attributes to register policy parameters, times and dates related to
password management.

When a password value is first stored in the directory, in the userpwd éttribute, the pwdstartTime operationa
atribute is set (Figure 11). The pwdExpiryTime operational attribute which contains the expiration of the password
may either be automatically computed from the pwdExpiryage operational attribute or set by explicit administrator
action. It is an implementation option whether the value is dynamically computed by addition of the pwdExpiryage to
the pwdstartTime Of the entry, in which case it does not need to be stored in the directory entry, or is set by an
administrator, in which case it shal be stored in the directory entry. The pwdEndTime oOperational attribute which
contains the expiration of the account may either be automatically computed from the pwdMaxage operationa attribute
or set by explicit administrator action. It is an implementation option whether the value is dynamically computed by
addition of the pwdMaxage to the pwdstartTime Of the entry, in which case it does not need to be stored in the
directory entry, or is set by an administrator, in which case it shall be stored in the directory entry.

The pwdstartTime operational attribute may also be set by an Administrator to specify that the account cannot be
used before agiven time.

When the user (or an administrator acting on behalf of the user) changes the userpwd attribute within the pwdMaxage
period, the pwdstartTime operationa attribute should be updated. The pwdExpiryTime and the pwdEndTime
operational attributes should be recomputed and updated to reflect the new password creation time.

NOTE — If a user does bind with the Directory for a long time, the values of pwdExpiryTime and pwdEndTime operational
attributes may be exceeded and the account automatically locked.

110 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

pwdMaxAge (secs)

A
v

pwdExpiryAge (secs)

A

»

pwdEXxpiryWarning (Secs)
«—>

T T y time
pwdStartTime pwdExpiryTime pwdEndTime
Time the password i
1me cergated ordis Deletion of attribute
X.509(12)_F11

Figure 11 —Time chart for password attributes

When the user (or an administrator acting on behalf of the user) changes the value of the password, the new value is
generally not known by all the Directory servers immediately because of replication delays. To prevent authentication
problems, the previous password remains available for the pwdRecentlyExpiredDuration duration time (which
shall be greater than the replication periods used in the Directory system).

When the user (or an administrator acting on behalf of the user) changes the value of the password, the old value should
be copied into the recently expired password attribute. (The userPwd attribute is copied into the
userPwdRecentlyExpired). When the recently expired password duration time is over, the recently expired
password attribute (userPwdRecentlyExpired) should not be available to the user. If the user (or an administrator
acting on behalf of the user) changes their password again during the recently expired password duration time, then
their recently expired password should be overwritten and the duration should be set to start again (see Figure 12).
Thus, a recently expired password will only be kept in the recently expired password attribute for the shorter of the
recently expired password duration time or until the user changes their password again. However, it will be kept in the
password history table.

pwdRecentlyExpiredDuration (secs)

pwdRecentlyExpiredDuration (secs)

| | T *‘
pwdStartTime Time tﬁe user Deletion of attribute Deletion 6f attribute

changesthe
password again

A
A

. time
L

Time the user first
changes the password

X.509(12)_F12

Figure 12 —Timelinefor recently expired passwords

18.2.3 Password history

The password history attribute is used to prevent password reuse, by storing old values of the user's password so that the
user cannot reuse the same password again whilst it is stored in the password history (see Figure 13). When the user
(or an administrator acting on behalf of the user) changes their password, it may be copied into the password history
(userPwdHistory) operational attribute along with the time that the password was changed. The password maximum
time in history attribute (pwdMaxTimelnHistory) specifies the maximum duration (in seconds) that a password should
remain in the password history. Once this time has expired for a particular password, then it is removed from the
password history, and the user may use this password again.

The number of dlots in the password history table (or password history attribute values) is defined in the
pwdHistorySlots operational attribute. When al the dots arefilled, the oldest password may be removed subject to it
having been in the history for a minimum duration time (as specified in the pwdMinTimeInHistory attribute).

Rec. ITU-T X.509 (10/2012) 111

| SO/l EC 9594-8:2014 (E)

NOTE — If an administrator has to change the password of a user when all the history slots are full and no password are older
than pwdMinTimeInHistory, then the administrator might free two slots in the history table (i.e., delete two attribute
values), reset the user's password to a temporary value (which is copied into the history), leaving one spare slot for the user to
choose their own new password.

pwdMaxTimelInHistory (secs)

T T T ~ » time
Time the user Time the user Time the user P
, », Slot is emptied
first changes changes the changes the \
the password password password ':
- l-'\‘.. S H
TNl . X ;
RS I s Time userPwd J
DL L
">~ "7~ » First password -
S~ pwdHistorySlots
. ™ Second password operational attribute
"I Third password
X.509(12)_F13
NOTE — If the Directory system changes its encryption algorithm then a user will be able to use the same

password again since the encrypted password will be different.
Figure 13 —user PwdHistory attribute
18.24 Simple Authentication attributesheld by object entries

18.2.4.1 User Password attribute

The userpPwd attribute type contains either the clear text password or the encrypted password of an object. The
Directory can store either variants but, implementations be aware that storing encrypted passwords is not aways
compatible with passing encrypted passwords in the protocol. The encrypted aternative may be used for passing the
password in the bind or compare operations but this can only be safely used when the passwords are stored in the clear
(see section 18.2.6.1 userPwdMatch for more details). The attribute value of the encrypted alternative is an octet string
containing the encrypted value, with the encryption algorithm identifier, as well as parameters such as seeds. During
password rollover, the old password value may be copied into the userPwdRecentlyExpired attribute value.

userPwd ATTRIBUTE ::= {
WITH SYNTAX UserPwd
EQUALITY MATCHING RULE userPwdMatch
SINGLE VALUE TRUE

LDAP-SYNTAX userPwdDescription.&id
LDAP-NAME {"userPwd"}
ID id-at-userbPwd }

UserPwd ::= CHOICE {

clear UTF8String,

encrypted SEQUENCE {
algorithmIdentifier AlgorithmIdentifier{{SupportedAlgorithms}},
encryptedString OCTET STRING,

oo [y

oo

Annex L contains examples of some encryption methods.

18.2.4.2 Password Start Time attribute

The pwdstartTime operational attribute indicates when the password has been created for the object represented by
the entry in which the attribute is present.

pwdStartTime ATTRIBUTE ::=
WITH SYNTAX
EQUALITY MATCHING RULE
ORDERING MATCHING RULE
SINGLE VALUE
USAGE
LDAP-SYNTAX
LDAP-NAME
ID

112

{

GeneralizedTime
generalizedTimeMatch
generalizedTimeOrderingMatch
TRUE

directoryOperation
generalizedTime.&id
{"pwdStartTime"}
id-oa-pwdStartTime }

Rec. | TU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

18.2.4.3 Password Expiry Time attribute

The pwdExpiryTime Operational attribute indicates when the password will expire for the object represented by the
entry in which the attribute is present. This is an optional attribute that can be set by an administrator. If the attribute is
missing, its default value is computed by the addition of the pwdExpiryage to the pwdstartTime of the entry.

pwdExpiryTime ATTRIBUTE ::= {
WITH SYNTAX GeneralizedTime
EQUALITY MATCHING RULE generalizedTimeMatch
ORDERING MATCHING RULE generalizedTimeOrderingMatch
SINGLE VALUE TRUE

USAGE directoryOperation
LDAP-SYNTAX generalizedTime.&id
LDAP -NAME {"pwdExpiryTime"}

ID id-oa-pwdExpiryTime }

18.2.4.4 Password End Time attribute

The pwdEndTime Operational attribute indicates when the password will be no longer valid for the object represented
by the entry in which the attribute is present. This is an optional attribute that can be set by an administrator. If the
attribute is missing, its default value is computed by the addition of the pwdMaxage to the pwdstartTime Of the entry.

pwdEndTime ATTRIBUTE ::= {

WITH SYNTAX

EQUALITY MATCHING RULE
ORDERING MATCHING RULE
SINGLE VALUE

USAGE

LDAP-SYNTAX

LDAP-NAME

ID

GeneralizedTime
generalizedTimeMatch
generalizedTimeOrderingMatch
TRUE

directoryOperation
generalizedTime. &id
{"pwdEndTime"}
id-oa-pwdEndTime }

18.2.4.5 Password Fails attribute

The pwdFails operational attribute specifies the current number of consecutive failed bind or compare attempts on the
password attribute. The value of this attribute is incremented by one after a failed bind or compare attempt and is reset
to zero after a successful bind or compare operation.

pwdFails ATTRIBUTE ::= {

WITH SYNTAX

EQUALITY MATCHING RULE
ORDERING MATCHING RULE
SINGLE VALUE

USAGE

LDAP-SYNTAX

LDAP-NAME

ID

INTEGER (0. .MAX)
integerMatch
integerOrderingMatch
TRUE

dSAOperation
integer.&id
{"pwdFails"}
id-oa-pwdFails }

18.2.4.6 Password Failure Time attribute

The pwdFailureTime Operational attribute specifies the time of the last failed bind or compare attempts on the
password attribute. This attribute is only significant when the pwdFails operational attribute contains a non zero value.

pwdFailureTime ATTRIBUTE :

WITH SYNTAX

EQUALITY MATCHING RULE
ORDERING MATCHING RULE
SINGLE VALUE

USAGE

LDAP-SYNTAX

LDAP-NAME

ID

= {

GeneralizedTime
generalizedTimeMatch
generalizedTimeOrderingMatch
TRUE

dSAOperation
generalizedTime.&id
{"pwdFailureTime"}
id-oa-pwdFailureTime }

18.2.4.7 Password Graces Used attribute

The pwdGracesUsed operational attribute specifies the number of grace authentication attempts that have already been
used with an expired password. The value of this attribute is set to 0 when the password is changed and incremented by
one after successful authentication using an expired password. When the value is greater or equal to the pwdGraces
attribute, the password is not usable again.

Rec. ITU-T X.509 (10/2012) 113

| SO/l EC 9594-8:2014 (E)

pwdGracesUsed ATTRIBUTE ::= {
WITH SYNTAX INTEGER (0. .MAX)
EQUALITY MATCHING RULE integerMatch
ORDERING MATCHING RULE integerOrderingMatch

SINGLE VALUE TRUE

USAGE dSAOperation
LDAP-SYNTAX integer.&id

LDAP-NAME {"pwdGracesUsed"}

ID id-oa-pwdGracesUsed }

18.2.4.8 User Password History attribute

The userPwdHistory Operational attribute is used to hold previous passwords for the user represented by the entry in

which the attribute is present.
userPwdHistory ATTRIBUTE ::=
pwdHistory{userPwd,userPwdHistoryMatch, id-oa-userPwdHistory}

This attribute is multi-valued. Each value consists of a sequence of the time the password was put in the history and the
password.

18.2.4.9 User Password Recently Expired attribute

The userPwdRecentlyExpired dattribute type contains the old user password after it has been replaced during the
pwdRecentlyExpiredDuration. During this period, this password and the userpwd attribute are both considered to
be valid. This attribute is removed when the pwdRecentlyExpiredDuration EXPIreS.

userPwdRecentlyExpired ATTRIBUTE ::=
pwdRecentlyExpired{userPwd, id-oa-userPwdRecentlyExpired}

18.25 Password policy attributes

Password policy attributes may be placed in an object entry and/or in a subentry. If an object entry holds such an
attribute and is also within the scope of a password administration subentry, the value of the attribute in the object entry
itself takes precedence.

18.2.5.1 Passwsord ModifyEntry Allowed attribute

The pwdModifyEntryAllowed operational attribute specifies if the password or the encrypted password of an entry
can be modified by an Administrator with a Modify Entry operation. If this attribute is missing, or the value is FALSE,
the password or the encrypted password cannot be modified with a Modify Entry operation.

pwdModifyEntryAllowed ATTRIBUTE ::= {
WITH SYNTAX BOOLEAN
EQUALITY MATCHING RULE booleanMatch
SINGLE VALUE TRUE
USAGE directoryOperation
LDAP-SYNTAX boolean. &id
LDAP -NAME {"pwdModifyEntryAllowed"}
ID id-oa-pwdModifyEntryAllowed }

18.2.5.2 Password Change Allowed attribute

The pwdchangeallowed operational attribute specifies if the password or the encrypted password of an entry can be
modified by the owner of that entry with a Change Password operation. If this attribute is missing or the value is
FALSE, the password or the encrypted password cannot be modified with a Change Password operation.

pwdChangeAllowed ATTRIBUTE ::= {
WITH SYNTAX BOOLEAN
EQUALITY MATCHING RULE booleanMatch
SINGLE VALUE TRUE
USAGE directoryOperation
LDAP-SYNTAX boolean.&id
LDAP-NAME {"pwdChangeAllowed"}
ID id-oa-pwdChangeAllowed }

18.2.5.3 Password Maximum Age attribute

The pwdMaxage operational attribute holds the number of seconds after which a password will be no longer available.
It shall have avalue greater than zero.

If this attribute is missing, then the default value isinfinity.

114 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

pwdMaxAge ATTRIBUTE
WITH SYNTAX INTEGER (1 .. MAX)
EQUALITY MATCHING RULE integerMatch
ORDERING MATCHING RULE integerOrderingMatch

n
~

SINGLE VALUE TRUE

USAGE directoryOperation
LDAP-SYNTAX integer.&id
LDAP-NAME {"pwdMaxAge"}

ID id-oa-pwdMaxAge }

18.2.5.4 Password Expiry Ageattribute

The pwdExpiryAge operationa attribute holds the number of seconds after which a modified password will expire. It
shall have avaue greater than zero.

If this attribute is missing, then the default value isinfinity.

pwdExpiryAge ATTRIBUTE ::= {
WITH SYNTAX INTEGER (1 .. MAX)
EQUALITY MATCHING RULE integerMatch
ORDERING MATCHING RULE integerOrderingMatch

SINGLE VALUE TRUE

USAGE directoryOperation
LDAP-SYNTAX integer.&id
LDAP-NAME {"pwdExpiryAge"}

ID id-oa-pwdExpiryAge }

18.2.5.,5 Password Quality Rule attributes
18.2.5.5.1 Password Minimum Length attribute

This specifies the minimum length, in characters, which is acceptable for a password.

pwdMinLength ATTRIBUTE ::= {
WITH SYNTAX INTEGER (0. .MAX)
EQUALITY MATCHING RULE integerMatch
SINGLE VALUE TRUE
USAGE directoryOperation
LDAP-SYNTAX integer.&id
LDAP-NAME {"pwdMinLength"}
ID id-oa-pwdMinLength }

18.2.5.5.2 Password Vocabulary attribute

This specifies the type of words that are forbidden to be used for passwords. If a bit is set, the corresponding type of
word is not allowed to be used on its own as a password.

pwdVocabulary ATTRIBUTE ::= {
WITH SYNTAX PwdVocabulary
EQUALITY MATCHING RULE bitStringMatch
SINGLE VALUE TRUE
USAGE directoryOperation
LDAP-SYNTAX pwdVocabularyDescription.&id
LDAP-NAME {"pwdVocabulary"}
ID id-oa-pwdVocabulary }

PwdVocabulary ::= BIT STRING {
noDictionaryWords (0),
noPersonNames (1),
noGeographicalNames (2) }

18.2.5.5.3 Password Alphabet attribute

This specifies the sets of characters that shall be used in creating a password. The password shall contain at least one
character of each UTF8String of the value.

pwdAlphabet ATTRIBUTE ::= {
WITH SYNTAX PwdAlphabet
SINGLE VALUE TRUE
USAGE directoryOperation

Rec. ITU-T X.509 (10/2012) 115

| SO/l EC 9594-8:2014 (E)

LDAP-SYNTAX pwdAlphabetDescription.&id

LDAP-NAME {"pwdAlphabet"}

ID id-oa-pwdAlphabet }
PwdAlphabet ::= SEQUENCE OF UTF8String

18.2.5.5.4 Password Dictionaries attribute

This attributes points to one or more dictionaries containing words that are forbidden from being passwords on their
own.

pwdDictionaries ATTRIBUTE ::= {
SUBTYPE OF uri
USAGE directoryOperation
LDAP-SYNTAX directoryString.&id
LDAP-NAME {"pwdDictionaries"}
ID id-oa-pwdDictionaries }

18.2.5.6 Password Expiry Warning attribute

The pwdExpiryWarning operational attribute specifies a period in seconds before password expiration. During this
period a warning indication shall be returned whenever an authenticating requester binds. If this attribute is missing,
then awarning indication shall not be returned.

pwdExpiryWarning ATTRIBUTE ::= {
WITH SYNTAX INTEGER (1. .MAX)
EQUALITY MATCHING RULE integerMatch
ORDERING MATCHING RULE integerOrderingMatch

SINGLE VALUE TRUE

USAGE directoryOperation
LDAP-SYNTAX integer.&id

LDAP -NAME {"pwdExpiryWarning"}

ID id-oa-pwdExpiryWarning }

If the user does not attempt to bind during this period, the account should be locked, but the user should have a chance
to change the password.

18.2.5.7 Password Graces attribute

The pwdGraces operational attribute specifies the number of times an expired password can be used to authenticate. If
this attribute is missing, authentication shall fail.

pwdGraces ATTRIBUTE ::= {
WITH SYNTAX INTEGER (0. .MAX)
EQUALITY MATCHING RULE integerMatch
ORDERING MATCHING RULE integerOrderingMatch

SINGLE VALUE TRUE

USAGE directoryOperation
LDAP-SYNTAX integer.&id
LDAP-NAME {"pwdGraces"}

ID id-oa-pwdGraces }

18.2.5.8 Password Failure Duration attribute

The pwdFailureDuration operationa attribute holds the number of seconds a response to a failed bind or compare
attempt should be delayed.

pwdFailureDuration ATTRIBUTE ::= {
WITH SYNTAX INTEGER (0. .MAX)
EQUALITY MATCHING RULE integerMatch
ORDERING MATCHING RULE integerOrderingMatch

SINGLE VALUE TRUE

USAGE directoryOperation
LDAP-SYNTAX integer.&id

LDAP-NAME {"pwdFailureDuration"}

ID id-oa-pwdFailureDuration }

116 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

18.2.5.9 Password Lockout Duration attribute

The pwdLockoutDuration operational attribute holds the number of seconds that the password cannot be used to
authenticate due to too many successive failed bind or compare attempts (more than the limit specified by
pwdMaxFailures operational attribute or its default). If this attribute is missing, the default timeisinfinity.

pwdLockoutDuration ATTRIBUTE ::= {
WITH SYNTAX INTEGER (0. .MAX)
EQUALITY MATCHING RULE integerMatch
ORDERING MATCHING RULE integerOrderingMatch

SINGLE VALUE TRUE

USAGE directoryOperation
LDAP-SYNTAX integer.&id

LDAP-NAME {"pwdLockoutDuration"}

ID id-oa-pwdLockoutDuration }

18.2.5.10 Password Maximum Failures attribute

The pwdMaxFailures operational attribute specifies the number of consecutive failed bind or compare attempts after
which the password may not be used to authenticate. If this attribute is missing, thereis no limit on failed attempts.

pwdMaxFailures ATTRIBUTE ::= {
WITH SYNTAX INTEGER (1..MAX)
EQUALITY MATCHING RULE integerMatch
ORDERING MATCHING RULE integerOrderingMatch

SINGLE VALUE TRUE

USAGE directoryOperation
LDAP-SYNTAX integer.&id

LDAP-NAME {"pwdMaxFailures"}

ID id-oa-pwdMaxFailures }

18.25.11 Password Maximum Timein History attribute

The pwdMaxTimeInHistory operational attribute specifies the maximum time, in number of seconds, during which a
replaced password is kept within the userPwdHistory operational attribute. If this attribute is missing, the default is
infinity.

pwdMaxTimeInHistory ATTRIBUTE ::= {
WITH SYNTAX INTEGER (1..MAX)
EQUALITY MATCHING RULE integerMatch
ORDERING MATCHING RULE integerOrderingMatch

SINGLE VALUE TRUE

USAGE directoryOperation
LDAP-SYNTAX integer.&id

LDAP -NAME {"pwdMaxTimeInHistory"}

ID id-oa-pwdMaxTimeInHistory }

18.25.12 Password Minimum Timein History attribute

The pwdMinTimeInHistory operational attribute specifies the minimum time, in number of seconds, during which a
replaced password shall be kept within the userPwdHistory operationa attribute. If this attribute is missing, the
default timeis zero seconds.

pwdMinTimeInHistory ATTRIBUTE ::= {
WITH SYNTAX INTEGER (0. .MAX)
EQUALITY MATCHING RULE integerMatch
ORDERING MATCHING RULE integerOrderingMatch

SINGLE VALUE TRUE

USAGE directoryOperation
LDAP-SYNTAX integer.&id

LDAP -NAME {"pwdMinTimeInHistory"}

ID id-oa-pwdMinTimeInHistory }

18.2.5.13 Password History Slots attribute

The pwdHistorySlots operational attribute specifies the number of slots in the history which can be used to store
replaced passwords. The minimum number of slotsis 2 because two slots are needed when an administrator has to reset

apassword.
pwdHistorySlots ATTRIBUTE ::=
WITH SYNTAX INTEGER (2..MAX)

Rec. ITU-T X.509 (10/2012) 117

| SO/l EC 9594-8:2014 (E)

EQUALITY MATCHING RULE integerMatch
ORDERING MATCHING RULE integerOrderingMatch

SINGLE VALUE TRUE

USAGE directoryOperation
LDAP-SYNTAX integer.&id

LDAP-NAME {"pwdHistorySlots"}

ID id-oa-pwdHistorySlots }

18.2.5.14 Password Recently Expired Duration attribute

The pwdRecentlyExpiredDuration attribute type defines the period in seconds during which an expired password
iskept inthe userPwdRecentlyExpired attribute.

pwdRecentlyExpiredDuration ATTRIBUTE ::= {
WITH SYNTAX INTEGER (0. .MAX)
EQUALITY MATCHING RULE integerMatch
ORDERING MATCHING RULE integerOrderingMatch

SINGLE VALUE TRUE

USAGE directoryOperation

LDAP-SYNTAX integer.&id

LDAP-NAME {"pwdRecentlyExpiredDuration"}

ID id-oa-pwdRecentlyExpiredDuration }

18.2.5.15 Password Encryption Algorithm attribute

The pwdEncalg operational attribute indicates the algorithm to be used during the creation of an encrypted password.

pwdEncAlg ATTRIBUTE ::= {
WITH SYNTAX PwdEncAlg
EQUALITY MATCHING RULE pwdEncAlgMatch
SINGLE VALUE TRUE
USAGE directoryOperation
LDAP-SYNTAX integer.&id
LDAP-NAME {"pwdEncalg"}
ID id-oa-pwdEncAlg }

PwdEncAlg ::= AlgorithmIdentifier{{SupportedAlgorithms}}
The agorithms specified in pwdEncalg shall be defined in Annex L.
18.2.6 Password policy matching rules

18.2.6.1 User Password matching rule

The userPwdMatch rule determines whether a presented clear text or encrypted password matches a clear text
password stored in the Directory.

userPwdMatch MATCHING-RULE ::= {
SYNTAX UserPwd
LDAP-SYNTAX userPwdDescription.é&id
LDAP-NAME {"userPwdMatch"}
ID id-mr-userPwdMatch }

It the presented password is clear text and the stored password is clear text, then comparison is performed using
caseExactMatch.

If the presented password is clear text and the stored password is encrypted, then the clear text assertion is encrypted
using the algorithm identified in the stored password and the encrypted value is compared with the stored value using
octetStringMatch.

If the presented password is encrypted and the stored password is clear text, then comparison is performed by
encrypting the stored password using the encryption algorithm passed in the assertion and then the encrypted password
is compared to the asserted encrypted password using octetStringMatch.

If the presented password is encrypted and the stored password is encrypted, then the algorithm identifier and algorithm
parameters are compared for equality. If they are different, matching fails. If they are the same, the encrypted passwords
are compared using octetStringMatch.

118 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

18.2.6.2 Password Encryption Algorithm matching rule

The pwdEncalgMatch rule compares for equality a presented password encryption algorithm with the algorithm stored
with an encrypted password. The encryption algorithms are equal only if the algorithm identifiers and algorithm
parameters are equals.

pwdEncAlgMatch MATCHING-RULE ::= {
SYNTAX PwdEncAlg
LDAP-SYNTAX pwdEncAlgDescription.&id
LDAP -NAME {"pwdEncAlgMatch"}
ID id-mr-pwdEncAlgMatch }

18.2.6.3 User Password History matching rule

The userPwdHistoryMatch rule compares for equality a presented clear or encrypted password with a clear text or
encrypted password stored as an attribute value of type pwdHistory. The timestamp component present in the
userPwdHistory isignored. The remaining passwords are compared using the userPwdMatch matching rule.

userPwdHistoryMatch MATCHING-RULE ::= pwdHistoryMatch{userPwd,id-mr-userPwdHistoryMatch}

18.3 Strong Authentication

Strong authentication makes use of PK| as specified by this Directory Specification, which provides the basic approach
to authentication. However, many authentication procedures employing this approach are possible. In general, it is the
business of a specific application to determine the appropriate procedures, so as to meet the security policy of the
application. This clause describes three particular authentication procedures which may be found useful across a range
of applications.

NOTE — This Directory Specification does not specify the procedures to the detail required for implementation. However,
additional standards could be envisaged which would do so, either in an application-specific or in a general-purpose way.

The three procedures involve different numbers of exchanges of authentication information, and consequently provide
different types of assurance to their participants. Specifically:

a) Oneway authentication, described in clause 18.3.1, involves a single transfer of information from one
user (A) intended for another (B), and establishes the following:

— theidentity of A, and that the authentication token actually was generated by A;
— theidentity of B, and that the authentication token actually was intended to be sent to B;

— the integrity and "originality" (the property of not having been sent two or more times) of the
authentication token being transferred.

The latter properties can also be established for arbitrary additional data accompanying the transfer.

b) Two-way authentication, described in clause 18.3.2, involves, in addition, a reply from B to A. It
establishes, in addition, the following:

— that the authentication token generated in the reply actually was generated by B and was intended to
besentto A;

— theintegrity and originality of the authentication token sent in the reply;
— (optionally) the mutual secrecy of part of the tokens.

¢) Three-way authentication, described in clause 18.3.3, involves, in addition, a further transfer from A to
B. It establishes the same properties as the two-way authentication, but does so without the need for
association timestamp checking.

In each case where Strong Authentication is to take place, A shall obtain the public key of B, and the return certification
path from B to A, prior to any exchange of information. This may involve access to the Directory, as described in clause
18.2. Any such access is not mentioned again in the description of the procedures below.

The checking of timestamps as mentioned in the following clauses only applies when either synchronized clocks are
used in a local environment, or if clocks are logically synchronized by bilatera agreements. In any case, it is
recommended that Coordinated Universal Time be used.

For each of the three authentication procedures described below, it is assumed that party A has checked the validity of
all of the certificates in the certification path.

Rec. ITU-T X.509 (10/2012) 119

| SO/l EC 9594-8:2014 (E)

18.3.1

One-way authentication

The following steps are involved, as depicted in Figure 14:

18.3.2

1)

A generatesr*, a non-repeating number, which is used to detect replay attacks and to prevent forgery.

2) A sendsthe following message to B:

3

BA, A{t", I, B}

where t* is a timestamp. t* consists of one or two dates: the generation time of the token (which is
optional) and the expiry date. Alternatively, if data origin authentication of "sgnData" is to be provided
by the digital signature:

BA, A{t", I, B, sgnData}

In cases where information is to be conveyed which will subsequently be used as a private key (this
information isreferred to as "encData"):

BA, A{t*, r*, B, sgnData, Bp[encData]}

The use of "encData" as a private key implies that it shall be chosen carefully, e.g., to be a strong key for
whatever cryptosystem is used asindicated in the "sgnData" field of the token.

B carries out the following actions:

a)
b)
<)
d)
€)

obtains Ap from BA, checking that A's certificate has not expired;
verifies the signature, and thus the integrity of the signed information;
checksthat B itself isthe intended recipient;

checks that the timestamp is "current”;

optionally, checks that r* has not been replayed. This could, for example, be achieved by having r*
include a sequential part that is checked by alocal implementation for its value uniqueness.

r* isvalid until the expiry date indicated by t*. r* is always accompanied by a sequential part, which
indicates that A shall not repeat the token during the timerange t* and therefore that checking of the
value of r* itself is not required.

In any case, it is reasonable for party B to store the sequential part together with timestamp t* in the
clear and together with the hashed part of the token during timerange t*.

e
X.509(12)_F14

Figure 14 — One-way authentication

Two-way authentication

The following steps are involved, as depicted in Figure 15:

120

1)
2)
3
4)
5)

asfor clause 18.3.1;

asfor clause 18.3.1;

asfor clause 18.3.1;

B generates r®, a non-repeating number, used for similar purpose(s) to r;
B sends the following authentication token to A:

B{t% 1%, A, '}

where t® is atimestamp defined in the same way ast”.

Rec. | TU-T X.509 (10/2012)

6)

| SO/IEC 9594-8:2014 (E)
Alternatively, if data origin authentication of "sgnData" isto be provided by the digital signature:
B{t® % A, r*, sgnData}

In cases where information is to be conveyed which will subsequently be used as a private key (this
information isreferred to as "encData"):

B{t%, r®, A, r*, sgnData, Ap[encData]}

The use of "encData" as a private key implies that it shall be chosen carefully, e.g., to be a strong key for
whatever cryptosystem is used asindicated in the "sgnData" field of the token.

A carries out the following actions:

a) verifiesthe signature, and thus the integrity of the signed information;

b) checksthat A istheintended recipient;

¢) checksthat the timestamp t® is "current”;

d) optionally, checks that r® has not been replayed (see clause 18.3.1, step 3), d)).

X.509(12)_F15

Figure 15 — Two-way authentication

18.3.3 Three-way authentication

The following steps are involved, as depicted in Figure 16:

1)
2)
3)
4)
5)
6)
7)
8)

9)

asfor clause 18.3.2;

asfor clause 18.3.2. Timestamp t* may be zero;

asfor clause 18.3.2, except that the timestamp need not be checked;
asfor clause 18.3.2;

asfor clause 18.3.2. Timestamp t® may be zero;

asfor clause 18.3.2, except that the timestamp need not be checked,;
A checks that the received r isidentical to the r* which was sent;
A sends the following authentication token to B:

A{r® B}
B carries out the following actions:

a) checksthe signature and thus, the integrity of the signed information;
b) checksthat the received r® isidentical to the r® which was sent by B.

6 X.509(12)_F16

Figure 16 — Three-way authentication

Rec. ITU-T X.509 (10/2012) 121

| SO/l EC 9594-8:2014 (E)

19 Access control
The Directory exists in an environment where various administrative authorities control access to their portion of
the DIB. The definition of an access control scheme in the context of the Directory includes methods to:

— specify access control information (ACI);

— enforce access rights defined by that access control information;

— maintain access control information.

The enforcement of access rights applies to controlling access to:
— Directory information related to names;
— Directory user information;
— Directory operationa information including access control information.

Administrative authorities may make use of all or parts of any standardized access control scheme in implementing their
security policies, or may freely define their own schemes at their discretion.

The Basic Access Control (BAC) scheme defined in Rec. ITU-T X.501 | ISO/IEC 9594-2 is an access control list based
scheme that enables Directory Administrators to tie permissions to the level of authentication performed to bind to the
Directory. The public-key certificate framework defined in this Directory Specification is used to provide the strong
authentication scheme used for this binding.

The Rules Based Access Control (RBAC) scheme defined in Rec. ITU-T X.501 | ISO/IEC 9594-2 makes use of the
attribute certificate framework defined in this Directory Specification to carry clearance attributes used in making
access control decisions. RBAC may also be used in conjunction with BAC.

20 Protection of Directory operations

The public-key certificate framework defined in this Directory Specification is used in al Directory protocols defined in
these Directory Specifications to optionally protect the operations including requests, responses and errors. Integrity
protection is provided through the digital signature of the sender and the verification of that signature by the recipient
using the sender's corresponding public-key certificate. Confidentiality may be provided through the use of public key
encryption where the content is encrypted with the public key obtained from the intended recipient's public-key
certificate and decrypted by the recipient using its corresponding private key.

NOTE - Encryption and decryption using asymmetric keys as indicated above is known to be less efficient than using symmetric

keys. However, these Directory Specifications do not provide the means for end-to-end encryption using symmetric keys.

The specific mechanisms and syntax for requesting and including the protection elements in protocol exchanges are
defined within each of the Directory protocolsin these Directory Specifications.

122 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

Annex A

Public-K ey and Attribute Certificate Frameworks

(Thisannex forms an integral part of this Recommendation | International Standard.)

This annex includes all of the ASN.1 type, value, and information object class definitions contained in this Directory
Specification in the form of four ASN.1 modules: AuthenticationFramework, CertificateExtensions, and
AttributeCertificateDefinitions and PasswordPolicy.

-- A.1 - Authentication framework module

AuthenticationFramework {joint-iso-itu-t ds(5) module(l) authenticationFramework(7) 7}
DEFINITIONS ::=
BEGIN

-- EXPORTS All

-- The types and values defined in this module are exported for use in the other ASN.1
-- modules contained within the Directory Specifications, and for the use of other

-- applications which will use them to access Directory services. Other applications may
-- use them for their own purposes, but this will not constrain extensions and

-- modifications needed to maintain or improve the Directory service.

IMPORTS
basicAccessControl, certificateExtensions, id-asx, id-at, id-1dx, id-1lsx, id-mr, id-nf,
id-oa, id-oc, id-sc, informationFramework, selectedAttributeTypes
FROM UsefulDefinitions {joint-iso-itu-t ds(5) module(l) usefulDefinitions(0) 7}

ATTRIBUTE, DistinguishedName, MATCHING-RULE, Name, NAME-FORM, OBJECT-CLASS,
SYNTAX-NAME, top
FROM InformationFramework informationFramework

bitStringMatch, boolean, booleanMatch, caseExactMatch, commonName,
directoryString, distinguishedNameMatch, generalizedTime,
generalizedTimeMatch, generalizedTimeOrderingMatch, integer, integerMatch,
integerOrderingMatch, objectIdentifierMatch, octetString, octetStringMatch,
UnboundedDirectoryString, UniqueIdentifier, uri

FROM SelectedAttributeTypes selectedAttributeTypes

algorithmIdentifierMatch, certificateExactMatch, certificateListExactMatch,
certificatePairExactMatch, CertificatePoliciesSyntax, CertPolicyId, GeneralNames,
KeyUsage,
CertificateAssertion, CertificateExactAssertion, CertificatelListAssertion,
CertificatelListExactAssertion, CertificatePairAssertion,
CertificatePairExactAssertion

FROM CertificateExtensions certificateExtensions ;

-- parameterized types

ENCRYPTED{ToBeEnciphered} ::= BIT STRING (CONSTRAINED BY {
-- shall be the result of applying an encipherment procedure

-- to the BER-encoded octets of a value of -- ToBeEnciphered })
HASH{ToBeHashed} ::= SEQUENCE ({
algorithmIdentifier AlgorithmIdentifier{{SupportedAlgorithms}},
hashvValue BIT STRING (CONSTRAINED BY {
-- shall be the result of applying a hashing procedure to the DER-encoded
-- octets of a value of -- ToBeHashed }),
e}

ENCRYPTED-HASH{ToBeSigned} ::= BIT STRING (CONSTRAINED BY (
-- shall be the result of applying a hashing procedure to the DER-encoded (see 6.2)
-- octets of a value of -- ToBeSigned -- and then applying an encipherment procedure
-- to those octets -- })

SIGNATURE{ToBeSigned} ::= SEQUENCE {
algorithmIdentifier AlgorithmIdentifier{{SupportedAlgorithms}},

Rec. ITU-T X.509 (10/2012) 123

| SO/l EC 9594-8:2014 (E)

encrypted ENCRYPTED-HASH{ToBeSigned},
cee }
SIGNED{ToBeSigned} ::= SEQUENCE ({
toBeSigned ToBeSigned,
COMPONENTS OF SIGNATURE{ToBeSigned},
cee }

-- public-key certificate definition
Certificate ::= SIGNED{TBSCertificate}

TBSCertificate ::= SEQUENCE {

version [0] Version DEFAULT vl,

serialNumber CertificateSerialNumber,

signature AlgorithmIdentifier{{SupportedAlgorithms}},
issuer Name,

validity Validity,

subject Name,

subjectPublicKeyInfo SubjectPublicKeyInfo,
issuerUniqueIdentifier [1] IMPLICIT UniqueIdentifier OPTIONAL,
[[2: -- if present, version shall be v2 or v3
subjectUniqueIdentifier [2] IMPLICIT UniqueIdentifier OPTIONAL]],
[[3: -- if present, version shall be v2 or v3

extensions [3] Extensions OPTIONAL]]

-- If present, version shall be v3]]

}
Version ::= INTEGER {v1(0), v2(1), v3(2)}
CertificateSerialNumber ::= INTEGER

AlgorithmIdentifier{ALGORITHM: SupportedAlgorithms} ::= SEQUENCE {
algorithm ALGORITHM.&id ({SupportedAlgorithms}),
parameters ALGORITHM.&Type ({SupportedAlgorithms}{@algorithm}) OPTIONAL,

)

-- Definition of the following information object set is deferred, perhaps to

-- standardized profiles or to protocol implementation conformance statements. The
-- set is required to specify a table constraint on the parameters component of

-- AlgorithmIdentifier.

SupportedAlgorithms ALGORITHM ::= {...}

ALGORITHM ::= CLASS {
&Type OPTIONAL,
&id OBJECT IDENTIFIER UNIQUE }

WITH SYNTAX {
[&Typel
IDENTIFIED BY &id }

Validity ::= SEQUENCE {
notBefore Time,
notAfter Time,

cee }
SubjectPublicKeyInfo ::= SEQUENCE {
algorithm AlgorithmIdentifier{{SupportedAlgorithms}},
subjectPublicKey BIT STRING,
Time ::= CHOICE {
utcTime UTCTime,

generalizedTime GeneralizedTime }
Extensions ::= SEQUENCE OF Extension
-- For those extensions where ordering of individual extensions within the SEQUENCE is

-- significant, the specification of those individual extensions shall include the
-- rules for the significance of the order therein

124 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

Extension ::= SEQUENCE {
extnId EXTENSION.&id ({ExtensionSet}),
critical BOOLEAN DEFAULT FALSE,
extnValue OCTET STRING
(CONTAINING EXTENSION.&ExtnType ({ExtensionSet}{@extnId})
ENCODED BY der),

)

der OBJECT IDENTIFIER ::=
{joint-iso-itu-t asnl(1l) ber-derived(2) distinguished-encoding (1)}

ExtensionSet EXTENSION ::= {...}
EXTENSION ::= CLASS {
&id OBJECT IDENTIFIER UNIQUE,

&ExtnType }

WITH SYNTAX {
SYNTAX &ExtnType
IDENTIFIED BY &id }

-- other PKI certificate constructs

Certificates ::= SEQUENCE {

userCertificate Certificate,

certificationPath ForwardCertificationPath OPTIONAL,
ForwardCertificationPath ::= SEQUENCE SIZE (1l..MAX) OF CrossCertificates
CrossCertificates ::= SET SIZE (1l..MAX) OF Certificate

CertificationPath ::= SEQUENCE {

userCertificate Certificate,
theCACertificates SEQUENCE SIZE (1l..MAX) OF CertificatePair OPTIONAL,
PkiPath ::= SEQUENCE SIZE (l..MAX) OF Certificate

-- certificate revocation list (CRL)

CertificateList ::= SIGNED{CertificateListContent}
CertificateListContent ::= SEQUENCE {
version Version OPTIONAL,
-- if present, version shall be v2
signature AlgorithmIdentifier{{SupportedAlgorithms}},
issuer Name,
thisUpdate Time,
nextUpdate Time OPTIONAL,
revokedCertificates SEQUENCE OF SEQUENCE ({
serialNumber CertificateSerialNumber,
revocationDate Time,

crlEntryExtensions Extensions OPTIONAL,
...} OPTIONAL,

e e ey

crlExtensions [0] Extensions OPTIONAL }

-- PKI object classes

pkiUser OBJECT-CLASS ::= {
SUBCLASS OF {top}
KIND auxiliary
MAY CONTAIN {userCertificate}
LDAP-NAME {"pkiUser"}
LDAP-DESC "X.509 PKI User"
ID id-oc-pkiUser }

pkiCA OBJECT-CLASS ::=
SUBCLASS OF {top}

Rec. ITU-T X.509 (10/2012) 125

| SO/l EC 9594-8:2014 (E)

KIND auxiliary

MAY CONTAIN {cACertificate |
certificateRevocationList |
authorityRevocationList |
crossCertificatePair}

LDAP-NAME {"pkicar}

LDAP-DESC "X.509 PKI Certificate Authority"

ID id-oc-pkicCA }
cRLDistributionPoint OBJECT-CLASS ::= {

SUBCLASS OF {top}

KIND structural

MUST CONTAIN { commonName }

MAY CONTAIN {certificateRevocationList |

authorityRevocationList |
deltaRevocationList}

LDAP-NAME {"cRLDistributionPoint"}

LDAP-DESC "X.509 CRL distribution point"

ID id-oc-cRLDistributionPoint }
cRLDistPtNameForm NAME-FORM ::= {

NAMES cRLDistributionPoint

WITH ATTRIBUTES {commonName}

ID id-nf-cRLDistPtNameForm }

deltaCRL OBJECT-CLASS ::=

SUBCLASS OF {top}
KIND auxiliary
MAY CONTAIN {deltaRevocationList}
LDAP-NAME {"deltaCrL"}
LDAP-DESC "X.509 delta CRL"
ID id-oc-deltaCRL }
cpCps OBJECT-CLASS ::= {
SUBCLASS OF {top}
KIND auxiliary
MAY CONTAIN {certificatePolicy |
certificationPracticeStmt}
LDAP -NAME {"cpCps"}
LDAP-DESC "Certificate Policy and Certification Practice Statement"
ID id-oc-cpCps }
pkiCertPath OBJECT-CLASS ::= {
SUBCLASS OF {top}
KIND auxiliary
MAY CONTAIN {pkiPath}
LDAP-NAME {"pkiCertPath"}
LDAP-DESC "PKI Certification Path"
ID id-oc-pkiCertPath }

-- PKI directory attributes

userCertificate ATTRIBUTE ::= {

WITH SYNTAX Certificate

EQUALITY MATCHING RULE certificateExactMatch

LDAP-SYNTAX x509Certificate.&id

LDAP-NAME {"userCertificate"}

LDAP-DESC "X.509 user certificate"

ID id-at-userCertificate }
cACertificate ATTRIBUTE ::= {

WITH SYNTAX Certificate

EQUALITY MATCHING RULE certificateExactMatch

LDAP-SYNTAX x509Certificate.&id

LDAP-NAME {"cACertificate"}

LDAP-DESC "X.509 CA certificate"

ID id-at-cAcertificate }
crossCertificatePair ATTRIBUTE ::= {

WITH SYNTAX CertificatePair

EQUALITY MATCHING RULE certificatePairExactMatch

126 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

LDAP-SYNTAX x509CertificatePair.&id

LDAP-NAME {"crossCertificatePair"}

LDAP-DESC "X.509 cross certificate pair"

ID id-at-crossCertificatePair }
CertificatePair ::= SEQUENCE {

issuedToThisCA [0] Certificate OPTIONAL,
issuedByThisCA [1] Certificate OPTIONAL,

e}
(WITH COMPONENTS { ..., issuedToThisCA PRESENT} |
WITH COMPONENTS { ..., issuedByThisCA PRESENT})
certificateRevocationList ATTRIBUTE ::= {
WITH SYNTAX Certificatelist
EQUALITY MATCHING RULE certificateListExactMatch
LDAP-SYNTAX x509CertificatelList.&id
LDAP-NAME {"certificateRevocationList"}
LDAP-DESC "X.509 certificate revocation list™"
ID id-at-certificateRevocationList }
authorityRevocationList ATTRIBUTE ::= {
WITH SYNTAX CertificateList
EQUALITY MATCHING RULE certificateListExactMatch
LDAP-SYNTAX x509CertificatelList.&id
LDAP-NAME {"authorityRevocationList"}
LDAP-DESC "X.509 authority revocation list"
ID id-at-authorityRevocationList }
deltaRevocationList ATTRIBUTE ::= {
WITH SYNTAX CertificateList
EQUALITY MATCHING RULE certificateListExactMatch
LDAP-SYNTAX x509CertificatelList.&id
LDAP-NAME {"deltaRevocationList"}
LDAP-DESC "X.509 delta revocation list"
ID id-at-deltaRevocationList }

supportedAlgorithms ATTRIBUTE ::= {

WITH SYNTAX SupportedAlgorithm
EQUALITY MATCHING RULE algorithmIdentifierMatch
LDAP-SYNTAX x509SupportedAlgorithm. &id
LDAP -NAME {"supportedAlgorithms"}
LDAP-DESC "X.509 support algorithms"
ID id-at-supportedAlgorithms }
SupportedAlgorithm ::= SEQUENCE {
algorithmIdentifier AlgorithmIdentifier{{SupportedAlgorithms}},
intendedUsage [0] KeyUsage OPTIONAL,

intendedCertificatePolicies [1] CertificatePoliciesSyntax OPTIONAL,

)

certificationPracticeStmt ATTRIBUTE ::= {
WITH SYNTAX InfoSyntax
ID id-at-certificationPracticeStmt }

InfoSyntax ::= CHOICE ({
content UnboundedDirectoryString,
pointer SEQUENCE {

name GeneralNames,
hash HASH{HashedPolicyInfo} OPTIONAL,
..j }.
POLICY ::= TYPE-IDENTIFIER
HashedPolicyInfo ::= POLICY.&Type({Policies})
Policies POLICY ::= {...} -- Defined by implementors
certificatePolicy ATTRIBUTE ::= {
WITH SYNTAX PolicySyntax
ID id-at-certificatePolicy }

Rec. ITU-T X.509 (10/2012) 127

| SO/l EC 9594-8:2014 (E)

PolicySyntax ::= SEQUENCE {
policyIdentifier PolicyID,
policySyntax InfoSyntax,

PolicyID ::= CertPolicyId

pkiPath ATTRIBUTE ::= {
WITH SYNTAX PkiPath
ID id-at-pkiPath }

userPassword ATTRIBUTE ::= {

WITH SYNTAX

EQUALITY MATCHING RULE

LDAP-SYNTAX

LDAP-NAME

ID

-- LDAP syntaxes defined by IETF RFC 4523

s e=

x509Certificate SYNTAX-NAME
LDAP-DESC

"X.509 Certificate"

DIRECTORY SYNTAX Certificate

ID id-1sx-x509Certificate }
x509CertificateList SYNTAX-NAME ::= {

LDAP-DESC "X.509 Certificate List"

DIRECTORY SYNTAX CertificateList

ID id-1sx-x509CertificateList }
x509CertificatePair SYNTAX-NAME ::= {

LDAP-DESC "X.509 Certificate Pair"

DIRECTORY SYNTAX CertificatePair

ID id-1sx-x509CertificatePair }

x509SupportedAlgorithm SYNTAX-NAME ::= {

LDAP-DESC "X.509 Supported Algorithm"
DIRECTORY SYNTAX SupportedAlgorithm
ID

-- object identifier assignments
-- object classes

id-oc-cRLDistributionPoint
id-oc-pkiUser

id-oc-pkicCa

id-oc-deltaCRL

id-oc-cpCps
id-oc-pkiCertPath

name forms
id-nf-cRLDistPtNameForm
-- directory attributes

id-at-userPassword
id-at-userCertificate
id-at-cAcertificate
id-at-authorityRevocationList
id-at-certificateRevocationList
id-at-crossCertificatePair
id-at-supportedAlgorithms
id-at-deltaRevocationList
id-at-certificationPracticeStmt
id-at-certificatePolicy
id-at-pkiPath

syntaxes

128 Rec. ITU-T X.509 (10/2012)

OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT

OBJECT

OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT

id-1sx-x509SupportedAlgorithm }

IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER

IDENTIFIER

IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER

e e ee ee ee ee

.

ee ss e ee es es ss es ee e ee

OCTET STRING(SIZE (0..MAX))
octetStringMatch
octetString.&id
{"userPassword"}
id-at-userPassword }

{id-oc
{id-oc
{id-oc
{id-oc
{id-oc
{id-oc

{id-nf

{id-at
{id-at
{id-at
{id-at
{id-at
{id-at
{id-at
{id-at
{id-at
{id-at
{id-at

19}
21}
22}
23}
30}
31}

14}

35}
36}
37}
38}
39}
40}
52}
53}
68}
69}
70}

| SO/l EC 9594-8:2014 (E)

id-1sx-x509Certificate OBJECT IDENTIFIER ::= {id-1sx 8}
id-1sx-x509CertificatelList OBJECT IDENTIFIER ::= {id-1lsx 9}
id-1sx-x509CertificatePair OBJECT IDENTIFIER ::= {id-1sx 10}
id-1sx-x509SupportedAlgorithm OBJECT IDENTIFIER ::= {id-1lsx 49}

END - AuthenticationFramework
-- A.2 - Certificate extensions module

CertificateExtensions {joint-iso-itu-t ds(5) module(l) certificateExtensions(26) 7}
DEFINITIONS IMPLICIT TAGS ::=
BEGIN

-- EXPORTS ALL

IMPORTS
id-at, id-ce, id-1dx, id-mr, informationFramework, authenticationFramework,
selectedAttributeTypes
FROM UsefulDefinitions {joint-iso-itu-t ds(5) module(l) usefulDefinitions(0) 7}

Name, RelativeDistinguishedName, Attribute{}, MATCHING-RULE,
SupportedAttributes, SYNTAX-NAME
FROM InformationFramework informationFramework

CertificateSerialNumber, Certificatelist, AlgorithmIdentifier{}, EXTENSION,
Time, PolicyID, SupportedAlgorithms
FROM AuthenticationFramework authenticationFramework

UnboundedDirectoryString
FROM SelectedAttributeTypes selectedAttributeTypes

ORAddress
FROM MTSAbstractService {joint-iso-itu-t mhs(6) mts(3) modules (0)

mts-abstract-service (1) version-1999(1)};

-- Unless explicitly noted otherwise, there is no significance to the ordering
-- of components of a SEQUENCE OF construct in this Specification.

-- public-key certificate and CRL extensions
authorityKeyIdentifier EXTENSION ::= {
SYNTAX AuthorityKeyIdentifier
IDENTIFIED BY id-ce-authorityKeyIdentifier }

AuthorityKeyIdentifier ::= SEQUENCE {

keyIdentifier [0] KeyIdentifier OPTIONAL,

authorityCertIssuer [1] GeneralNames OPTIONAL,

authorityCertSerialNumber [2] CertificateSerialNumber OPTIONAL,

e}

(WITH COMPONENTS {..., authorityCertIssuer PRESENT,
authorityCertSerialNumber PRESENT } |

WITH COMPONENTS {..., authorityCertIssuer ABSENT,

authorityCertSerialNumber ABSENT })

KeyIdentifier ::= OCTET STRING
subjectKeyIdentifier EXTENSION ::= {

SYNTAX SubjectKeyIdentifier

IDENTIFIED BY id-ce-subjectKeyIdentifier }
SubjectKeyIdentifier ::= KeyIdentifier
keyUsage EXTENSION ::= {

SYNTAX KeyUsage

IDENTIFIED BY id-ce-keyUsage }
KeyUsage ::= BIT STRING {

digitalSignature (0),
contentCommitment (1),

Rec. ITU-T X.509 (10/2012) 129

| SO/l EC 9594-8:2014 (E)

keyEncipherment (2),
dataEncipherment (3),

keyAgreement (4),
keyCertSign (5),
cRLSign (6),
encipherOnly (7).,
decipherOnly (8) }
extKeyUsage EXTENSION ::= {
SYNTAX SEQUENCE SIZE (1..MAX) OF KeyPurposeId

IDENTIFIED BY id-ce-extKeyUsage }

KeyPurposeId ::= OBJECT IDENTIFIER
privateKeyUsagePeriod EXTENSION ::= {
SYNTAX PrivateKeyUsagePeriod

IDENTIFIED BY id-ce-privateKeyUsagePeriod }

PrivateKeyUsagePeriod ::= SEQUENCE {
notBefore [0] GeneralizedTime OPTIONAL,
notAfter [1] GeneralizedTime OPTIONAL,
e}

(WITH COMPONENTS {..., notBefore PRESENT
WITH COMPONENTS {..., notAfter PRESENT

i
-

certificatePolicies EXTENSION ::= {
SYNTAX CertificatePoliciesSyntax
IDENTIFIED BY id-ce-certificatePolicies }

CertificatePoliciesSyntax ::= SEQUENCE SIZE (1l..MAX) OF PolicyInformation

PolicyInformation ::= SEQUENCE {
policyIdentifier CertPolicyId,
policyQualifiers SEQUENCE SIZE (1..MAX) OF PolicyQualifierInfo OPTIONAL,

CertPolicyId ::= OBJECT IDENTIFIER

PolicyQualifierInfo ::= SEQUENCE {
policyQualifierId CERT-POLICY-QUALIFIER.&id({SupportedPolicyQualifiers}),
qualifier CERT-POLICY-QUALIFIER.&Qualifier
({SupportedPolicyQualifiers}{@policyQualifierId}) OPTIONAL,
e}

SupportedPolicyQualifiers CERT-POLICY-QUALIFIER ::= {...}
anyPolicy OBJECT IDENTIFIER ::= {id-ce-certificatePolicies 0}

CERT-POLICY-QUALIFIER ::= CLASS {
&id OBJECT IDENTIFIER UNIQUE,
&Qualifier OPTIONAL }
WITH SYNTAX {
POLICY-QUALIFIER-ID &id
[QUALIFIER-TYPE &Qualifier] }

policyMappings EXTENSION ::= {
SYNTAX PolicyMappingsSyntax
IDENTIFIED BY id-ce-policyMappings }

PolicyMappingsSyntax ::= SEQUENCE SIZE (1..MAX) OF SEQUENCE {
issuerDomainPolicy CertPolicyId,
subjectDomainPolicy CertPolicyId,

subjectAltName EXTENSION ::= {
SYNTAX GeneralNames

IDENTIFIED BY id-ce-subjectAltName }
GeneralNames ::= SEQUENCE SIZE (1l..MAX) OF GeneralName

GeneralName ::= CHOICE {

130 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

otherName [0] INSTANCE OF OTHER-NAME,
rfc822Name [1] IA5String,

dNSName [2] TIAS5String,

x400Address [3] ORAddress,
directoryName [4] Name,

ediPartyName [5] EDIPartyName,
uniformResourceldentifier [6] IA5String,

iPAddress [7] OCTET STRING,
registeredID [8] OBJECT IDENTIFIER,
.}

OTHER-NAME ::= TYPE-IDENTIFIER

EDIPartyName ::= SEQUENCE {
nameAssigner [0] UnboundedDirectoryString OPTIONAL,

partyName [1] UnboundedDirectoryString,
issuerAltName EXTENSION ::= {
SYNTAX GeneralNames

IDENTIFIED BY id-ce-issuerAltName }

subjectDirectoryAttributes EXTENSION ::= {
SYNTAX AttributesSyntax
IDENTIFIED BY id-ce-subjectDirectoryAttributes }

AttributesSyntax ::= SEQUENCE SIZE (1..MAX) OF Attribute{{SupportedAttributes}}

basicConstraints EXTENSION ::= {
SYNTAX BasicConstraintsSyntax
IDENTIFIED BY id-ce-basicConstraints }

BasicConstraintsSyntax ::= SEQUENCE {
cA BOOLEAN DEFAULT FALSE,
pathLenConstraint INTEGER(0..MAX) OPTIONAL,

)

nameConstraints EXTENSION ::= {
SYNTAX NameConstraintsSyntax
IDENTIFIED BY id-ce-nameConstraints }

NameConstraintsSyntax ::= SEQUENCE {
permittedSubtrees [0] GeneralSubtrees OPTIONAL,
excludedSubtrees [1] GeneralSubtrees OPTIONAL,
e}
(WITH COMPONENTS {..., permittedSubtrees PRESENT } |
WITH COMPONENTS {..., excludedSubtrees PRESENT })

GeneralSubtrees ::= SEQUENCE SIZE (l1l..MAX) OF GeneralSubtree

GeneralSubtree ::= SEQUENCE ({
base GeneralName,
minimum [0] BaseDistance DEFAULT O,
maximum [1] BaseDistance OPTIONAL,

)

BaseDistance ::= INTEGER(0..MAX)

policyConstraints EXTENSION ::= {
SYNTAX PolicyConstraintsSyntax
IDENTIFIED BY id-ce-policyConstraints }

PolicyConstraintsSyntax ::= SEQUENCE {
requireExplicitPolicy [0] SkipCerts OPTIONAL,
inhibitPolicyMapping [11] SkipCerts OPTIONAL,

o)

(WITH COMPONENTS {..., requireExplicitPolicy PRESENT } |
WITH COMPONENTS {..., inhibitPolicyMapping PRESENT })

SkipCerts ::= INTEGER(0..MAX)

Rec. ITU-T X.509 (10/2012) 131

| SO/l EC 9594-8:2014 (E)

inhibitAnyPolicy EXTENSION ::= {
SYNTAX SkipCerts
IDENTIFIED BY id-ce-inhibitAnyPolicy }

cRLNumber EXTENSION ::= {
SYNTAX CRLNumber
IDENTIFIED BY id-ce-cRLNumber }

CRLNumber ::= INTEGER(0..MAX)
crlScope EXTENSION ::= {
SYNTAX CRLScopeSyntax

IDENTIFIED BY id-ce-cRLScope }

CRLScopeSyntax ::= SEQUENCE SIZE (1..MAX) OF PerAuthorityScope
PerAuthorityScope ::= SEQUENCE {
authorityName [0] GeneralName OPTIONAL,
distributionPoint [1] DistributionPointName OPTIONAL,
onlyContains [2] OnlyCertificateTypes OPTIONAL,
onlySomeReasons [4] ReasonFlags OPTIONAL,

serialNumberRange [5] NumberRange OPTIONAL,
subjectKeyIdRange [6] NumberRange OPTIONAL,
nameSubtrees [7] GeneralNames OPTIONAL,
baseRevocationInfo [9] BaseRevocationInfo OPTIONAL,

)

OnlyCertificateTypes ::= BIT STRING {
user (0),
authority (1),
attribute (2)}

NumberRange ::= SEQUENCE {
startingNumber [0] INTEGER OPTIONAL,

endingNumber [1] INTEGER OPTIONAL,
modulus INTEGER OPTIONAL,
cee }

BaseRevocationInfo ::= SEQUENCE {
cRLStreamIdentifier [0] CRLStreamIdentifier OPTIONAL,

cRLNumber [1] CRLNumber,
baseThisUpdate [2] GeneralizedTime,
oo}

statusReferrals EXTENSION ::= {
SYNTAX StatusReferrals

IDENTIFIED BY id-ce-statusReferrals }
StatusReferrals ::= SEQUENCE SIZE (1..MAX) OF StatusReferral

StatusReferral ::= CHOICE (

cRLReferral [0] CRLReferral,
otherReferral [1] INSTANCE OF OTHER-REFERRAL,
e}

CRLReferral ::= SEQUENCE {
issuer [0] GeneralName OPTIONAL,
location [1] GeneralName OPTIONAL,
deltaRefInfo [2] DeltaRefInfo OPTIONAL,
cRLScope CRLScopeSyntax,
lastUpdate [3] GeneralizedTime OPTIONAL,

lastChangedCRL [4] GeneralizedTime OPTIONAL,

DeltaRefInfo ::= SEQUENCE {

deltalocation GeneralName,

lastDelta GeneralizedTime OPTIONAL,
OTHER-REFERRAL ::= TYPE-IDENTIFIER

132 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

cRLStreamIdentifier EXTENSION ::= {
SYNTAX CRLStreamIdentifier
IDENTIFIED BY id-ce-cRLStreamIdentifier }

CRLStreamIdentifier ::= INTEGER (0..MAX)
orderedList EXTENSION ::= {
SYNTAX OrderedListSyntax
IDENTIFIED BY id-ce-orderedList }

OrderedListSyntax ::= ENUMERATED {
ascSerialNum (0),

ascRevDate (1),
deltaInfo EXTENSION ::= {
SYNTAX DeltaInformation

IDENTIFIED BY id-ce-deltaInfo }

DeltaInformation ::= SEQUENCE ({
deltalLocation GeneralName,
nextDelta GeneralizedTime OPTIONAL,
toBeRevoked EXTENSION ::= {
SYNTAX ToBeRevokedSyntax

IDENTIFIED BY id-ce-toBeRevoked }
ToBeRevokedSyntax ::= SEQUENCE SIZE (1..MAX) OF ToBeRevokedGroup

ToBeRevokedGroup ::= SEQUENCE {
certificateIssuer [0] GeneralName OPTIONAL,

reasonInfo [1] ReasonInfo OPTIONAL,

revocationTime GeneralizedTime,

certificateGroup CertificateGroup,
ReasonInfo ::= SEQUENCE {

reasonCode CRLReason,

holdInstructionCode HoldInstruction OPTIONAL,
CertificateGroup ::= CHOICE (

serialNumbers [0] CertificateSerialNumbers,

serialNumberRange [1] CertificateGroupNumberRange,

nameSubtree [2] GeneralName,
CertificateGroupNumberRange ::= SEQUENCE {

startingNumber [0] INTEGER,

endingNumber [1] INTEGER,

CertificateSerialNumbers ::= SEQUENCE SIZE (1..MAX) OF CertificateSerialNumber
revokedGroups EXTENSION ::= {

SYNTAX RevokedGroupsSyntax

IDENTIFIED BY id-ce-RevokedGroups }
RevokedGroupsSyntax ::= SEQUENCE SIZE (1l..MAX) OF RevokedGroup

RevokedGroup ::= SEQUENCE {

certificateIssuer [0] GeneralName OPTIONAL,
reasonInfo [1] ReasonInfo OPTIONAL,
invalidityDate [2] GeneralizedTime OPTIONAL,
revokedcertificateGroup [3] RevokedCertificateGroup,
)

RevokedCertificateGroup ::= CHOICE {
serialNumberRange NumberRange,

Rec. | TU-T X.509 (10/2012)

133

| SO/I EC 9594-8:2014 (E)

nameSubtree GeneralName }
expiredCertsOnCRL EXTENSION ::= {

SYNTAX ExpiredCertsOnCRL

IDENTIFIED BY id-ce-expiredCertsOnCRL }
ExpiredCertsOnCRL ::= GeneralizedTime
reasonCode EXTENSION ::= {

SYNTAX CRLReason

IDENTIFIED BY id-ce-reasonCode }

CRLReason ::= ENUMERATED {

unspecified (0),
keyCompromise (1),
cACompromise (2),
affiliationChanged (3),
superseded (4),
cessationOfOperation (5),
certificateHold (6),
removeFromCRL (8),
privilegeWithdrawn (9),
aACompromise (10),
e}
holdInstructionCode EXTENSION ::= {

SYNTAX HoldInstruction

IDENTIFIED BY id-ce-instructionCode }
HoldInstruction ::= OBJECT IDENTIFIER
invalidityDate EXTENSION ::= {
SYNTAX GeneralizedTime
IDENTIFIED BY id-ce-invalidityDate }
cRLDistributionPoints EXTENSION ::= {
SYNTAX CRLDistPointsSyntax
IDENTIFIED BY id-ce-cRLDistributionPoints }
CRLDistPointsSyntax ::= SEQUENCE SIZE (1..MAX) OF DistributionPoint

DistributionPoint ::= SEQUENCE ({
distributionPoint [0] DistributionPointName OPTIONAL,

reasons [1] ReasonFlags OPTIONAL,
cRLIssuer [2] GeneralNames OPTIONAL,
e}

DistributionPointName ::= CHOICE {
fullName [0] GeneralNames,
nameRelativeToCRLIssuer [1] RelativeDistinguishedName,
e}

ReasonFlags ::= BIT STRING ({
unused (0),
keyCompromise (1),
cACompromise (2),
affiliationChanged (3),
superseded (4),
cessationOfOperation (5),
certificateHold (6),
privilegeWithdrawn (7).,
aACompromise (8) }

issuingDistributionPoint EXTENSION ::= {
SYNTAX IssuingDistPointSyntax
IDENTIFIED BY id-ce-issuingDistributionPoint }

IssuingDistPointSyntax ::= SEQUENCE {
-- If onlyContainsUserPublicKeyCerts and onlyContainsCACerts are both FALSE,
-- the CRL covers both certificate types
distributionPoint [0] DistributionPointName OPTIONAL,

134 Rec. ITU-T X.509 (10/2012)

onlyContainsUserPublicKeyCerts [1] BOOLEAN DEFAULT FALSE,

onlyContainsCACerts [2] BOOLEAN DEFAULT FALSE,

onlySomeReasons [3] ReasonFlags OPTIONAL,

indirectCRL [4] BOOLEAN DEFAULT FALSE,
certificateIssuer EXTENSION ::= {

SYNTAX GeneralNames

IDENTIFIED BY id-ce-certificateIssuer }

deltaCRLIndicator EXTENSION ::= {
SYNTAX BaseCRLNumber
IDENTIFIED BY id-ce-deltaCRLIndicator }

BaseCRLNumber ::= CRLNumber
baseUpdateTime EXTENSION ::= {
SYNTAX GeneralizedTime

IDENTIFIED BY id-ce-baseUpdateTime }

freshestCRL EXTENSION ::= {
SYNTAX CRLDistPointsSyntax
IDENTIFIED BY id-ce-freshestCRL }

aAissuingDistributionPoint EXTENSION ::= {
SYNTAX AAIssuingDistPointSyntax
IDENTIFIED BY id-ce-aAissuingDistributionPoint }

AAIssuingDistPointSyntax ::= SEQUENCE {

distributionPoint [0] DistributionPointName OPTIONAL,

onlySomeReasons [1] ReasonFlags OPTIONAL,
indirectCRL [2] BOOLEAN DEFAULT FALSE,
containsUserAttributeCerts [3] BOOLEAN DEFAULT TRUE,
containsAACerts [4] BOOLEAN DEFAULT TRUE,
containsSOAPublicKeyCerts [5] BOOLEAN DEFAULT TRUE,

o)

-- PKI matching rules

certificateExactMatch MATCHING-RULE ::= {
SYNTAX CertificateExactAssertion
LDAP-SYNTAX certExactAssertion.&id
LDAP-NAME {"certificateExactMatch"}
LDAP-DESC "X.509 Certificate Exact Match"
ID id-mr-certificateExactMatch }

CertificateExactAssertion ::= SEQUENCE {
serialNumber CertificateSerialNumber,

issuer Name,
.)

certificateMatch MATCHING-RULE ::= {
SYNTAX CertificateAssertion
LDAP-SYNTAX certAssertion.&id
LDAP-NAME {"certificateMatch"}
LDAP-DESC "X.509 Certificate Match"
ID id-mr-certificateMatch }

CertificateAssertion ::= SEQUENCE ({
serialNumber [0] CertificateSerialNumber OPTIONAL,
issuer [1] Name OPTIONAL,
subjectKeyIdentifier [2] SubjectKeyIdentifier OPTIONAL,
authorityKeyIdentifier [3] AuthorityKeyIdentifier OPTIONAL,
certificatevalid [4] Time OPTIONAL,
privateKeyValid [5] GeneralizedTime OPTIONAL,
subjectPublicKeyAlgID [6] OBJECT IDENTIFIER OPTIONAL,
keyUsage [7] KeyUsage OPTIONAL,
subjectAltName [8] AltNameType OPTIONAL,
policy [9] CertPolicySet OPTIONAL,
pathToName [10] Name OPTIONAL,
subject [11] Name OPTIONAL,

| SO/l EC 9594-8:2014 (E)

Rec. ITU-T X.509 (10/2012) 135

| SO/l EC 9594-8:2014 (E)

nameConstraints [12] NameConstraintsSyntax OPTIONAL,
oo}
AltNameType ::= CHOICE {

builtinNameForm ENUMERATED {
rfc822Name (1),
dNSName (2),
x400Address (3),
directoryName (4),
ediPartyName (5),
uniformResourceldentifier (6),
iPAddress (7).,
registeredId (8),
Y

otherNameForm OBJECT IDENTIFIER,

e}

CertPolicySet ::= SEQUENCE SIZE (1l..MAX) OF CertPolicyId

certificatePairExactMatch MATCHING-RULE ::= {

SYNTAX CertificatePairExactAssertion
LDAP-SYNTAX certPairExactAssertion.&id
LDAP-NAME {"certificatePairExactMatch"}
LDAP-DESC "X.509 Certificate Pair Exact Match"
ID id-mr-certificatePairExactMatch }
CertificatePairExactAssertion ::= SEQUENCE {

issuedToThisCAAssertion [0] CertificateExactAssertion OPTIONAL,
issuedByThisCAAssertion [1] CertificateExactAssertion OPTIONAL,

)

(WITH COMPONENTS { ..., issuedToThisCAAssertion PRESENT } |
WITH COMPONENTS { ..., issuedByThisCAAssertion PRESENT })

certificatePairMatch MATCHING-RULE ::= {

SYNTAX CertificatePairAssertion
LDAP-SYNTAX certPairAssertion.&id
LDAP-NAME {"certificatePairMatch"}
LDAP-DESC "X.509 Certificate Pair Match"
ID id-mr-certificatePairMatch }

CertificatePairAssertion ::= SEQUENCE {
issuedToThisCAAssertion [0] CertificateAssertion OPTIONAL,
issuedByThisCAAssertion [1l] CertificateAssertion OPTIONAL,
(WITH COMPONENTS {..., issuedToThisCAAssertion PRESENT } |
WITH COMPONENTS {..., issuedByThisCAAssertion PRESENT })

certificateListExactMatch MATCHING-RULE ::= {
SYNTAX CertificateListExactAssertion
LDAP-SYNTAX certListExactAssertion.&id
LDAP-NAME {"certificateListExactMatch"}
LDAP-DESC "X.509 Certificate List Exact Match"
ID id-mr-certificateListExactMatch }

CertificatelListExactAssertion ::= SEQUENCE ({
issuer Name,
thisUpdate Time,
distributionPoint DistributionPointName OPTIONAL }

certificateListMatch MATCHING-RULE ::= {
SYNTAX CertificateListAssertion
LDAP-SYNTAX certListAssertion.é&id

LDAP-NAME {"certificateListMatch"}
LDAP-DESC "X.509 Certificate List Match"
ID id-mr-certificateListMatch }

CertificateListAssertion ::= SEQUENCE {

issuer Name OPTIONAL,
minCRLNumber [0] CRLNumber OPTIONAL,
maxCRLNumber [1] CRLNumber OPTIONAL,
reasonFlags ReasonFlags OPTIONAL,

136 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

dateAndTime Time OPTIONAL,
distributionPoint [2] DistributionPointName OPTIONAL,
authorityKeyIdentifier [3] AuthorityKeyIdentifier OPTIONAL,

e}

algorithmIdentifierMatch MATCHING-RULE ::= {
SYNTAX AlgorithmIdentifier {{SupportedAlgorithms}}
LDAP-SYNTAX algorithmIdentifier.&id
LDAP-NAME {"algorithmIdentifierMatch"}
LDAP-DESC "X.509 Algorithm Identifier Match"
ID id-mr-algorithmIdentifierMatch }

policyMatch MATCHING-RULE ::= {
SYNTAX PolicyID
ID id-mr-policyMatch }

pkiPathMatch MATCHING-RULE ::= {
SYNTAX PkiPathMatchSyntax
ID id-mr-pkiPathMatch }

PkiPathMatchSyntax ::= SEQUENCE {
firstIssuer Name,
lastSubject Name,

e}
enhancedCertificateMatch MATCHING-RULE ::= {

SYNTAX EnhancedCertificateAssertion
ID id-mr-enhancedCertificateMatch }

EnhancedCertificateAssertion ::= SEQUENCE {

serialNumber [0] CertificateSerialNumber OPTIONAL,
issuer [1] Name OPTIONAL,
subjectKeyIdentifier [2] SubjectKeyIdentifier OPTIONAL,
authorityKeyIdentifier [3] AuthorityKeyIdentifier OPTIONAL,
certificatevValid [4] Time OPTIONAL,

privateKeyValid [5] GeneralizedTime OPTIONAL,
subjectPublicKeyAlgID [6] OBJECT IDENTIFIER OPTIONAL,
keyUsage [7] KeyUsage OPTIONAL,

subjectAltName [8] AltName OPTIONAL,

policy [9] CertPolicySet OPTIONAL,
pathToName [10] GeneralNames OPTIONAL,

subject [11] Name OPTIONAL,

nameConstraints [12] NameConstraintsSyntax OPTIONAL,
)

(ALL EXCEPT ({ -- none; at least one component shall be present --}))

AltName ::= SEQUENCE {
altnameType AltNameType,
altNameValue GeneralName OPTIONAL }

certExactAssertion SYNTAX-NAME ::= {

LDAP-DESC "X.509 Certificate Exact Assertion"

DIRECTORY SYNTAX CertificateExactAssertion

ID id-1ldx-certExactAssertion }
certAssertion SYNTAX-NAME ::= {

LDAP-DESC "X.509 Certificate Assertion"

DIRECTORY SYNTAX CertificateAssertion

ID id-1ldx-certAssertion }
certPairExactAssertion SYNTAX-NAME ::= {

LDAP-DESC "X.509 Certificate Pair Exact Assertion"

DIRECTORY SYNTAX CertificatePairExactAssertion

ID id-1ldx-certPairExactAssertion }
certPairAssertion SYNTAX-NAME ::= {

LDAP-DESC "X.509 Certificate Pair Assertion"

DIRECTORY SYNTAX CertificatePairAssertion

ID id-1dx-certPairAssertion }
certListExactAssertion SYNTAX-NAME ::= {

Rec. ITU-T X.509 (10/2012) 137

| SO/l EC 9594-8:2014 (E)

LDAP-DESC "X.509 Certificate List Exact Assertion"
DIRECTORY SYNTAX CertificateListExactAssertion
ID id-1ldx-certListExactAssertion }

certListAssertion SYNTAX-NAME ::= {

LDAP-DESC "X.509 Certificate List Assertion"
DIRECTORY SYNTAX CertificateListAssertion
ID id-1ldx-certListAssertion }

algorithmIdentifier SYNTAX-NAME ::= {

LDAP-DESC "X.509 Algorithm Identifier"
DIRECTORY SYNTAX AlgorithmIdentifier{{SupportedAlgorithms}}
ID id-1ldx-algorithmIdentifier }

-- Object identifier assignments

id-ce-subjectDirectoryAttributes OBJECT IDENTIFIER ::= {id-ce
id-ce-subjectKeyIdentifier OBJECT IDENTIFIER ::= {id-ce
id-ce-keyUsage OBJECT IDENTIFIER ::= {id-ce
id-ce-privateKeyUsagePeriod OBJECT IDENTIFIER ::= {id-ce
id-ce-subjectAltName OBJECT IDENTIFIER ::= {id-ce
id-ce-issuerAltName OBJECT IDENTIFIER ::= {id-ce
id-ce-basicConstraints OBJECT IDENTIFIER ::= {id-ce
id-ce-cRLNumber OBJECT IDENTIFIER ::= {id-ce
id-ce-reasonCode OBJECT IDENTIFIER ::= {id-ce
id-ce-instructionCode OBJECT IDENTIFIER ::= {id-ce
id-ce-invalidityDate OBJECT IDENTIFIER ::= {id-ce
id-ce-deltaCRLIndicator OBJECT IDENTIFIER ::= {id-ce
id-ce-issuingDistributionPoint OBJECT IDENTIFIER ::= {id-ce
id-ce-certificatelIssuer OBJECT IDENTIFIER ::= {id-ce
id-ce-nameConstraints OBJECT IDENTIFIER ::= {id-ce
id-ce-cRLDistributionPoints OBJECT IDENTIFIER ::= {id-ce
id-ce-certificatePolicies OBJECT IDENTIFIER ::= {id-ce
id-ce-policyMappings OBJECT IDENTIFIER ::= {id-ce
-- deprecated OBJECT IDENTIFIER ::= {id-ce
id-ce-authorityKeyIdentifier OBJECT IDENTIFIER ::= {id-ce
id-ce-policyConstraints OBJECT IDENTIFIER ::= {id-ce
id-ce-extKeyUsage OBJECT IDENTIFIER ::= {id-ce
id-ce-cRLStreamIdentifier OBJECT IDENTIFIER ::= {id-ce
id-ce-cRLScope OBJECT IDENTIFIER ::= {id-ce
id-ce-statusReferrals OBJECT IDENTIFIER ::= {id-ce
id-ce-freshestCRL OBJECT IDENTIFIER ::= {id-ce
id-ce-orderedList OBJECT IDENTIFIER ::= {id-ce
id-ce-baseUpdateTime OBJECT IDENTIFIER ::= {id-ce
id-ce-deltaInfo OBJECT IDENTIFIER ::= {id-ce
id-ce-inhibitAnyPolicy OBJECT IDENTIFIER ::= {id-ce
id-ce-toBeRevoked OBJECT IDENTIFIER ::= {id-ce
id-ce-RevokedGroups OBJECT IDENTIFIER ::= {id-ce
id-ce-expiredCertsOnCRL OBJECT IDENTIFIER ::= {id-ce
id-ce-aAissuingDistributionPoint OBJECT IDENTIFIER ::= {id-ce
-- matching rule OIDs

id-mr-certificateExactMatch OBJECT IDENTIFIER ::= {id-mr
id-mr-certificateMatch OBJECT IDENTIFIER ::= {id-mr
id-mr-certificatePairExactMatch OBJECT IDENTIFIER ::= {id-mr
id-mr-certificatePairMatch OBJECT IDENTIFIER ::= {id-mr
id-mr-certificateListExactMatch OBJECT IDENTIFIER ::= {id-mr
id-mr-certificateListMatch OBJECT IDENTIFIER ::= {id-mr
id-mr-algorithmIdentifierMatch OBJECT IDENTIFIER ::= {id-mr
id-mr-policyMatch OBJECT IDENTIFIER ::= {id-mr
id-mr-pkiPathMatch OBJECT IDENTIFIER ::= {id-mr
id-mr-enhancedCertificateMatch OBJECT IDENTIFIER ::= {id-mr
-- Object identifiers for LDAP X.509 assertion syntaxes
id-ldx-certExactAssertion OBJECT IDENTIFIER ::= {id-1ldx
id-ldx-certAssertion OBJECT IDENTIFIER ::= {id-1dx
id-ldx-certPairExactAssertion OBJECT IDENTIFIER ::= {id-1ldx
id-ldx-certPairAssertion OBJECT IDENTIFIER ::= {id-1ldx
id-ldx-certListExactAssertion OBJECT IDENTIFIER ::= {id-1ldx

138 Rec. ITU-T X.509 (10/2012)

9}

14}
15}
16}
17}
18}
19}
20}
21}
23}
24}
27}
28}
29}
30}
31}
32}
33}
34}
35}
36}
37}
40}
44}
45}
46}
47}
51}
53}
54}
58}
59}
60}
63}

34}
35}
36}
37}
38}
39}
40}
60}
62}
65}

| SO/l EC 9594-8:2014 (E)

id-1dx 6}

id-1ldx-certListAssertion OBJECT IDENTIFIER ::=
HH] id-1dx 7}

id-1ldx-algorithmIdentifier OBJECT IDENTIFIER

e Lat)

-- The following OBJECT IDENTIFIERS are not used by this Specification:
-- {id-ce 2}, {id-ce 3}, {id-ce 4}, {id-ce 5}, {id-ce 6}, {id-ce 7},

-- {id-ce 8}, {id-ce 10}, {id-ce 11}, {id-ce 12}, {id-ce 13},

-- {id-ce 22}, {id-ce 25}, {id-ce 26}

END -- CertificateExtensions
-- A.3 - Attribute Certificate Framework module

AttributeCertificateDefinitions {joint-iso-itu-t ds(5) module(1)
attributeCertificateDefinitions (32) 7}

DEFINITIONS IMPLICIT TAGS ::=

BEGIN

-- EXPORTS ALL
IMPORTS

basicAccessControl, id-at, id-ce, id-mr, informationFramework,
authenticationFramework, selectedAttributeTypes, id-oc, certificateExtensions
FROM UsefulDefinitions {joint-iso-itu-t ds(5) module(l) usefulDefinitions(0) 7}

ATTRIBUTE, Attribute{}, AttributeType, MATCHING-RULE, Name, OBJECT-CLASS,
RelativeDistinguishedName, SupportedAttributes, top
FROM InformationFramework informationFramework

AttributeTypeAndvValue
FROM BasicAccessControl basicAccessControl

AlgorithmIdentifier, Certificate, CertificatelList, CertificateSerialNumber,
EXTENSION, Extensions, InfoSyntax, PolicySyntax, SIGNED{}, SupportedAlgorithms
FROM AuthenticationFramework authenticationFramework

TimeSpecification, UnboundedDirectoryString, UniqueIdentifier
FROM SelectedAttributeTypes selectedAttributeTypes

certificateListExactMatch, GeneralName, GeneralNames, NameConstraintsSyntax
FROM CertificateExtensions certificateExtensions

UserNotice
FROM PKIX1Implicit93 {iso(1l) identified-organization(3) dod(6) internet (1)
security(5) mechanisms(5) pkix(7) id-mod(0) id-pkixl-implicit-93(4)};

-- Unless explicitly noted otherwise, there is no significance to the ordering
-- of components of a SEQUENCE OF construct in this Specification.

-- attribute certificate constructs

AttributeCertificate ::= SIGNED{AttributeCertificateInfo}
AttributeCertificateInfo ::= SEQUENCE {
version AttCertVersion, -- version is v2
holder Holder,
issuer AttCertIssuer,
signature AlgorithmIdentifier{{SupportedAlgorithms}},
serialNumber CertificateSerialNumber,
attrCertValidityPeriod AttCertValidityPeriod,
attributes SEQUENCE OF Attribute{{SupportedAttributes}},
issuerUniqueID UniqueIdentifier OPTIONAL,
extensions Extensions OPTIONAL }

AttCertVersion ::= INTEGER {v2(1)}

Holder ::= SEQUENCE {
baseCertificateID [0] IssuerSerial OPTIONAL,
entityName [1] GeneralNames OPTIONAL,
objectDigestInfo [2] ObjectDigestInfo OPTIONAL }

Rec. | TU-T X.509 (10/2012)

139

| SO/l EC 9594-8:2014 (E)

(WITH COMPONENTS {..., baseCertificateID PRESENT } |
WITH COMPONENTS {..., entityName PRESENT } |
WITH COMPONENTS {..., objectDigestInfo PRESENT })

IssuerSerial ::= SEQUENCE {
issuer GeneralNames,
serial CertificateSerialNumber,
issuerUID UniqueIdentifier OPTIONAL,

o}

ObjectDigestInfo ::= SEQUENCE {
digestedObjectType ENUMERATED {
publicKey (0),
publicKeyCert (1),
otherObjectTypes (2)},
otherObjectTypeID OBJECT IDENTIFIER OPTIONAL,

digestAlgorithm AlgorithmIdentifier{{SupportedAlgorithms}},
objectDigest BIT STRING,

AttCertIssuer ::= [0] SEQUENCE {
issuerName GeneralNames OPTIONAL,
baseCertificatelID [0] IssuerSerial OPTIONAL,
objectDigestInfo [1] ObjectDigestInfo OPTIONAL,

(WITH COMPONENTS {..., issuerName PRESENT } |
WITH COMPONENTS {..., baseCertificateID PRESENT } |
WITH COMPONENTS {..., objectDigestInfo PRESENT })

AttCertValidityPeriod ::= SEQUENCE {
notBeforeTime GeneralizedTime,
notAfterTime GeneralizedTime,

o)

AttributeCertificationPath ::= SEQUENCE {
attributeCertificate AttributeCertificate,

acPath SEQUENCE OF ACPathData OPTIONAL,
ACPathData ::= SEQUENCE ({

certificate [0] Certificate OPTIONAL,

attributeCertificate [1] AttributeCertificate OPTIONAL,

PrivilegePolicy ::= OBJECT IDENTIFIER
-- privilege attributes
role ATTRIBUTE ::= {

WITH SYNTAX RoleSyntax

ID id-at-role }

RoleSyntax ::= SEQUENCE {
roleAuthority [0] GeneralNames OPTIONAL,

roleName [1] GeneralName,
xmlPrivilegeInfo ATTRIBUTE ::= {

WITH SYNTAX UTF8String --contains XML-encoded privilege information

ID id-at-xMLPrivilegeInfo }
permission ATTRIBUTE ::= {

WITH SYNTAX DualStringSyntax

EQUALITY MATCHING RULE dualStringMatch

ID id-at-permission }
DualStringSyntax ::= SEQUENCE ({

operation [0] UnboundedDirectoryString,

object [1] UnboundedDirectoryString,

140 Rec. ITU-T X.509 (10/2012)

dualStringMatch MATCHING-RULE ::= {
SYNTAX DualStringSyntax

ID id-mr-dualStringMatch }

timeSpecification EXTENSION ::= {
SYNTAX TimeSpecification
IDENTIFIED BY id-ce-timeSpecification }

timeSpecificationMatch MATCHING-RULE ::= {

SYNTAX TimeSpecification

ID id-mr-timeSpecMatch }
targetingInformation EXTENSION ::= {

SYNTAX SEQUENCE SIZE (1..MAX) OF Targets

IDENTIFIED BY id-ce-targetInformation }

Targets ::= SEQUENCE SIZE (1..MAX) OF Target
Target ::= CHOICE {

targetName [0] GeneralName,

targetGroup [1l] GeneralName,

targetCert [2] TargetCert,

.o}
TargetCert ::= SEQUENCE {

targetCertificate IssuerSerial,

targetName GeneralName OPTIONAL,

certDigestInfo ObjectDigestInfo OPTIONAL }
userNotice EXTENSION ::= {

SYNTAX SEQUENCE SIZE (1..MAX) OF UserNotice

IDENTIFIED BY id-ce-userNotice }
acceptablePrivilegePolicies EXTENSION ::= {

SYNTAX AcceptablePrivilegePoliciesSyntax

IDENTIFIED BY id-ce-acceptablePrivilegePolicies }

| SO/l EC 9594-8:2014 (E)

AcceptablePrivilegePoliciesSyntax ::= SEQUENCE SIZE (1..MAX) OF PrivilegePolicy

singleUse EXTENSION ::=
SYNTAX NULL

IDENTIFIED BY id-ce-s
groupAC EXTENSION ::= {
SYNTAX NULL

{

ingleUse }

IDENTIFIED BY id-ce-groupAC }

noRevAvail EXTENSION ::=
SYNTAX NULL

{

IDENTIFIED BY id-ce-noRevAvail }

sOAIdentifier EXTENSION
SYNTAX NULL

ti=

IDENTIFIED BY id-ce-sOAIdentifier }

sOAIdentifierMatch MATCHING-RULE ::= {

SYNTAX NULL

ID id-mr-sOAIdentifierMatch }

attributeDescriptor EXTENSION ::= {
SYNTAX AttributeDescriptorSyntax

IDENTIFIED BY {id-ce-

attributeDescriptor} }

AttributeDescriptorSyntax ::= SEQUENCE {

identifier

attributeSyntax
name [o]
description [1]
dominationRule

.)

AttributelIdentifier,

OCTET STRING(SIZE (1..MAX)),
AttributeName OPTIONAL,
AttributeDescription OPTIONAL,

PrivilegePolicyIdentifier,

Rec. | TU-T X.509 (10/2012)

141

| SO/l EC 9594-8:2014 (E)

AttributeIdentifier ::= ATTRIBUTE.&id({AttributeIDs})
AttributeIDs ATTRIBUTE ::= {...}
AttributeName ::= UTF8String(SIZE (1..MAX))
AttributeDescription ::= UTF8String(SIZE (1..MAX))
PrivilegePolicyIdentifier ::= SEQUENCE {
privilegePolicy PrivilegePolicy,
privPolSyntax InfoSyntax,

attDescriptor MATCHING-RULE ::= {
SYNTAX AttributeDescriptorSyntax
ID id-mr-attDescriptorMatch }

roleSpecCertIdentifier EXTENSION ::= {
SYNTAX RoleSpecCertIdentifierSyntax
IDENTIFIED BY {id-ce-roleSpecCertIdentifier} }
RoleSpecCertIdentifierSyntax ::=
SEQUENCE SIZE (1..MAX) OF RoleSpecCertIdentifier

RoleSpecCertIdentifier ::= SEQUENCE {
roleName [0] GeneralName,
roleCertIssuer [1] GeneralName,
roleCertSerialNumber [2] CertificateSerialNumber OPTIONAL,
roleCertLocator [3] GeneralNames OPTIONAL,
e}

roleSpecCertIdMatch MATCHING-RULE ::= {
SYNTAX RoleSpecCertIdentifierSyntax

ID id-mr-roleSpecCertIdMatch }
basicAttConstraints EXTENSION ::= {
SYNTAX BasicAttConstraintsSyntax

IDENTIFIED BY {id-ce-basicAttConstraints} }

BasicAttConstraintsSyntax ::= SEQUENCE {
authority BOOLEAN DEFAULT FALSE,
pathLenConstraint INTEGER(0..MAX) OPTIONAL,

basicAttConstraintsMatch MATCHING-RULE ::= {
SYNTAX BasicAttConstraintsSyntax
ID id-mr-basicAttConstraintsMatch }

delegatedNameConstraints EXTENSION ::= {
SYNTAX NameConstraintsSyntax
IDENTIFIED BY id-ce-delegatedNameConstraints }

delegatedNameConstraintsMatch MATCHING-RULE ::= {
SYNTAX NameConstraintsSyntax
ID id-mr-delegatedNameConstraintsMatch }

acceptableCertPolicies EXTENSION ::= {

SYNTAX AcceptableCertPoliciesSyntax

IDENTIFIED BY id-ce-acceptableCertPolicies }
AcceptableCertPoliciesSyntax ::= SEQUENCE SIZE (1l..MAX) OF CertPolicyId
CertPolicyId ::= OBJECT IDENTIFIER
acceptableCertPoliciesMatch MATCHING-RULE ::= {

SYNTAX AcceptableCertPoliciesSyntax

ID id-mr-acceptableCertPoliciesMatch }
authorityAttributeIdentifier EXTENSION ::= {

SYNTAX AuthorityAttributeIdentifierSyntax
IDENTIFIED BY {id-ce-authorityAttributeIdentifier} }

142 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

AuthorityAttributeIdentifierSyntax ::= SEQUENCE SIZE (1..MAX) OF AuthAttId
AuthAttId ::= IssuerSerial
authAttIdMatch MATCHING-RULE ::= {

SYNTAX AuthorityAttributeIdentifierSyntax

ID id-mr-authAttIdMatch }

indirectIssuer EXTENSION ::= {
SYNTAX NULL
IDENTIFIED BY id-ce-indirectIssuer }

issuedOnBehalfOf EXTENSION ::= {
SYNTAX GeneralName
IDENTIFIED BY id-ce-issuedOnBehalfOf }

noAssertion EXTENSION ::= {
SYNTAX NULL
IDENTIFIED BY id-ce-noAssertion }

allowedAttributeAssignments EXTENSION ::= {
SYNTAX AllowedAttributeAssignments
IDENTIFIED BY id-ce-allowedAttAss }

AllowedAttributeAssignments ::= SET OF SEQUENCE {
attributes [0] SET OF CHOICE {
attributeType [0] AttributeType,

attributeTypeandValues [1] Attribute{{SupportedAttributes}},

oo 7

holderDomain [1] GeneralName,
e}

attributeMappings EXTENSION ::= {
SYNTAX AttributeMappings

IDENTIFIED BY id-ce-attributeMappings }

AttributeMappings ::= SET OF CHOICE {
typeMappings [0] SEQUENCE ({
local [0] AttributeType,
remote [1] AttributeType,
...)
typeValueMappings [1] SEQUENCE {
local [0] AttributeTypeAndValue,
remote [1] AttributeTypeAndValue,
.o 3}
holderNameConstraints EXTENSION ::= {
SYNTAX HolderNameConstraintsSyntax

IDENTIFIED BY id-ce-holderNameConstraints }

HolderNameConstraintsSyntax ::= SEQUENCE {
permittedSubtrees [0] GeneralSubtrees,
excludedSubtrees [1] GeneralSubtrees OPTIONAL,

)

GeneralSubtrees ::= SEQUENCE SIZE (1l..MAX) OF GeneralSubtree

GeneralSubtree ::= SEQUENCE ({
base GeneralName,
minimum [O] BaseDistance DEFAULT O,
maximum [1] BaseDistance OPTIONAL,

o}

BaseDistance ::= INTEGER(0..MAX)

-- PMI object classes

pmiUser OBJECT-CLASS ::= {
SUBCLASS OF {top}
KIND auxiliary

Rec. ITU-T X.509 (10/2012) 143

| SO/l EC 9594-8:2014 (E)

MAY CONTAIN {attributeCertificateAttribute}

ID id-oc-pmiUser }

pmiAA OBJECT-CLASS ::= { -- a PMI AA
SUBCLASS OF {top}
KIND auxiliary

MAY CONTAIN {aACertificate |
attributeCertificateRevocationList |
attributeAuthorityRevocationList}

ID id-oc-pmiAA }

pmiSOA OBJECT-CLASS ::= { -- a PMI Source of Authority
SUBCLASS OF {top}
KIND auxiliary

MAY CONTAIN {attributeCertificateRevocationList |
attributeAuthorityRevocationList |
attributeDescriptorCertificate}

ID id-oc-pmiSOA }

attCertCRLDistributionPt OBJECT-CLASS ::= {
SUBCLASS OF {top}
KIND auxiliary
MAY CONTAIN ({attributeCertificateRevocationList |
attributeAuthorityRevocationList}

ID id-oc-attCertCRLDistributionPts }
pmiDelegationPath OBJECT-CLASS ::= {

SUBCLASS OF {top}

KIND auxiliary

MAY CONTAIN {delegationPath}

ID id-oc-pmiDelegationPath }

privilegePolicy OBJECT-CLASS ::= {
SUBCLASS OF {top}

KIND auxiliary
MAY CONTAIN ({privPolicy}
ID id-oc-privilegePolicy }

protectedPrivilegePolicy OBJECT-CLASS ::= {
SUBCLASS OF {top}

KIND auxiliary
MAY CONTAIN {protPrivPolicy}
ID id-oc-protectedPrivilegePolicy }

-- PMI directory attributes

attributeCertificateAttribute ATTRIBUTE ::= {

WITH SYNTAX AttributeCertificate

EQUALITY MATCHING RULE attributeCertificateExactMatch

ID id-at-attributeCertificate }
aACertificate ATTRIBUTE ::= {

WITH SYNTAX AttributeCertificate

EQUALITY MATCHING RULE attributeCertificateExactMatch

ID id-at-aACertificate }

attributeDescriptorCertificate ATTRIBUTE ::= {

WITH SYNTAX AttributeCertificate

EQUALITY MATCHING RULE attributeCertificateExactMatch

ID id-at-attributeDescriptorCertificate }
attributeCertificateRevocationList ATTRIBUTE ::= {

WITH SYNTAX CertificateList

EQUALITY MATCHING RULE certificateListExactMatch

ID id-at-attributeCertificateRevocationList }
attributeAuthorityRevocationList ATTRIBUTE ::= {

WITH SYNTAX CertificatelList

EQUALITY MATCHING RULE certificateListExactMatch

ID id-at-attributeAuthorityRevocationList }

144 Rec. ITU-T X.509 (10/2012)

delegationPath ATTRIBUTE ::= {
WITH SYNTAX AttCertPath
ID id-at-delegationPath }

AttCertPath ::= SEQUENCE OF AttributeCertificate

privPolicy ATTRIBUTE ::= {
WITH SYNTAX PolicySyntax

| SO/l EC 9594-8:2014 (E)

ID id-at-privPolicy }
protPrivPolicy ATTRIBUTE ::= {
WITH SYNTAX AttributeCertificate
EQUALITY MATCHING RULE attributeCertificateExactMatch
ID id-at-protPrivPolicy }
xmlPrivPolicy ATTRIBUTE ::= {
WITH SYNTAX UTF8String -- XML-encoded privilege policy information
ID id-at-xmlPrivPolicy }

-- Attribute certificate extensions and matching rules

attributeCertificateExactMatch MATCHING-RULE ::= {
SYNTAX AttributeCertificateExactAssertion
ID id-mr-attributeCertificateExactMatch }

AttributeCertificateExactAssertion ::= SEQUENCE (
serialNumber CertificateSerialNumber,

issuer AttCertIssuer,
attributeCertificateMatch MATCHING-RULE ::= {

SYNTAX AttributeCertificateAssertion

ID id-mr-attributeCertificateMatch }

AttributeCertificateAssertion ::= SEQUENCE {

holder [0] CHOICE {

baseCertificateID [0] IssuerSerial,

holderName [1] GeneralNames,

...} OPTIONAL,
issuer [1] GeneralNames OPTIONAL,
attCertValidity [2] GeneralizedTime OPTIONAL,
attType [3] SET OF AttributeType OPTIONAL,
.)

-- At least one component of the sequence shall be present

holderIssuerMatch MATCHING-RULE ::= {
SYNTAX HolderIssuerAssertion
ID id-mr-holderIssuerMatch }

HolderIssuerAssertion ::= SEQUENCE {
holder [0] Holder OPTIONAL,
issuer [1] AttCertIssuer OPTIONAL,

.o)
delegationPathMatch MATCHING-RULE ::= {

SYNTAX DelMatchSyntax

ID id-mr-delegationPathMatch }

DelMatchSyntax ::= SEQUENCE {
firstIssuer AttCertIssuer,
lastHolder Holder,

o)

extensionPresenceMatch MATCHING-RULE ::= {
SYNTAX EXTENSION.&id
ID id-mr-extensionPresenceMatch }

-- object identifier assignments

-- object classes

Rec. | TU-T X.509 (10/2012)

145

| SO/l EC 9594-8:2014 (E)

id-oc-pmiUser

id-oc-pmiAA

id-oc-pmiSOA
id-oc-attCertCRLDistributionPts
id-oc-privilegePolicy
id-oc-pmiDelegationPath
id-oc-protectedPrivilegePolicy

-- directory attributes

id-at-attributeCertificate

id-at-attributeCertificateRevocationList

id-at-aACertificate
id-at-attributeDescriptorCertificate

id-at-attributeAuthorityRevocationList

id-at-privPolicy
id-at-role
id-at-delegationPath
id-at-protPrivPolicy
id-at-xMLPrivilegeInfo
id-at-xmlPrivPolicy
id-at-permission

-- attribute certificate extensions

id-ce-authorityAttributeIdentifier
id-ce-roleSpecCertIdentifier
id-ce-basicAttConstraints
id-ce-delegatedNameConstraints
id-ce-timeSpecification
id-ce-attributeDescriptor
id-ce-userNotice
id-ce-sOAIdentifier
id-ce-acceptableCertPolicies
id-ce-targetInformation
id-ce-noRevAvail
id-ce-acceptablePrivilegePolicies
id-ce-indirectIssuer
id-ce-noAssertion
id-ce-issuedOnBehalfOf
id-ce-singleUse

id-ce-groupAC

id-ce-allowedAttAss
id-ce-attributeMappings
id-ce-holderNameConstraints

-- PMI matching rules

id-mr-attributeCertificateMatch
id-mr-attributeCertificateExactMatch
id-mr-holderIssuerMatch
id-mr-authAttIdMatch
id-mr-roleSpecCertIdMatch
id-mr-basicAttConstraintsMatch
id-mr-delegatedNameConstraintsMatch
id-mr-timeSpecMatch
id-mr-attDescriptorMatch
id-mr-acceptableCertPoliciesMatch
id-mr-delegationPathMatch
id-mr-sOAIdentifierMatch
id-mr-extensionPresenceMatch
id-mr-dualStringMatch

END

-- A.4 - Password policy module

-- AttributeCertificateDefinitions

OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT

OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT

OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT

OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT

PasswordPolicy {joint-iso-itu-t ds(5) module(1)

DEFINITIONS ::=
BEGIN
146 Rec. ITU-T X.509 (10/2012)

IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER

IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER

IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER

IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER

s ss e es e e ee

®6 6s es ee es es es es ee e es es ss ee s s ss es es e e es e es s es ss es e ee s ee

e6 es es es s es ss es e ee e ss ss e

e es ee e

e es s e e e

{id-oc
{id-oc
{id-oc
{id-oc
{id-oc
{id-oc
{id-oc

{id-at
{id-at
{id-at
{id-at
{id-at
{id-at
{id-at
{id-at
{id-at
{id-at
{id-at
{id-at

{id-ce
{id-ce
{id-ce
{id-ce
{id-ce
{id-ce
{id-ce
{id-ce
{id-ce
{id-ce
{id-ce
{id-ce
{id-ce
{id-ce
{id-ce
{id-ce
{id-ce
{id-ce
{id-ce
{id-ce

{id-mr
{id-mr
{id-mr
{id-mr
{id-mr
{id-mr
{id-mr
{id-mr
{id-mr
{id-mr
{id-mr
{id-mr
{id-mr
{id-mr

passwordPolicy(39) 7}

24}
25}
26}
27}
32}
33}
34}

58}
59}
61}
62}
63}
71}
72}
73}
74}
75}
76}
82}

38}
39}
41}
42}
43}
48}
49}
50}
52}
55}
56}
57}
61}
62}
64}
65}
66}
67}
68}
69}

42}
45}
46}
53}
54}
55}
56}
57}
58}
59}
61}
66}
67}
69}

| SO/l EC 9594-8:2014 (E)

-- EXPORTS All

-- The types and values defined in this module are exported for use in the other ASN.1
-- modules contained within the Directory Specifications, and for the use of other

-- applications which will use them to access Directory services. Other applications may
-- use them for their own purposes, but this will not constrain extensions and

-- modifications needed to maintain or improve the Directory service.

IMPORTS
authenticationFramework, id-asx, id-at, id-mr, id-oa, informationFramework,
selectedAttributeTypes
FROM UsefulDefinitions {joint-iso-itu-t ds(5) module (1)
usefulDefinitions (0) 7}

AlgorithmIdentifier{}, ALGORITHM, EXTENSION, SupportedAlgorithms
FROM AuthenticationFramework authenticationFramework

ATTRIBUTE, MATCHING-RULE, pwdHistory{}, pwdRecentlyExpired{},
pwdHistoryMatch{}, SYNTAX-NAME
FROM InformationFramework informationFramework

bitStringMatch, boolean, booleanMatch, directoryString, generalizedTime,

generalizedTimeMatch,

generalizedTimeOrderingMatch, integer, integerMatch, integerOrderingMatch, uri
FROM SelectedAttributeTypes selectedAttributeTypes;

userPwd ATTRIBUTE ::= {
WITH SYNTAX UserPwd
EQUALITY MATCHING RULE userPwdMatch
SINGLE VALUE TRUE
LDAP-SYNTAX userPwdDescription.&id
LDAP-NAME {"userpPwd"}
ID id-at-userPwd }

UserPwd ::= CHOICE {

clear UTF8String,

encrypted SEQUENCE {
algorithmIdentifier AlgorithmIdentifier{{SupportedAlgorithms}},
encryptedString OCTET STRING,

ceo}

-- Operational attributes

pwdStartTime ATTRIBUTE ::= {
WITH SYNTAX GeneralizedTime
EQUALITY MATCHING RULE generalizedTimeMatch
ORDERING MATCHING RULE generalizedTimeOrderingMatch

SINGLE VALUE TRUE

USAGE directoryOperation
LDAP-SYNTAX generalizedTime.&id
LDAP-NAME {"pwdStartTime"}

ID id-oa-pwdStartTime }

pwdExpiryTime ATTRIBUTE ::= {
WITH SYNTAX GeneralizedTime
EQUALITY MATCHING RULE generalizedTimeMatch
ORDERING MATCHING RULE generalizedTimeOrderingMatch

SINGLE VALUE TRUE

USAGE directoryOperation
LDAP-SYNTAX generalizedTime.&id
LDAP-NAME {"pwdExpiryTime"}

ID id-oa-pwdExpiryTime }

pwdEndTime ATTRIBUTE ::= {
WITH SYNTAX GeneralizedTime
EQUALITY MATCHING RULE generalizedTimeMatch
ORDERING MATCHING RULE generalizedTimeOrderingMatch

SINGLE VALUE TRUE
USAGE directoryOperation
LDAP-SYNTAX generalizedTime.&id

Rec. ITU-T X.509 (10/2012) 147

| SO/l EC 9594-8:2014 (E)

LDAP-NAME
ID

pwdFails ATTRIBUTE ::= {
WITH SYNTAX
EQUALITY MATCHING RULE
ORDERING MATCHING RULE
SINGLE VALUE
USAGE
LDAP-SYNTAX
LDAP-NAME
ID

pwdFailureTime ATTRIBUTE
WITH SYNTAX
EQUALITY MATCHING RULE
ORDERING MATCHING RULE

{"pwdEndTime"}
id-oa-pwdEndTime }

INTEGER (0..MAX)
integerMatch
integerOrderingMatch
TRUE

dSAOperation
integer.&id
{"pwdFails"}
id-oa-pwdFails }

ri=

GeneralizedTime
generalizedTimeMatch
generalizedTimeOrderingMatch

SINGLE VALUE TRUE

USAGE dSAOperation

LDAP-SYNTAX generalizedTime.&id

LDAP-NAME {"pwdFailureTime"}

ID id-oa-pwdFailureTime }
pwdGracesUsed ATTRIBUTE ::= {

WITH SYNTAX INTEGER (0. .MAX)

EQUALITY MATCHING RULE integerMatch

ORDERING MATCHING RULE integerOrderingMatch

SINGLE VALUE TRUE

USAGE dSAOperation

LDAP-SYNTAX integer.&id

LDAP-NAME {"pwdGracesUsed"}

ID id-oa-pwdGracesUsed }

userPwdHistory ATTRIBUTE

pwdHistory{userPwd, userPwdHistoryMatch, id-oa-userPwdHistory}

userPwdRecentlyExpired ATTRIBUTE

t=

pwdRecentlyExpired{userPwd, id-oa-userPwdRecentlyExpired}

pwdModifyEntryAllowed ATTRIBUTE ::= {

WITH SYNTAX

EQUALITY MATCHING RULE
SINGLE VALUE

USAGE

LDAP-SYNTAX

LDAP-NAME

IDp

pwdChangeAllowed ATTRIBUTE
WITH SYNTAX
EQUALITY MATCHING RULE
SINGLE VALUE
USAGE
LDAP-SYNTAX
LDAP-NAME
ID

pwdMaxAge ATTRIBUTE ::= {
WITH SYNTAX
EQUALITY MATCHING RULE
ORDERING MATCHING RULE
SINGLE VALUE
USAGE
LDAP-SYNTAX
LDAP-NAME
ID

pwdExpiryAge ATTRIBUTE
WITH SYNTAX
EQUALITY MATCHING RULE
ORDERING MATCHING RULE

148

BOOLEAN

booleanMatch

TRUE

directoryOperation
boolean.&id
{"pwdModifyEntryAllowed"}
id-oa-pwdModifyEntryAllowed }

HEE {

BOOLEAN

booleanMatch

TRUE

directoryOperation
boolean. &id
{"pwdChangeAllowed"}
id-oa-pwdChangeAllowed }

INTEGER (1 .. MAX)
integerMatch
integerOrderingMatch
TRUE

directoryOperation
integer.&id
{"pwdMaxAge"}
id-oa-pwdMaxAge }

{
INTEGER (1 .. MAX)
integerMatch

integerOrderingMatch

Rec. | TU-T X.509 (10/2012)

SINGLE VALUE
USAGE
LDAP-SYNTAX
LDAP-NAME

ID

pwdMinLength ATTRIBUTE ::=
WITH SYNTAX
EQUALITY MATCHING RULE
SINGLE VALUE

TRUE
directoryOperation
integer.&id
{"pwdExpiryAge"}
id-oa-pwdExpiryAge }

{

INTEGER (0..MAX)
integerMatch
TRUE

USAGE directoryOperation

LDAP-SYNTAX integer.&id

LDAP-NAME {"pwdMinLength"}

ID id-oa-pwdMinLength }
pwdVocabulary ATTRIBUTE ::= {

WITH SYNTAX PwdVocabulary

EQUALITY MATCHING RULE bitStringMatch

SINGLE VALUE TRUE

USAGE
LDAP-SYNTAX
LDAP-NAME
ID

PwdVocabulary ::=

directoryOperation
pwdVocabularyDescription.&id
{"pwdvVocabulary"}
id-oa-pwdVocabulary }

BIT STRING {

noDictionaryWords (0),
noPersonNames (1),
noGeographicalNames (2) }

pwdAlphabet ATTRIBUTE ::= {

WITH SYNTAX PwdAlphabet

SINGLE VALUE TRUE

USAGE directoryOperation

LDAP-SYNTAX pwdAlphabetDescription.&id

LDAP -NAME {"pwdAlphabet"}

ID id-oa-pwdAlphabet }
PwdAlphabet ::= SEQUENCE OF UTF8String
pwdDictionaries ATTRIBUTE ::= {

SUBTYPE OF uri

USAGE directoryOperation

LDAP-SYNTAX directoryString.&id

LDAP-NAME {"pwdDictionaries"}

ID id-oa-pwdDictionaries }

pwdExpiryWarning ATTRIBUTE
WITH SYNTAX
EQUALITY MATCHING RULE
ORDERING MATCHING RULE
SINGLE VALUE
USAGE
LDAP-SYNTAX
LDAP-NAME
ID

pwdGraces ATTRIBUTE
WITH SYNTAX
EQUALITY MATCHING RULE
ORDERING MATCHING RULE
SINGLE VALUE

"
.
n

~

=

INTEGER (1..MAX)
integerMatch
integerOrderingMatch
TRUE

directoryOperation
integer.&id
{"pwdExpiryWarning"}
id-oa-pwdExpiryWarning }

INTEGER (0. .MAX)
integerMatch
integerOrderingMatch
TRUE

USAGE directoryOperation

LDAP-SYNTAX integer.&id

LDAP-NAME {"pwdGraces"}

ID id-oa-pwdGraces }
pwdFailureDuration ATTRIBUTE ::= {

WITH SYNTAX INTEGER (0. .MAX)

EQUALITY MATCHING RULE integerMatch

ORDERING MATCHING RULE integerOrderingMatch

SINGLE VALUE TRUE

| SO/l EC 9594-8:2014 (E)

Rec. | TU-T X.509 (10/2012)

149

| SO/l EC 9594-8:2014 (E)

USAGE directoryOperation

LDAP-SYNTAX integer.&id

LDAP-NAME {"pwdFailureDuration"}

ID id-oa-pwdFailureDuration }
pwdLockoutDuration ATTRIBUTE ::= {

WITH SYNTAX INTEGER (0. .MAX)

EQUALITY MATCHING RULE integerMatch
ORDERING MATCHING RULE integerOrderingMatch

SINGLE VALUE TRUE

USAGE directoryOperation

LDAP-SYNTAX integer.&id

LDAP-NAME {"pwdLockoutDuration"}

ID id-oa-pwdLockoutDuration }
pwdMaxFailures ATTRIBUTE ::= {

WITH SYNTAX INTEGER (1..MAX)

EQUALITY MATCHING RULE integerMatch
ORDERING MATCHING RULE integerOrderingMatch

SINGLE VALUE TRUE

USAGE directoryOperation

LDAP-SYNTAX integer.&id

LDAP-NAME {"pwdMaxFailures"}

ID id-oa-pwdMaxFailures }
pwdMaxTimeInHistory ATTRIBUTE ::= {

WITH SYNTAX INTEGER (1..MAX)

EQUALITY MATCHING RULE integerMatch
ORDERING MATCHING RULE integerOrderingMatch

SINGLE VALUE TRUE

USAGE directoryOperation

LDAP-SYNTAX integer.&id

LDAP -NAME {"pwdMaxTimeInHistory"}

ID id-oa-pwdMaxTimeInHistory }
pwdMinTimeInHistory ATTRIBUTE ::= {

WITH SYNTAX INTEGER (0. .MAX)

EQUALITY MATCHING RULE integerMatch
ORDERING MATCHING RULE integerOrderingMatch

SINGLE VALUE TRUE

USAGE directoryOperation

LDAP-SYNTAX integer.&id

LDAP -NAME {"pwdMinTimeInHistory"}

ID id-oa-pwdMinTimeInHistory }
pwdHistorySlots ATTRIBUTE ::= {

WITH SYNTAX INTEGER (2..MAX)

EQUALITY MATCHING RULE integerMatch
ORDERING MATCHING RULE integerOrderingMatch

SINGLE VALUE TRUE

USAGE directoryOperation

LDAP-SYNTAX integer.&id

LDAP-NAME {"pwdHistorySlots"}

ID id-oa-pwdHistorySlots }
pwdRecentlyExpiredDuration ATTRIBUTE ::= {

WITH SYNTAX INTEGER (0. .MAX)

EQUALITY MATCHING RULE integerMatch
ORDERING MATCHING RULE integerOrderingMatch

SINGLE VALUE TRUE

USAGE directoryOperation

LDAP-SYNTAX integer.&id

LDAP-NAME {"pwdRecentlyExpiredDuration"}

ID id-oa-pwdRecentlyExpiredDuration }
pwdEncAlg ATTRIBUTE ::= {

WITH SYNTAX PwdEncAlg

EQUALITY MATCHING RULE pwdEncAlgMatch

SINGLE VALUE TRUE

USAGE directoryOperation

LDAP-SYNTAX pwdEncAlgDescription. &id

150 Rec. ITU-T X.509 (10/2012)

LDAP-NAME {"pwdEncalg"}

ID id-oa-pwdEncAlg }
PwdEncAlg ::= AlgorithmIdentifier{{SupportedAlgorithms}}
userPwdMatch MATCHING-RULE ::= {

SYNTAX UserPwd

LDAP-SYNTAX userPwdDescription.&id

LDAP-NAME {"userPwdMatch"}

ID id-mr-userPwdMatch }
pwdEncAlgMatch MATCHING-RULE ::= {

SYNTAX PwdEncAlg

LDAP-SYNTAX pwdEncAlgDescription.&id

LDAP-NAME {"pwdEncAlgMatch"}

ID id-mr-pwdEncAlgMatch }

| SO/l EC 9594-8:2014 (E)

userPwdHistoryMatch MATCHING-RULE ::= pwdHistoryMatch{userPwd,id-mr-userPwdHistoryMatch}

-- LDAP syntaxes defined by this Directory Specification

userPwdDescription SYNTAX-NAME ::= {

LDAP-DESC
DIRECTORY SYNTAX UserPwd

"User Password Description"

ID id-asx-userPwdDescription }

pwdVocabularyDescription SYNTAX-NAME
"Password Vocabulary Description"
DIRECTORY SYNTAX PwdVocabulary

ID id-asx-pwdVocabularyDescription }

LDAP-DESC

pwdAlphabetDescription SYNTAX-NAME
"Password Alphabet Description"
DIRECTORY SYNTAX PwdAlphabet

ID id-asx-pwdAlphabetDescription }

LDAP-DESC

te=

pwdEncAlgDescription SYNTAX-NAME ::= {

LDAP-DESC
DIRECTORY SYNTAX PwdEncAlg

{

"Password Alphabet Description"

ID id-asx-pwdEncAlgDescription }

-- object identifier assignments

-- directory attributes
id-at-userPwd
-- operational attributes --

id-oa-pwdStartTime
id-oa-pwdExpiryTime
id-oa-pwdEndTime
id-oa-pwdFails
id-oa-pwdFailureTime
id-oa-pwdGracesUsed
id-oa-userPwdHistory
id-oa-userPwdRecentlyExpired
id-oa-pwdModifyEntryAllowed
id-oa-pwdChangeAllowed
id-oa-pwdMaxAge
id-oa-pwdExpiryAge
id-oa-pwdMinLength
id-oa-pwdVocabulary
id-oa-pwdAlphabet
id-oa-pwdDictionaries
id-oa-pwdExpiryWarning
id-oa-pwdGraces
id-oa-pwdFailureDuration
id-oa-pwdLockoutDuration
id-oa-pwdMaxFailures
id-oa-pwdMaxTimeInHistory

OBJECT

OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT

IDENTIFIER

IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER

@6 6s es es es es es es e e e es es es es s es es e ee s e

{id-at

{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa

Rec. | TU-T X.509 (10/2012)

85}

22}
23}
24}
25}
26}
27}
28}
29}
30}
31}
32}
33}
34}
35}
36}
37}
38}
39}
40}
41}
42}
43}

151

| SO/l EC 9594-8:2014 (E)

id-oa-pwdMinTimeInHistory
id-oa-pwdHistorySlots
id-oa-pwdRecentlyExpiredDuration
id-oa-pwdEncAlg

-- matching rules
id-mr-userPwdMatch
id-mr-userPwdHistoryMatch
id-mr-pwdEncAlgMatch

-- syntaxes
id-asx-userPwdDescription
id-asx-pwdVocabularyDescription
id-asx-pwdAlphabetDescription

id-asx-pwdEncAlgDescription

END -- Password policy

152 Rec. ITU-T X.509 (10/2012)

OBJECT
OBJECT
OBJECT
OBJECT

OBJECT
OBJECT
OBJECT

OBJECT
OBJECT
OBJECT
OBJECT

IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER

IDENTIFIER
IDENTIFIER
IDENTIFIER

IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER

e ee e e ss es e

oo es ee e

e ee e

e es es e

{id-oa
{id-oa
{id-oa
{id-oa

{id-mr
{id-mr
{id-mr

{id-asx
{id-asx
{id-asx
{id-asx

44}
45}
46}
47}

71}
72}
73}

| SO/l EC 9594-8:2014 (E)

Annex B

Reference definition of algorithm object identifiers

(Thisannex forms an integral part of this Recommendation | International Standard.)

This annex defines object identifiers assigned to authentication and encryption agorithms, in the absence of a formal
register. It isintended to make use of such aregister asit becomes available. The definitions take the form of the ASN.1
module, AlgorithmObjectIdentifiers

AlgorithmObjectIdentifiers {joint-iso-itu-t ds(5) module (1)
algorithmObjectIdentifiers(8) 7}

DEFINITIONS ::=

BEGIN

-- EXPORTS All

-- The types and values defined in this module are exported for use in the other ASN.1
-- modules contained within the Directory Specifications, and for the use of other

-- applications which will use them to access Directory services. Other applications may
-- use them for their own purposes, but this will not constrain extensions and

-- modifications needed to maintain or improve the Directory service.

IMPORTS
algorithm, authenticationFramework

FROM UsefulDefinitions {joint-iso-itu-t ds(5) module(l) usefulDefinitions(0) 7}

ALGORITHM
FROM AuthenticationFramework authenticationFramework;

-- categories of object identifier

nullAlgorithm OBJECT IDENTIFIER ::= {algorithm 0}
encryptionAlgorithm OBJECT IDENTIFIER ::= {algorithm 1}
hashAlgorithm OBJECT IDENTIFIER ::= {algorithm 2}

signatureAlgorithm OBJECT IDENTIFIER {algorithm 3}

-- synonyms
id-ea OBJECT IDENTIFIER ::= encryptionAlgorithm
id-ha OBJECT IDENTIFIER ::= hashAlgorithm
id-sa OBJECT IDENTIFIER ::= signatureAlgorithm
-- algorithms
rsa ALGORITHM ::= {
KeySize
IDENTIFIED BY id-ea-rsa

}

KeySize ::= INTEGER

-- the following object identifier assignments reserve values assigned to deprecated
functions

id-ea-rsa OBJECT IDENTIFIER ::= {id-ea 1}
id-ha-sqMod-n OBJECT IDENTIFIER ::= {id-ha 1}
id-sa-sgMod-nWithRSA OBJECT IDENTIFIER ::= {id-sa 1}

-- the following object identifier are related to password hashing methods
mD5Algorithm ALGORITHM ::= {
NULL
IDENTIFIED BY {iso(l) member-body(2) us(840) rsadsi(113549) digestAlgorithm(2) md5(5)}}
shalAlgorithm ALGORITHM ::= {
NULL
IDENTIFIED BY {iso(l) identified-organization(3) oiw(1l4) secsig(3) algorithm(2) 26}}

END -- AlgorithmObjectIdentifiers

Rec. ITU-T X.509 (10/2012) 153

| SO/l EC 9594-8:2014 (E)

Annex C

CRL generation and processing rules

(Thisannex forms an integral part of this Recommendation | International Standard.)

C.l I ntroduction

A relying party needs the ability to check the revocation status of a certificate in order to determine whether or not to
trust that certificate. Certificate Revocation Lists (CRL) are one mechanism for relying parties to obtain the revocation
information. Other mechanisms may also be used, but are outside the scope of this Directory Specification.

This annex addresses the use of CRLs for certificate revocation status checking by relying parties. Various authorities
may have different policies regarding their issuance of revocation lists. For instance, in some cases the certificate
issuing authority may authorize a different authority to issue a certificate revocation list for the certificates it issues.
Some authorities may combine the revocation of end-entity and CA-certificates into a single list while other authorities
may split these into separate lists. Some authorities may partition their certificate population onto CRL fragments and
some authorities may issue delta updates to a revocation list between regular CRL intervals. As aresult, relying parties
need to be able to determine the scope of the CRLs they retrieve to enable them to ensure they have the complete set of
revocation information covering the scope of the certificate in question for the revocation reasons of interest, given the
policy under which they are working. This annex provides a mechanism for the relying parties to determine the scope of
retrieved CRLs.

This annex is written for revocation status checking of public-key certificates using CRLs, Full and Complete End-
Entity CRLs (EPRLS) and CA Revocation Lists (CARLS). However, this description can also be applied to revocation
status checking of attribute certificates using Attribute Certificate Revocation Lists (ACRL) and Attribute Authority
Revocation Lists (AARL). For the purposes of this annex, ACRL can be considered in place of CRL, EPRL can be full
and complete end-entity ACRL, and AARL in place of CARL. Similarly, the directory attributes identified in clause C.4
shall be mapped to those for the AARL and ACRL and the fields identifying certificate types in the Issuing Distribution
Point extension can be mapped to those applicable to PMI.

C11 CRL types

CRLs of one or more of the following types may be available to a relying party, based on the revocation aspects of the
policy of the certificate issuing authority:

— Full and complete CRL ;

— Full and complete end-entity CRL (EPRL);

— Full and complete CA Revocation List (CARL);
— Distribution Point CRL, EPRL or CARL;

— Indirect CRL, EPRL or CARL (ICRL);

— DétaCRL, EPRL or CARL;

— Indirect dCRL, EPRL or CARL.

A full and complete CRL is alist of al revoked end-entity and CA-certificates issued by an authority for any and al
reasons.

A full and complete EPRL isalist of all revoked end-entity certificates issued by an authority for any and al reasons.
A full and complete CARL isalist of revoked CA-certificates issued by an authority for any and all reasons.

A distribution point CRL, EPRL or CARL is one that covers all or a subset of certificates issued by an authority. The
subset could be based on avariety of criteria.

An indirect CRL, EPRL or CARL (ICRL) isa CRL that contains a list of revoked certificates, in which some or al of
those certificates were not issued by the authority signing and issuing the CRL.

A delta CRL, EPRL or CARL isa CRL that only contains changes to a CRL that is complete for the given scope at the
time of the CRL referenced in the dCRL. Note that the referenced CRL might be one that is complete for the given
scope or it might be adCRL that isused to locally construct a CRL that is complete for the given scope.

All of the above CRL types (except for the dCRL) are CRL types that are complete for their given scope. A dCRL shall
be used in conjunction with an associated CRL that is complete for the same scope in order to form a complete picture
of the revocation status of certificates.

154 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

An indirect deltaeCRL, EPRL or CARL is a CRL which only contains changes to a set of one or more CRLS, that are
complete for their given scopes and in which some or al of those certificates may not have been issued by the authority
signing and issuing this CRL.

Within this annex, as well as this Directory Specification, "Scope of a CRL" is defined by two independent dimensions.
One dimension is the set of certificates covered by the CRL. Ancther dimension is the set of reason codes covered by
the CRL. The scope of a CRL can be determined in one or more of the following ways:

— Issuing Distribution Point (IDP) extension in the CRL; or
— other means, outside the scope of this Directory Specification.

C.12 CRL processing

If arelying party is using CRLSs as the mechanism to determine if a certificate is revoked, they shall use the appropriate
CRL (s) for that certificate. This annex describes a procedure for obtaining and processing appropriate CRLs by walking
through a number of specific steps. An implementation functionally equivalent to the external behaviour resulting from
this procedure shall also be considered compliant with this annex and the associated specification. The algorithm used
by a particular implementation to derive the correct output (i.e., revocation status for a certificate) from the given inputs
(the certificate itself and input from local policy) is not standardized. For example, although this procedure is described
as a sequence of steps to be processed in order, an implementation may use CRLs which are in its local cache rather
than retrieving CRLs each time it processes a certificate, provided those CRLs are complete for the scope of the
certificate and do not violate any of the parameters of the certificate or policy.
The following general steps are described in clauses C.2 to C.5 below:

1) Determine Parametersfor CRLS;

2) Determine CRLs Required;

3) Obtainthe CRLs;

4) Processthe CRLs.

Step 1) identifies the parameters from the certificate and elsewhere that will be used to determine which types of CRLs
arerequired.

Step 2) applies the values of the parameters to make the determination.
Step 3) identifies the directory attributes from which the CRL types can be retrieved.
Step 4) describes the processing of appropriate CRLS.

C.2 Determine parametersfor CRLs

Information located in the certificate itself, as well information from the policy under which the relying party is
operating, provide the parameters for determining the appropriateness of candidate CRLs. The following information is
required to determine which CRL types are appropriate:

— Cetificate type (i.e., end-entity or CA);

— Critical CRL Distribution Point;

— Critical Freshest CRL;

— Reason codes of interest.
The certificate type can be determined from the basic constraints extension in the certificate. If the extension is present,
it indicates whether the certificate is a CA-certificate or an end-entity certificate. If the extension is absent, the

certificate type is considered to be end-entity. This information is required to determine if a CRL, EPRL or CARL can
be used to check the certificate for revocation.

If the certificate contains a critical CRL Distribution Point extension, the relying party certificate processing system
shall understand this extension and obtain and use the CRL(s) pointed to by the CRL Distribution Point extension for
the reason codes of interest in order to determine revocation status of the certificate. Reliance on a full CRL, for
instance, would not be sufficient.

If the certificate contains a critical Freshest CRL extension, the relying party cannot use the certificate without first
retrieving and checking the freshest CRL.

The reason codes of interest are determined by policy and are generally supplied by the application. It is recommended
that these should include all reason codes. Thisinformation is required to determine which CRLs are sufficient in terms
of reason codes.

Rec. ITU-T X.509 (10/2012) 155

| SO/l EC 9594-8:2014 (E)

Note that policy may also dictate whether or not arelying party is expected to check dCRLSs for revocation status, when
the freshestCRL extension is flagged non-critical or is absent from the certificate. Though excluded from this step, the
processing of these optional dCRLs s described in step 4).

C.3 Determine CRLsrequired

The values of the parameters described in clause C.2 determine the criteria upon which the CRL types required to check
revocation status of a given certificate is determined. The determination of CRL types can be done based on the
following sets of criteria as described in clauses C.3.1 to C.3.4 below.

— End-entity certificate with critical CRL DP asserted;

— End-entity certificate with no critical CRL DP asserted;
— CA-certificate with critical CRL DP asserted;

— CA-certificate with no critical CRL DP asserted.

Handling of the remaining parameters (critical freshest CRL extension and set of reason codes of interest) is done
within each of the subclauses.

Note that in each case, more than one CRL type can satisfy the requirements. Where there is a choice of CRL types, the
relying party may select any of the appropriate typesto use.

C.3.1 End-entity with critical CRL DP
If the certificate is an end-entity certificate and cRLDistributionPoints extension is present in the certificate and
flagged critical, the following CRLs shall be obtained:

— A CRL from one of the nominated distribution Point CRLs that covers one or more of the reason codes
of interest.

— If all the reason codes of interest are not covered by that CRL, revocation status for the remaining reason
codes may be satisfied by any combination of the following CRLs:

e Additiona distribution point CRLS;
e Additional complete CRLS;
e Additional complete EPRLSs.

If the freshest CRL extension is also present in the certificate and if flagged critical, one or more CRLs shall also be
obtained from one or more of the hominated distribution points in that extension, ensuring that the freshest revocation
information for all reason codes of interest is checked.

C.3.2 End-entity with no critical CRL DP

If the certificate is an end-entity certificate and the cRLDistributionPoints extension is absent from the certificate
or present and not flagged critical, the revocation status for the reason codes of interest may be satisfied by any
combination of the following CRLS:

— Digtribution point CRLs (if present);
— Complete CRLs;
— Complete EPRLS.

If the freshest CRL extension is also present in the certificate and if flagged critical, one or more CRLs shall also be
obtained from one or more of the nominated distribution points in that extension, ensuring that the freshest revocation
information for al reason codes of interest is checked.

C.33 CA with critical CRL DP

If the certificate isa CA and the cRLDistributionPoints extension is present in the certificate and flagged critical,
the following CRLS/CARL s shall be obtained:

a) A CRL or CARL from one of the nominated distribution points that covers one or more of the reason
codes of interest.

b) If al the reason codes of interest are not covered by that CRL/CARL, the revocation status for the
remaining reason codes may be satisfied by any combination of the following CRLS/CARLS:

— Additiona distribution point CRLS/CARLS;
— Additiona complete CRLs;
— Additional complete CARLSs.

156 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

If the freshest CRL extension is also present in the certificate and if flagged critical, one or more CRLS/CARLSs shall
also be obtained from one or more of the nominated distribution points in that extension, ensuring that the freshest
revocation information for all reason codes of interest is checked.

C.34 CA with no critical CRL DP

If the certificate is a CA-certificate and the cRLDistributionPoints extension is absent from the certificate or
present and not flagged critical, the revocation status for the reason codes of interest may be satisfied by any
combination of the following CRLS:

— Distribution point CRLS/CARLS (if present);
— Complete CRLs;
— Complete CARLs.

If the freshest CRL extension is also present in the certificate and if flagged critical, one or more CRLS/CARLSs shall
also be obtained from one or more of the nominated distribution points in that extension, ensuring that the freshest
revocation information for all reason codes of interest is checked.

Cc4 Obtain CRLs

If the relying party is retrieving appropriate CRLs from the Directory, these CRLs are obtained from the CRL DP or
certificate issuer directory entry by retrieving the appropriate attributes, i.e., one or more of the following attributes:

- certificateRevocationList,
— authorityRevocationList;

- deltaRevocationList.

C5 ProcessCRLs

After considering the parameters discussed in clause C.2, identifying appropriate CRL types as described in clause C.3
and retrieving an appropriate set of CRLs as described in clause C.4, arelying party is ready to process the CRLs. The
set of CRLs will contain at least one base CRL and may also contain one or more dCRLs. For each CRL being
processed, the relying party shall ensure that the CRL is accurate with respect to its scope. The relying party has already
determined that the CRL is appropriate for the scope of the certificate of interest, through the process of clauses C.2 and
C.3 above. In addition, validity checks shall be conducted on the CRLs and they shall be checked to determine whether
or not the certificate has been revoked. These checks are described in clauses C.5.1 to C.5.4 below.

C.51 Validatebase CRL scope

As described in clause C.3, there can be more than one type of CRL that can be used as the base CRL for checking the
revocation status of a certificate. Depending on the policy of issuing authority with respect to CRL issuance, the relying
party may have one or more of the following base CRL types available to them.

— Complete CRL for al entities;

— Complete EPRL;

— Complete CARL;

— Distribution Point Based CRL/EPRL/CARL.

Clauses C.5.1.1 to C.5.1.4 provide the set of conditions which shall be true in order for arelying party to use a CRL of
each type as the base CRL for certificate revocation status checking for reason codes of interest.

Indirect base CRL s are addressed within each of the subclauses.

C.5.11 Complete CRL

In order to determine that a CRL is a complete CRL for end-entity and CA-certificates for which the CRL issuer is
responsible, for al reason codes of interest, the following shall be true:

— ThedetaCRL indicator extension shall be absent; and
— theissuing distribution point extension may be present; and

— either the issuing distribution point extension shall not contain a distribution point field or one of the
names in the distribution point field shall match the issuer field in the CRL; and

Rec. ITU-T X.509 (10/2012) 157

| SO/l EC 9594-8:2014 (E)

the issuing distribution point extension shall either not contain any of the following fields or if it contains
any of the following fields, none of the fields present shal be set to TRUE:
containsUserPublicKeyCerts, containsCACerts, containsUserAttributeCerts,
containsAACerts, and/or containsSOAPublicKeyCerts; and

if the reasoncodes field is present in the issuing distribution point extension, the reasons code field
shall include all the reasons of interest to the application; and

the issuing distribution point extension may or may not contain indirectCRL field (hence, this field
need not be checked).

C.5.12 Complete EPRL

In order to determine that a CRL is a complete EPRL for reason codes of interest, all of the following shall be true;

The delta CRL indicator extension shall be absent;
the issuing distribution point extension shall be present;

either the issuing distribution point extension shall not contain a distribution point field or one of the
names in the distribution point field shall match the issuer field inthe CRL;

the issuing distribution point extension shall contain a containsUserPublicKeyCerts COmMponent
Thisfield shall be set to TRUE;

if the reasoncodes field is present in the issuing distribution point extension, the reasons code field
shall include all the reasons of interest to the application; and

the issuing distribution point extension may or may not contain indirectCRL field (hence, this field
need not be checked).

This CRL may be only used if the relying party has determined the subject certificate to be an end-entity certificate.
Thus, if the subject certificate containsthe basicConstraints extension, its value shall be ca=FALSE.

C.5.1.3 Complete CARL

In order to determine that a CRL is a complete CARL for reason codes of interest, all of the following conditions shall

be true:

The delta CRL indicator extension shall be absent;
the issuing point distribution shall be present;

either the issuing distribution point extension shall not contain a distribution point field or one of the
names in the distribution point field shall match the issuer field inthe CRL;

the issuing distribution point shall contain containsCAcerts component. This field shall be set to
TRUE,;

if the reasonCodes field is present in the issuing distribution point extension, the reasons code field
shall include all the reasons of interest to the application; and

issuing distribution point may or may not contain indirectcRL field (hence, this field need not be
checked).

This CARL may be only used if the subject certificate is a CA-certificate. Thus, the subject certificate shall contain the
basicConstraints extension with cA set to TRUE.

C.5.1.4 Distribution point based CRL/EPRL/CARL

In order to determine that a CRL is one of the CRLs indicated by a CRL distribution point extension or the freshest
CRL extension in the certificate, all of the following conditions shall be true:

158

Either the distribution point field in the CRL's issuing distribution point extension shall be absent (only
when not looking for a critical CRL DP), or one of the names in the distribution point field in the CRL
distribution point extension or the freshest CRL extension of the certificate shall match one of the names
in the distribution point field in the issuing distribution point extension of the CRL. Alternatively, one of
the names in the crRLIssuer field of the certificate's CRL DP or the freshest CRL extension can match
one of the namesin DP of the IDP.

The issuing distribution point extension shall either not contain any of the following fields, or if it
contains any of the following fields, none of the fields present shal be set to TRUE:
containsUserPublicKeyCerts, containsCACerts, containsUserAttributeCerts,
containsAACerts, and/or containsSOAPublicKeyCerts, Of the field appropriate for the certificate
type shall be set to TRUE (See Table C.1 for field type for each certificate type).

Rec. | TU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

If the reasons code field is present in the CRL distribution point extension or the freshest CRL extension
of the certificate, this field shall be either absent from the issuing distribution point extension of the CRL
or contain at least one of the reason codes asserted in the CRL distribution point extension of the
certificate.

If the cRLIssuer field is absent from the CRL distribution point extension of the certificate, the CRL
shall be signed by the same CA that signed the certificate; and

if the crRLIssuer field is present in the relative extension (CRL distribution point or freshest CRL
extension) of the certificate, the CRL shall be signed by the CRL issuer identified in the CRL distribution
point extension or the freshest CRL extension of the certificate and the CRL shall contain the
indirectCRL field in theissuing distribution point extension.

NOTE — When testing the reasons and cRLIssuer field for presence, the test succeeds only if the field is present in the same
DistributionPoint value of the CRL DP or the freshest CRL extension for which there is a name match in the distribution point
field of the IDP extension in the corresponding CRL.

Table C.1 - Certificatetypeand I ssuing distribution point field

Certificate type I ssuing distribution point field
End Entity (public key) containsUserPublicK eyCerts
CA containsCA Certs
End Entity (attribute) containsUserAttributeCerts
AA containsAACerts
SOA containsSOA PublicK eyCerts

C.5.2 Validatedelta CRL scope

The relying party may aso be checking dCRLS, either because they are required to do so through a critical
freshestCRL extension in the certificate or CRL, or because the policy under which the relying party is operating
requires dCRL checking.

A relying party can aways be sure that it has the appropriate CRL information for a certificate if al of the following
conditions are met:

the base CRL therelying party isusing is appropriate for the certificate (in terms of the scope);
the delta CRL the relying party isusing is appropriate for the certificate (in terms of the scope); and
the base CRL was issued at the time or later than the base CRL referenced by the dCRL.

In order to determine that the dCRL is appropriate for the certificate, al of the following conditions shall be true:

The delta CRL indicator extension shall be present.

The dCRL shall be issued after the base CRL. One way to ensure thisisto check that the CRL number in
the criNumber extension of the dCRL is greater than the CRL number in the cr1Number extension of
the base CRL therelying party isusing and the cRLStreamIdentifier fieldsin the base and the dCRL
match. This approach may require additional logic to account for number wrapping. Another way is to
compare the thisupdate fieldsin the base and dCRL s that the relying party has.

The base CRL the relying party is using shall be the one the dCRL is issued for or alater one. One way
to ensure this is to check that the CRL number in the deltacRLIndicator extension of the dCRL is
less than or equal to the CRL number in the cr1Number extension of the base CRL the relying party is
using and the cRLStreamIdentifier fields in the base and the dCRL match. This approach may
require additional logic to account for number wrapping. Another way is to compare the thisUpdate
fields of the base CRL the relying party has and the base CRL pointed to by the dCRL. Y et another way
is to compare the thistUpdate field in the base CRL the relying party has and the baseUpdateTime
extension in the dCRL the relying party has.

NOTE — A relying party can aways construct a base CRL by applying adCRL to a base CRL, as long as the above two rules are
satisfied using the criNumber and cRLStreamldentifier checks. In this case, the new base CRL's crINumber extension and
thisUpdate field are those of the dCRL. The relying party does not know the nextUpdate field of the new base CRL and does not
need to know for the purpose of associating it with another dCRL.

If the dCRL contains an Issuing Distribution Point extension, then the scope of the issuing distribution
point shall be consistent with the certificate as described in clause C.5.1.4 above; and

If the dCRL does not contain any of the following extensions. streamIdentifier and
issuingDistributionPoint, it shall be used only in conjunction with afull and complete base CRL.

Rec. ITU-T X.509 (10/2012) 159

| SO/l EC 9594-8:2014 (E)

C.5.3 Validity and currency checkson the base CRL

In order to verify that a base CRL is accurate and has not been modified since its issuance, al of the following
conditions shall be satisfied:

The relying party shall be able to obtain the public key of the issuer identified in the CRL using
authenticated means; and

the signature on the base CRL shall be verified using this authenticated public key; and
if thenextUpdate field is present, the current time should be prior to the nextupdate field; and

the issuer name in the CRL shall match the issuer name in the certificate that is being checked for
revocation, unless the CRL is retrieved from the CRL DP in the certificate and the CRL DP extension
contains the CRL issuer component. In this case, one of the names in the CRL issuer component in the
CRL DP extension shall match the issuer name in the CRL.

C.54 Validity and checks on the delta CRL

In order to verify that a dCRL is accurate and has not been modified since its issuance, all of the following conditions
shall be satisfied:

The relying party shall be able to obtain the public key of the issuer identified in the CRL using
authenticated means; and

the signature on the dCRL shall be verified using this authenticated public key; and
if thenextUpdate field is present, the current time should be prior to the nextupdate field; and

the issuer name in the dCRL shall match the issuer name in the certificate which is being checked for
revocation, unless the delta CRL is retrieved from the CRL DP in the certificate and the CRL DP
extension contains the CRL issuer component. In this case, one of the names in the CRL issuer
component in the CRL DP extension shall match the issuer name in the CRL.

160 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

Annex D

Examples of delta CRL issuance

(Thisannex does not form an integral part of this Recommendation | International Standard.)

There are two models for issuing CRLs involving the use of dCRLs for a given set of certificates.

In the first model, each dCRL references the most recent CRL that is complete for the given scope. Several dCRLs may
be issued for that same scope before anew CRL that is complete for that scope isissued. The new CRL that is complete
for that scope is used as the foundation for the next sequence of dCRLs and is the CRL that is referenced in the relevant
extension in the dCRL. When the new CRL that is complete for the scope is issued, afina dCRL for the previous CRL
that is complete for the scope is also issued.

The second model, while very similar, differs in that the CRL referenced by a dCRL is not necessarily the one that is
complete for a given scope (i.e., the referenced CRL may only have been issued as a dCRL). If the referenced CRL is
one that is complete for the given scope, it may not necessarily be the most recent one that is complete for that scope.

A certificate-using system that is processing a dCRL shall also have a CRL that is complete for the given scope and that
isat least as current as the CRL referenced in the dCRL. This CRL that is complete for the given scope may be one that
was issued as such by the responsible authority or it may be one constructed locally by the certificate-using system.
Note that in some situations there may be duplicate information in the dCRL and a CRL that is complete for the given
scope if, for example, the certificate-using system has a CRL that was issued after the one referenced in the dCRL .

The following table illustrates three examples of the use of dCRLs. Example 1 is the traditiona scheme described asthe
first model above. Examples 2 and 3 are variants of the second model described above.

In example 2, the authority issues CRLS, that are complete for the given scope, every second day and the dCRLs
reference the second to last complete for scope CRL. This scheme may be useful in environments where there is a need
to reduce the number of users accessing a repository at the same time to retrieve a CRL that is complete for a given
scope. In example 2, users that have the most recent CRL that is complete for the scope, as well as users who have the
second most recent complete for scope CRL can use the same dCRL. Both sets of users have complete revocation
information about the certificates for that given scope at the time of issuance of the dCRL being used.

In example 3, CRLs that are complete for the given scope are issued once a week as in example 1, but every dCRL
references a base of revocation information seven days prior to that dCRL.

An example of the use of indirect CRLsis not provided here, but is a superset of those examples.

These are examples only and other variants are also possible, depending on local policy. Some factors which might be
considered when establishing that policy include: number of users and frequency accessing CRLS, replication of CRLS,
load balancing for directory systems holding CRL s, performance, latency requirements, etc.

Example 1 — Delta references most Example 2 — Delta refer ences second most Example 3 — Delta references
Day recent CRL that iscomplete recent CRL that iscomplete 7-day-old revocation
for given scope for given scope information
CRL completefor g CRL completefor . CRL completefor g
given scope Delta-CRL given scope Delta-CRL given scope Delta-CRL
8 thisUpdate=day 8 thisUpdate=day 8 thisUpdate=day 8 thisUpdate=day 8 thisUpdate=day 8 thisUpdate=day 8
nextUpdate=day 15 nextUpdate=day 9 nextUpdate=day 10 | nextUpdate=day 9 nextUpdate=day 15 | nextUpdate=day 9
criNumber=8 criNumber=8 criNumber=8 criNumber=8 cRLNumber=8 cRLNumber=8
BaseCRLNumber=1 BaseCRLNumber=6 BaseCRLNumber= 1
9 not issued thisUpdate=day 9 not issued thisUpdate=day 9 not issued thisUpdate=day 9
nextUpdate=day 10 nextUpdate=day 10 nextUpdate=day 10
criNumber=9 criNumber=9 cRLNumber=9
BaseCRLNumber=8 BaseCRLNumber=6 BaseCRLNumber= 2
10 not issued thisUpdate=day 10 thisUpdate=day 10 | thisUpdate=day 10 not issued thisUpdate=day 10
nextUpdate=day 11 nextUpdate=day 12 | nextUpdate=day 11 nextUpdate=day 11
criNumber=10 criNumber=10 crlNumber=10 cRLNumber=10
BaseCRLNumber=8 BaseCRLNumber=8 BaseCRLNumber=3

Rec. | TU-T X.509 (10/2012)

161

| SO/l EC 9594-8:2014 (E)

Example 1 — Delta references most Example 2 — Delta refer ences second most Example 3 — Delta references
Day recent CRL that iscomplete recent CRL that iscomplete 7-day-old revocation
for given scope for given scope information
CRL complete for g CRL completefor y CRL complete for g
given scope Delta-CRL given scope Delta-CRL given scope Delta-CRL
11-14 Patterns continue as for previous days
15 thisUpdate=day 15 thisUpdate=day 15 not issued thisUpdate=day 15 thisUpdate=day 15 | thisUpdate=day 15
nextUpdate=day 16 nextUpdate=day 16 nextUpdate=day 22 | nextUpdate=day 16
nextUpdate=day 22| oiNymber=15 crINumber=15 cRLNumber=15 | cRLNumber=15
criNumber=15 BaseCRLNumber=8 BaseCRLNumber=12 BaseCRLNumber= 8
16 not issued thisUpdate=day 16 thisUpdate=day 16 | thisUpdate=day 16 not issued thisUpdate=day 16
nextUpdate=day 17 nextUpdate=day 18 | nextUpdate=day 17 nextUpdate=day 17
criNumber=16 criNumber=16 criNumber=16 cRLNumber=16
BaseCRLNumber=15 BaseCRLNumber=14 BaseCRLNumber=9
162 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

Annex E

Privilege policy and privilege attribute definition examples

(Thisannex does not form an integral part of this Recommendation | International Standard.)

E.1l I ntroduction

Privilege policy defines for privilege management, precisely when a privilege verifier should conclude that a presented
set of privileges is sufficient in order that it may grant access (to the requested object, resource, application, etc.) to the
privilege asserter. Formal specification of privilege policy can aid a privilege verifier with the automated assessment of
a privilege asserter's privileges against the sensitivity of the requested resource, since it includes the rules for
determining the pass/fail of a privilege asserter's request, given their privilege and the sensitivity of the resource.

Because there are requirements to ensure the integrity of the privilege policy being used in those determinations, an
identifier of the privilege policy, in the form of an object identifier, and a HASH of the entire privilege policy can be
carried in signed objects, stored in directory entries, etc. However, no specific syntax used to define an instance of
privilege policy is standardized in this Directory Specification.

E.2 Sample syntaxes

Privilege policy may be defined using any syntax, including plain text. In order to assist those defining privilege
policiesin understanding various options for the definitions, two sample syntaxes, which could be used for this purpose,
are provided in this annex. It needs to be stressed that these are examples only and the implementation of privilege
management through the use of attribute certificates or the subjectbDirectoryaAttributes extension of public-key
certificates are NOT required to support these or any other specific syntaxes.

E.21 First example

Thefollowing ASN.1 syntax is one example of a comprehensive and flexible tool for the definition of privilege policy.

PrivilegePolicySyntax ::= SEQUENCE {
version Version,
ppe PrivPolicyExpression }
PrivPolicyExpression ::= CHOICE {
ppPredicate [0] PrivPolicyPredicate,
and [1] SET SIZE (2..MAX) OF PrivPolicyExpression,
or [2] SET SIZE (2..MAX) OF PrivPolicyExpression,
not [3] PrivPolicyExpression,
orderedPPE [4] SEQUENCE OF PrivPolicyExpression }
-- Note: "sequence" defines the temporal order in which the

-- privilege shall be examined

PrivPolicyPredicate ::= CHOICE {

present [0] PrivilegeIdentifier,
equality [1] PrivilegeComparison, -- single/set-valued priv.
greaterOrEqual [2] PrivilegeComparison, -- single-valued priv.
lessOrEqual [3] PrivilegeComparison, -- single-valued priv.
subordinate [4] PrivilegeComparison, -- single-valued priv.
substrings [5] SEQUENCE { -- single-valued priv.
type PrivilegeType,
initial [0] PrivilegeValue OPTIONAL,
any [1] SEQUENCE OF PrivilegeValue,
final [2] PrivilegeValue OPTIONAL },
subsetOf [6] PrivilegeComparison, -- set-valued priv.
supersetOf [7] PrivilegeComparison, -- set-valued priv.
nonNullSetInter [8] PrivilegeComparison, -- set-valued priv.
approxMatch [9] PrivilegeComparison,

-- single/set-valued priv. (approximation defined by application)
extensibleMatch [10] SEQUENCE {

matchingRule OBJECT IDENTIFIER,
inputs PrivilegeComparison } }
PrivilegeComparison ::= CHOICE {
explicit [0] Privilege,

Rec. ITU-T X.509 (10/2012) 163

| SO/l EC 9594-8:2014 (E)

-- the value(s) of an externa privilege identified by
-- Privilege.privilegeld is(are) compared with the value(s)

-- explicitly provided in Privilege.privilegeVal ueSet
byReference [1] PrivilegeIdPair }

-- the value(s) of an external privilege identified by

-- PrivilegeldPair firstPrivilege is(are) compared with

-- the value(s) of a second externa privilege identified by
-- Privilegel dPair.secondPrivilege

Privilege ::= SEQUENCE {

type PRIVILEGE.&id ({SupportedPrivileges}),
values SET SIZE (0..MAX) OF PRIVILEGE.&Type ({SupportedPrivileges} {@type}) }
SupportedPrivileges PRIVILEGE ::= { ... }

PRIVILEGE ::= ATTRIBUTE

-- Privilege is analogous to Attribute

PrivilegeIdPair ::= SEQUENCE {
firstPrivilege PrivilegeIdentifier,
secondPrivilege PrivilegeIdentifier }
PrivilegeIdentifier ::= CHOICE {
privilegeType [0] PRIVILEGE.&id ({SupportedPrivileges}),
xmlTag [1] OCTET STRING,
edifactField [2] OCTET STRING }

-- Privilegeldentifier extends the concept of AttributeType to other
-- (e.g., tagged) environments, such as XML and EDIFACT
Version ::= INTEGER { v1(0) }
A concrete example may help to clarify the creation and use of the above PrivilegePolicy construct.

Consider the privilege to approve a salary increase. For simplicity, assume that the policy to be enforced states that only
senior managers and above can approve increases, and that an approval can only be given for a position lower than your
own (e.g., a Director can approve an increase for a Senior Manager, but not for a Vice-President). For this example,
assume that there are six possible ranks ("Technical Staff" = 0, "Manager" = 1, "Senior Manager" = 2, "Director" = 3,
"Vice-President" = 4, "President” = 5).

Assume, furthermore, that the Attribute Type (the "privilege") identifying rank in an Attribute Certificate is OBJECT
ID OID-C and that the Attribute Type (the "sensitivity") identifying rank in the database record whose salary field is to
be modified is OBJECT ID OID-D (these would of course be replaced by rea object identifiers in an actual
implementation). The following Boolean expression denotes the desired "salary approval" policy (codifying thisin a
PrivilegePolicy expression isarelatively straightforward task):

AND (NOT (lessOrEqual (value corresponding to OID-C, value corresponding to OID-D))
subsetOf (value corresponding to OID-C, { 2, 3,4,5}))

This policy encoding says that the rank of the approver shall be greater than (expressed as "NOT less-than-or-equal-to")
the rank of the approvee AND that the rank of the approver shall be one of { Senior Manager, ..., President} in order for
this Boolean expression to evaluate to TRUE. The first privilege comparison is "by reference”, comparing the values
corresponding to the Attribute Type "rank” for both entities involved. The second privilege comparison is "explicit”;
here the value corresponding to the privilege "rank” for the approver is compared with an explicitly-included list of
values. The privilege verifier in this situation, therefore, needs a construct codifying this policy along with two
Attributes, one associated with the approver and one associated with the approvee. The approver's Attribute (which
would be contained in an Attribute Certificate) may have the value { OID-C 3} and the approvee's Attribute (which may
be contained in a database record) may have the value { OID-D 3}. Comparing the AttributeVaue corresponding to the
approver's Attribute Type (in this example, 3) with the Attribute Value corresponding to the approvee's Attribute Type
(in this example, also 3) results in a FALSE for the "NOT lessOrEqual” expression, and so the first Director is denied
the ability to approve a salary increase for the second Director. On the other hand, if the approvee's Attribute was
{OID-D 1}, the Director would be granted the ability to approve the Manager's increase.

164 Rec. ITU-T X.509 (10/2012)

mailto:%7b@type%7d

| SO/l EC 9594-8:2014 (E)

It is not difficult to conceive of useful additions to the above expression. For example, a third component of the 'and’
could be added saying that the environment variable "currentTime", read from the local clock and then encoded as an
attribute of type OBJECT ID OID-E, shall be within a particular span specified explicitly in the expression as an
attribute of type OBJECT ID OID-F. Thus, for example, salary updates may be permitted only if the above conditions
are satisfied and the request takes place during business hours.

E.22 Second example

A security policy in its simplest form is a set of criteria for the provision of security services. With regard to access
control, security policy is a subset of a higher system-level security policy that defines the means for enforcing access
control policies between initiators and targets. The access control mechanisms need to permit communication where a
specific policy permits; deny communication where a specific policy does not explicitly permit.

A security policy isthe basis for the decisions made by the access control mechanisms. Domain-specific security policy
information is conveyed viathe Security Policy Information File (SPIF).

The SPIF isasigned object to protect it from unauthorized changes. The SPIF contains information used to interpret the
access control parameters contained in the security label and the clearance attribute. The security policy identifier that
appears in the clearance attribute needs to be associated with a specific implementation syntax and semantics as defined
by the security policy. Thisimplementation syntax associated with a specific security policy is maintained in a SPIF.

The SPIF conveys equivalencies between authorizations and sensitivities across security policy domains as determined
by security policies, provides a printable representation of security labels, and maps displayable strings to security
levels and categories for presentation to end users when selecting a data object's security attributes. Equivalency
mappings are expressed so that a label generated under one security policy domain may be correctly interpreted by an
application operating in another security policy domain. The SPIF also maps the clearance attribute to the message
security label fields and the presentation labels that should be displayed to the user. This mapping, if successful, verifies
that the intended recipient has the proper authorizations to accept the data object.

A SPIF contains a sequence of the following:
— versionInformation —indicatesthe version of the ASN.1 syntax.
— updateInformation —indicatesthe version of the syntax and semantics of the SPIF specification.
— securityPolicyIdData — identifiesthe security policy to which the SPIF applies.

— privilegelId — indicates the OID that identifies the syntax that is included in the clearance attribute
Security category.

— rbacid —object identifier which identifies the syntax of the security category that is used in conjunction
with the SPIF.

— securityClassifications — maps the classification of the security label to a classification in the
clearance attribute, and also provides eguivalency mappings.

— securityCategoryTagSets — maps the security categories of the security label to the security
categories in the clearance attribute, and also provides equivalency mappings.

— equivalentPolicies —consolidates all equivalent policiesin the SPIF.

— defaultSecurityPolicyIdData — identifies the security policy which will apply if datais received
without a security label.

— extensions — provides a mechanism to include additional capabilities as future requirements are
identified.
The Security Policy Information File is defined in the following syntax:

SecurityPolicyInformationFile ::= SIGNED {SPIF}

SPIF ::= SEQUENCE ({
versionInformation VersionInformationData DEFAULT vl,
updateInformation UpdateInformationData,
securityPolicyIdData ObjectIdData,
privilegeId OBJECT IDENTIFIER,
rbacId OBJECT IDENTIFIER,
securityClassifications [0] SEQUENCE OF SecurityClassification OPTIONAL,
securityCategories [1] SEQUENCE OF SecurityCategory OPTIONAL,
equivalentPolicies [2] SEQUENCE OF EquivalentPolicy OPTIONAL,
defaultSecurityPolicyIdData [3] ObjectIdData OPTIONAL,
extensions [4] Extensions OPTIONAL }

Rec. ITU-T X.509 (10/2012) 165

| SO/l EC 9594-8:2014 (E)

VersionInformationData ::= INTEGER { v1(0) }

UpdateInformationData ::= SEQUENCE {
sPIFVersionNumber INTEGER,
creationDate GeneralizedTime,

originatorDistinguishedName
keyIdentifier

ObjectIdData ::= SEQUENCE {
objectId
objectIdName

SecurityClassification ::=
labelAndCertValue
classificationName
equivalentClassifications

Name,
OCTET STRING OPTIONAL }

OBJECT IDENTIFIER,
UnboundDirectoryString }

SEQUENCE {

INTEGER,
DirectoryString {ubClassificationNameLength},
[0] SEQUENCE OF EquivalentClassification OPTIONAL,

hierarchyValue INTEGER,
markingData [1] SEQUENCE OF MarkingData OPTIONAL,
requiredCategory [2] SEQUENCE OF OptionalCategoryGroup OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE }
EquivalentClassification ::= SEQUENCE {
securityPolicyId OBJECT IDENTIFIER,
labelAndCertValue INTEGER,
applied INTEGER {
encrypt (0),
decrypt (1),
both (2) } }
MarkingData ::= SEQUENCE {
markingPhrase DirectoryString {ubMarkingPhraseLength} OPTIONAL,
markingCodes SEQUENCE OF MarkingCode OPTIONAL }
MarkingCode ::= INTEGER ({
pageTop (1),
pageBottom (2),
pageTopBottom (3),
documentEnd (4),
noNameDisplay (5),
noMarkingDisplay (6),
unused (7),
documentStart (8),

(9)}

suppressClassName

OptionalCategoryGroup ::= SEQUENCE {

operation INTEGER {
onlyOne (1),
oneOrMore (2),
all (3)},
categoryGroup SEQUENCE OF OptionalCategoryData }

OptionalCategoryData ::= SEQUENCE {

optCatDataId OC-DATA.&id({CatData}),

categorydata OC-DATA.&Type ({CatData}{@optCatDataId }) }
OC-DATA ::= TYPE-IDENTIFIER
CatData OC-DATA ::= { ... }
EquivalentPolicy ::= SEQUENCE {

securityPolicyId OBJECT IDENTIFIER,

securityPolicyName UnbounfDirectoryString OPTIONAL }

Extensions ::= SEQUENCE OF Extension

Extension ::= SEQUENCE {
extensionId EXTENSION.&objId ({ExtensionSet}),
critical BOOLEAN DEFAULT FALSE,
extensionValue OCTET STRING }

166 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

Note that the SPIF example is an evolving syntax and the full definition and description of each element can be found in
Rec. ITU-T X.841 | ISO/IEC 15816.

E.3 Privilege attribute example

The following example of an attribute to convey a particular privilege is provided purely as an illustration only. The
actual specification of this syntax and associated attribute is contained in Rec. ITU-T X.501 | ISO/IEC 9594-2
clause 19.5. This particular attribute conveys clearance that can be associated with a named entity, including a DUA for
the purposes of communication with aDSA.

A clearance attribute associates a clearance with anamed entity including DUAS.

clearance ATTRIBUTE ::= {
WITH SYNTAX Clearance
ID id-at-clearance }
Clearance ::= SEQUENCE {
policyId OBJECT IDENTIFIER,
classList ClassList DEFAULT {unclassified},
securityCategories SET SIZE (1MAX) OF SecurityCategory OPTIONAL}
ClassList ::= BIT STRING {
unmarked (0),
unclassified (1),
restricted (2),
confidential (3),
secret (4),
topSecret (5) }

The individual components are described with the actual specification of this privilege in the referenced document.

Rec. ITU-T X.509 (10/2012) 167

| SO/l EC 9594-8:2014 (E)

Annex F

An introduction to public key cryptography?

(Thisannex does not form an integral part of this Recommendation | International Standard.)

In conventional cryptographic systems, the key used to encipher information by the originator of a secret message is the
same as that used to decipher the message by the legitimate recipient.

In public key cryptosystems (PKCS), however, keys come in pairs, one key of which is used for enciphering and the
other for deciphering. Each key pair is associated with a particular user X. One of the keys, known as the public key
(Xp) is publicly known, and can be used by any user to encipher data. Only X, who possesses the complementary
private key (Xs) may decipher the data. (This is represented notationally by D = XgXp[D]]). It is computationally
unfeasible to derive the private key from knowledge of the public key. Any user can thus communicate a piece of
information which only X can find out, by enciphering it under Xp. By extension, two users can communicate in secret,
by using each other's public key to encipher the data, as shown in Figure F.1.

@ <-8px © x=Bd¢

© e =Apix]

X.509(12)_FF.1

O < =Ade]
Figure F.1 —Use of a PKCSto exchange secret infor mation

User A has public key Ap and private key As, and user B has another set of keys, Bp and Bs. A and B both know the
public keys of each other, but are unaware of the private key of the other party. A and B may therefore exchange secret
information with one another using the following steps (illustrated in Figure F.1).

1) A wishesto send some secret information x to B. A therefore enciphers x under B's enciphering key and
sends the enciphered information e to B. Thisis represented by:

e=Bp[X]
2) B may now decipher this encipherment e to obtain the information x by using the secret decipherment
key Bs. Note that B is the only possessor of Bs, and because this key may never be disclosed or sent, it is

impossible for any other party to obtain the information x. The possession of Bs determines the identity
of B. The decipherment operation is represented by:

x = Bg[€], or x = B[Bp[X]]
3) B may now similarly send some secret information, X', to A, under A's enciphering key, Ap:
€ = Ap[x]
4) A obtainsx' by deciphering €":
x'=Ag[€e], or X' = AJAp[x]]

By the above means, A and B have exchanged secret information x and x'. This information may not be obtained by
anyone other than A and B, providing that their private keys are not reveal ed.

2 For further information, see:

DIFFIE (W.) and HELLMAN (M.E.): New Directions in Cryptography, |EEE Transactions on Information Theory, 1T-22, No. 6,
November 1976.

168 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

Such an exchange can, as well as transferring secret information between the parties, serve to verify their identities.
Specifically, A and B are identified by their possession of the secret deciphering keys, As and Bs respectively. A may
determine if B isin possession of the secret deciphering key, Bs, by having returned part of his information x in B's
message X'. Thisindicates to A that communication is taking place with the possessor of Bs. B may similarly test the
identity of A.

It is a property of some PKCS that the steps of decipherment and encipherment can be reversed, asin D = Xp[XgD]].
This alows a piece of information which could only have been originated by X, to be readable by any user (who has
possession of Xp). This can, therefore, be used in the certifying of the source of information, and is the basis for digital

signatures. Only PKCS which have this (permutability) property are suitable for use in this authentication framework.
One such algorithm is described in Annex E.

Rec. ITU-T X.509 (10/2012) 169

| SO/l EC 9594-8:2014 (E)

Annex G

Examples of use of certification path constraints

(Thisannex does not form an integral part of this Recommendation | International Standard.)

Gl Example 1. Use of basic constraints

Suppose the Widget Corporation wants to cross-certify the central CA of the Acme Corporate Group, but only wants the
Widget community to use end-entity certificates issued by that CA, not certificates issued by other CAs certified by
that CA.

The Widget Corporation could satisfy this requirement by issuing a certificate for Acme's central CA, including the
following extension field value:

Vaue of Basic Constraints Field:

{ cA TRUE, pathLenConstraint 0 }

G.2 Example 2: Use of policy mapping and policy constraints

Suppose the following cross-certification scenario is required between the Canadian and U.S. governments:

a) a Canadian government CA wishes to certify use of U.S. government signatures with respect to a
Canadian policy caled Can/US-Trade;

b) the U.S. government has a policy called US/Can-Trade, which the Canadian government is prepared to
consider equivaent to its Can/US-Trade policy;

¢) the Canadian government wants to apply safeguards which require all U.S. certificates to explicitly state
support for the policy and which inhibit mapping to other policies within the U.S. domain.

A Canadian government CA could issue a certificate for a U.S. government CA with the following extension field
values:

Value of Certificate Policies Field:
{{ policyIdentifier -- object identifier for Can/US-Trade -- }}
Value of Policy Mappings Field:

{{ issuerDomainPolicy -- object identifier for Can/US-Trade -- ,
subjectDomainPolicy -- object identifier for US/Can-Trade -- }}

Value of PolicyConstraints Field:

{{ policySet { -- object identifier for Can/US-Trade -- }, requireExplicitPolicy (0),
inhibitPolicyMapping (0)}}

G.3 Use of Name Constraints Extension

G.31 Examplesof certificate format with Name Constraints Extension

CAs can impose various restrictions on the subject names (in the subject field or subjectaltName extension) of
subsequent certificates in the certification path, by including the Name Constraints extension in CA-certificates they
issue. This clause describes examples of CA-certificates including the Name Constraints extension, along with an
indication of the requirements for subsequent certificates to be acceptable in arelated certification path.

To simplify these examples, only the DN (directoryName) name formis used in the Name Constraints extension.

170 Rec. ITU-T X.509 (10/2012)

G.3.11
(1-1)

(1-2)

(1-3)

(1-4)

Examples of permittedSubtrees

If the CA-certificate contains the following Name Constraints extension, for all subsequent certificates in the
certification path, each subject name (in the subject field or subjectaltName extension) in DN name
form, if it exists, shall be equal to or subordinate to the Acme Inc. in U.S. (i.e.,, {C=US, O=Acme Inc}) for

that certificate to be acceptable.

| SO/l EC 9594-8:2014 (E)

nameConstraints extension

permittedSubtrees

excludedSubtrees

{{base (directoryName)
{C=US, O=Acmelinc}}}

(void)

If the CA-certificate contains the following Name Constraints extension, for all subsequent certificates in the
certification path, each subject name (in the subject field or subjectaltName extension) in DN name
form, if it exists, shall be equal to or immediately subordinate to the Acme Inc. in U.S. (i.e,, { C=US, O=Acme
Inc}) for that certificate to be acceptable.

nameConstraints extension

permittedSubtrees excludedSubtrees
{{base(directoryName)
{C=US, O=Acmelnc}, (void)

maximum 1}}

If the CA-certificate contains the following Name Constraints extension, for all subsequent certificates in the
certification path, each subject name (in the subject field or subjectAltName extension) in DN name
form, if it exists, shall be subordinate to the Acme Inc. in U.S. (i.e.,, {C=US, O=Acme Inc}) for that certificate

to be acceptable.

nameConstraints extension

permittedSubtrees excludedSubtrees
{{base(directoryName)
{C=US, O=Acmelnc}, (void)

minimum 1}}

If the CA-certificate contains the following Name Constraints extension, for all subsequent certificates in the
certification path, each subject name (in the subject field or subjectaltName extension) in DN name
form, if it exists, shall be equal to or subordinate to the Acme Inc. in U.S. (i.e, {C=US, O=Acme Inc}), or
equal to or subordinate to the Acme Ltd. in UK. (i.e.,, {C=UK, O=Acme Ltd}) for that certificate to be

acceptable.

nameConstraints extension

permittedSubtrees excludedSubtrees
{{base(directoryName)
{C=US, O=Acmelnc}}, (void)

{base(directoryName)

{C=UK, O=Acme Ltd}}}

Rec. | TU-T X.509 (10/2012)

171

| SO/l EC 9594-8:2014 (E)

G.3.1.2 Examples of excludedSubtrees

(2-1)

(2-2)

(2-3)

(2-4)

172

If the CA-certificate contains the following Name Constraints extension, for all subsequent certificates in the
certification path, each subject name (in the subject field or subjectaltName extension) in DN name
form, if it exists, shall not be equal to nor subordinate to the Acme Corp. in Canada. (i.e., { C=CA, O=Acme
Corp}) for that certificate to be acceptable.

nameConstraints extension

permittedSubtrees excludedSubtrees
(void) {{base(directoryName)
{C=CA, O=Acme Corp}}}

If the CA-certificate contains the following Name Constraints extension, for all subsequent certificates in the
certification path, each subject name (in the subject field or subjectAltName extension) in DN name
form, if it exists, shall not be subordinate to each immediately subordinate of the Acme Corp. in Canada (i.e.,
{C=CA, O=Acme Corp}) for that certificate to be acceptable.

nameConstraints extension

permittedSubtrees excludedSubtrees

{{base(directoryName)
(void) {C=CA, O=Acme Corp},

minimum 2}}

If the CA-certificate contains the following Name Constraints extension, for all subsequent certificates in the
certification path, each subject name (in the subject field or subjectaltName extension) in DN name
form, if it exists, shall not be equal to the Acme Corp. in Canada (i.e.,, { C=CA, O=Acme Corp}) for that
certificate to be acceptable.

nameConstraints extension

permittedSubtrees excludedSubtrees

{{base(directoryName)
(void) {C=CA, O=Acme Corp},

maximum 0}}

If the CA-certificate contains the following Name Constraints extension, for all subsequent certificates in the
certification path, each subject name (in the subject field or subjectaltName extension) in DN name
form, if it exists, shall not be equal to nor subordinate to the Acme Corp. in Canada (i.e., { C=CA, O=Acme
Corp}), nor equal to nor subordinate to the Asia Acme in Japan (i.e., {C=JP, O=Asia Acme}) for that
certificate to be acceptable.

nameConstraints extension

permittedSubtrees excludedSubtrees

{{base(directoryName)
{C=CA, O=Acme Corp}},
{base(directoryName)

{C=JP, O=AsiaAcme}}}

(void)

Rec. | TU-T X.509 (10/2012)

G.3.1.3 Examplesof permittedSubtrees and excludedSubtrees

(1)

(3-2)

G.3.2

| SO/l EC 9594-8:2014 (E)

If the CA-certificate contains the following Name Constraints extension, for all subsequent certificates in the
certification path, each subject name (in the subject field or subjectaltName extension) in DN name
form, if it exists, shall be equal to or subordinate to the AcmeInc. inU.S. (i.e., {C=US, O=Acme Inc}) except
the R&D organization unit of Acme Inc. and the R&D organization's subordinates for that certificate to be

acceptable.

nameConstraints extension

permittedSubtrees

excludedSubtrees

{{base(directoryName)
{C=US, O=Acmelnc}}}

{{base(directoryName)
{C=US, O=Acmelnc,
OU=R&D}}}

If the CA-certificate contains the following Name Constraints extension, for all subsequent certificates in the
certification path, each subject name (in the subject field or subjectaltName extension) in DN name
form, if it exists, shall be equal to one of immediately subordinates to the Acme Inc. in U.S. (i.e.,, {C=US,
O=Acme Inc}) except the Purchasing organization unit (i.e., { C=US, O=Acme Inc, OU=Purchasing}) for that
certificate to be acceptable.

nameConstraints extension

permittedSubtrees

excludedSubtrees

{{base(directoryName)
{C=US, O=Acmelnc},

minimum 1, maximum 1}}

{{base(directoryName)
{C=US, O=Acmelnc,
OU=Purchasing}}}

Examples of certificate handling with Name Constraints Extension

This clause describes examples of how subject hames (in the subject field or subjectaltName extension) are
validated during certificate processing with the path processing state variables, namely permitted-subtrees and
excluded-subtrees.

To simplify these examples, only the DN (directoryName) and rfc822 name (rfc822Name) name forms are used in
the Name Constraints extension.

G.3.21 Name spaces constraints by permitted-subtreesin DN nameform

In this case, for the certificate to be acceptable, each subject name (in the subject field or subjectAltName
extension) in DN name form appearing in the certificate in question shall satisfy the constraint imposed by path
processing state variable permitted-subtrees.

(1-1)

One permitted subtree for DN is present.

Path processing state variables

permitted-subtrees

excluded-subtrees

{{base(directoryName)
{C=US, O=AcmelInc}}}

NONE

Rec. | TU-T X.509 (10/2012)

173

| SO/l EC 9594-8:2014 (E)

Acceptable certificate examples

1 subject = {C=US, O=Acme Inc, OU=Purchasing}
5 subject ={}
subjectAltName(directoryName) = {C=US, O=Acme Inc, OU=Purchasing}
3 subject = {C=US, O=Acme Inc, OU=Purchasing}
subjectAltName (rfc822Name) = manager@purchasing.acme.com
subject ={}
4 subjectAltName (directoryName) = { C=US, O=Acme Inc, OU=Purchasing}
subjectAltName (rfc822Name) = manager@purchasing.acme.com
5 subject ={}
subjectAltName (rfc822Name) = manager@purchasing.acme.com
6 subject = {C=US, O=Acme Inc, OU=Purchasing}
subjectAltName (directoryName) = { C=US, O=Acme Inc, OU=Accounting}

Unacceptable certificate examples

1 subject = {C=US, O=Acme Ltd, OU=Purchasing}
2 subject = {C=US, O=Acme Inc, OU=Purchasing}

subjectAltName (directoryName) = { C=US, O=Acme Ltd, OU=Purchasing}
3 subject = {C=US, O=Acme Ltd, OU=Purchasing}

subjectAltName (directoryName) = { C=US, O=Acme Inc, OU=Purchasing}
4 subject = {C=US, O=Acme Ltd, OU=Purchasing}

subjectAltName (directoryName) = { C=US, O=Acme Ltd, OU=Accounting}

(1-2) Two permitted subtrees for DN are present.

Path processing state variables

per mitted-subtrees excluded-subtrees

{{base(directoryName)
{C=US, O=Acmelnc}},
{base(directoryName)
{C=US, O=Acme Ltd}}}

NONE

Acceptable certificate examples

1 subject = {C=US, O=Acme Ltd, OU=Purchasing}

5 subject ={}
subjectAltName(directoryName) = {C=US, O=Acme Ltd, OU=Purchasing}

3 subject = {C=US, O=Acme Ltd, OU=Purchasing}
subjectAltName(rfc822Name) = manager@purchasing.acme-ltd.com
subject ={}

4 subjectAltName(directoryName) = { C=US, O=Acme Inc, OU=Purchasing}
subjectAltName(directoryName) = {C=US, O=Acme Ltd, OU=Purchasing}
subjectAltName(r£fc822Name) = manager@purchasing.acme.com

5 subject = {C=US, O=Acme Ltd, OU=Purchasing}
subjectAltName(directoryName) = { C=US, O=Acme Ltd, OU= Accounting}

6 subject ={}
subjectAltName(rfc822Name) = manager@purchasing.acme.com

Unacceptable certificate examples

174

Rec. | TU-T X.509 (10/2012)

mailto:manager@purchasing.acme.com
mailto:manager@purchasing.acme.com
mailto:manager@purchasing.acme.com

| SO/l EC 9594-8:2014 (E)

1 subject = {C=US, O=Acme International, OU=Accounting}

2 subject = {C=US, O=Acme Inc, OU=Purchasing}
subjectAltName(directoryName) = {C=US, O=Acme International, OU=Accounting}

3 subject = {C=US, O=Acme International, OU=Accounting}
subjectAltName(directoryName) = { C=US, O=Acme Inc, OU=Purchasing}

4 subject = {C=US, O=Acme International, OU=Accounting}
subjectAltName(directoryName) = {C=US, O=Acme Corp, OU=Accounting}
subject ={}

5 subjectAltName(directoryName) = {C=US, O=Acme Inc, OU=Purchasing}
subjectAltName(directoryName) = {C=US, O=Acme International, OU=Accounting}
subjectAltName(rfc822Name) = manager@purchasing.acme.com

G.3.2.2 Name spaces constraints by excluded-subtreesin DN name form

In this case, for the certificate to be acceptable, each subject name (in the subject field or subjectAltName
extension) in DN name form appearing in the certificate-in-question shall satisfy the constraint by path processing state

variable excluded-subtrees.

(2-1) One excluded subtree for DN is present.

Path processing state variables

permitted-subtrees excluded-subtrees
NONE {{base(directoryName)
{C=US, O=AcmeLtd}}}

Acceptable certificate examples

1 subject = {C=US, O=Acme Inc, OU=Purchasing}

subject ={}
subjectAltName(directoryName) = { C=US, O=Acme Inc, OU=Purchasing}

subject = {C=US, O=Acme Inc, OU=Purchasing}
subjectAltName(rfc822Name) = manager@purchasing.acme.com

subject ={}
4 subjectAltName(directoryName) = {C=US, O=Acme Inc, OU=Purchasing}
subjectAltName(rfc822Name) = manager@purchasing.acme.com

subject = {C=US, O=Acme Inc, OU=Purchasing}
subjectAltName(directoryName) = {C=US, O=Acme Inc, OU=Accounting}

subject ={}
subjectAltName(rfc822Name) = manager@purchasing.acme.com

Unacceptable certificate examples

1 subject = {C=US, O=Acme Ltd, OU=Purchasing}

subject = {C=US, O=Acme Inc, OU=Purchasing}
subjectAltName(directoryName) = {C=US, O=Acme Ltd, OU=Accounting}

(2-2) Two excluded subtrees for DN are present.

Path processing state variables

per mitted-subtrees excluded-subtrees

{{base(directoryName)
{C=US, O=Acmelnc}},
{base(directoryName)
{C=US, O=Acme Ltd}}}

NONE

Rec. | TU-T X.509 (10/2012)

175

| SO/l EC 9594-8:2014 (E)

Acceptable certificate examples

1 subject = {C=US, O=Acme International, OU=Purchasing}

2 subject ={}
subjectAltName(directoryName) = {C=US, O=Acme International, OU=Purchasing}

3 subject = {C=US, O=Acme International, OU=Purchasing}
subjectAltName(rfc822Name) = purchasing@acme-international.com
subject ={}

4 subjectAltName(directoryName) = {C=US, O=Acme International, OU=Purchasing}
subjectAltName(directoryName) = {C=US, O=Acme N.Y, OU=Purchasing}
subjectAltName(rfc822Name) = purchasing@acme-international.com

5 subject ={}
subjectAltName(r£fc822Name) = purchasing@acme-international.com

Unacceptable certificate examples

1 subject = {C=US, O=Acme Inc, OU=Purchasing}
subject = {C=US, O=Acme Ltd, OU=Purchasing}
subject = {C=US, O=Acme Inc, OU=Purchasing}

3 subjectAltName(directoryName) = {C=US, O=Acme International, OU=Accounting}
subject ={}
4 subjectAltName(directoryName) = {C=US, O=Acme Inc, OU=Purchasing}

subjectAltName(directoryName) = {C=US, O=Acme International, OU=Purchasing}
subjectAltName(r£fc822Name) = purchasing@acme-international.com

G.3.2.3 Name spaces constraints by per mitted-subtreesin multiple name forms

In this case, for the certificate to be acceptable, each subject name (in the subject field or subjectaltName
extension) in DN name form or rfc822 name form appearing in the certificate-in-question shall satisfy the constraint by
path processing state variable permitted-subtrees.

One permitted subtree for DN and another permitted subtree rfc822Name are present.

Path processing state variables

per mitted-subtrees excluded-subtrees

{{base(directoryName)
{C=US, O=Acmelnc}},
{base(rfc822Name)

{.acme.com}}}

NONE

Acceptable certificate examples

1 subject = {C=US, O=Acme Inc, OU=Purchasing}
5 subject = {C=US, O=Acme Inc, OU=Purchasing}
subjectAltName(rfc822Name) = manager@purchasing.acme.com
3 subject = {C=US, O=Acme Inc, OU=Purchasing}
subjectAltName(directoryName) = {C=US, O=Acme Inc, OU=Accounting}
4 subject ={}
subjectAltName(rfc822Name) = manager@purchasing.acme.com
5 subject ={}
subjectAltName(uniformResourceIdentifier) = http://purchasing.www.acme-inc.com
6 subject = {C=US, O=Acme Inc, OU=Purchasing}
subjectAltName(uniformResourceIdentifier) = http://purchasing.www.acme-inc.com

176 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

Unacceptable certificate examples

1 subject = {C=US, O=Acme Ltd, OU=Purchasing}

2 subject = {C=US, O=Acme Ltd, OU=Purchasing}
subjectAltName(rfc822Name) = manager@purchasing.acme.com

3 subject = {C=US, O=Acme Inc, OU=Purchasing}
subjectAltName(rfc822Name) = manager@purchasing.acme-inc.com

4 subject = {C=US, O=Acme Ltd, OU=Purchasing}
subjectAltName(rfc822Name) = manager@purchasing.acme-Itd.com

G.3.24 Name spaces constraints by excluded-subtreesin multiple name forms

In this case, for the certificate to be acceptable, each subject name (in the subject field or subjectaltName
extension) in DN name form or rfc822 name form appearing in the certificate in question shall satisfy the constraint by
path processing state variable excluded-subtrees.

Path processing state variables

permitted-subtrees excluded-subtrees

{{base(directoryName)
{C=US, O=Acmelnc}},
{base(rfc822Name)

{.acme.com}}}

NONE

Acceptable certificate examples

1 subject = {C=US, O=Acme Ltd, OU=Purchasing}
5 subject ={}
subjectAltName(rfc822Name) = manager@purchasing.acme-Itd.com
3 subject = {C=US, O=Acme Ltd, OU=Purchasing}
subjectAltName(rfc822Name) = manager@purchasing.acme-Itd.com
4 subject ={}
subjectAltName(uniformResourceIdentifier) = http://purchasing.www.acme-inc.com
5 subject = {C=US, O=Acme Ltd, OU=Purchasing}
subjectAltName(uniformResourceIdentifier) = http://purchasing.www.acme-ltd.com

Unacceptable certificate examples

1 subject = {C=US, O=Acme Inc, OU=Purchasing}

5 subject ={}
subjectAltName(rfc822Name) = manager @purchasing.acme.com

3 subject = {C=US, O=Acme Ltd, OU=Purchasing}
subjectAltName(rfc822Name) = manager @purchasing.acme.com

4 subject = {C=US, O=Acme Inc, OU=Purchasing}
subjectAltName(rfc822Name) = manager@purchasing.acme-inc.com

5 subject = {C=US, O=Acme Inc, OU=Purchasing}
subjectAltName(rfc822Name) = manager @purchasing.acme.com

6 subject = {C=US, O=Acme Ltd, OU=Purchasing}
subjectAltName(directoryName) = {C=US, O=Acme Inc, OU=Accounting}

G.3.3 Exampleswhere multiple cross-certificates with Name Constraints Extension ar e needed

In some cases, it may be required that more than one certificate be issued from a CA to another CA in order to achieve
the desired results. This might be the case if some of the name constraints requirements conflict, or if the disjunctive
evauation of different name formsis required.

Rec. ITU-T X.509 (10/2012) 177

| SO/l EC 9594-8:2014 (E)

G.3.3.1 Conflicting name space constraintsrequirements
Assume the Acme Corporation has 20 branchesin the U.S.

The Widget Corporation wants to cross-certify the central CA of Acme Corporation, but only wants the Widget
community to use Acme certificates for subjects that meet the following criteria:

— Branchl to Branch19 of Acme Corporation, all sections are acceptable as subjects;

— Branch20 of Acme Corporation, all sections are unacceptable as subjects except for subjects in the
purchasing section.

This could be achieved by issuing two certificates as follows: the first certificate would have a permittedSubtrees
of {base: C=US, O=Acme} and an excludedsubtrees Of {base. C=US, O=Acme, OU=branch20}. The second
certificate would have apermittedsubtrees of { base: C=US, O=Acme, OU=branch20, OU=Purchasing}.

G.3.3.2 Digunctive evaluation of name space constraints

Assume that the CA of organization X issues certificates containing Internet domain hames under the subtree x.com,
whilst another CA of organization Y issues certificates containing ITU-T X.500 distinguished names under the subtree
0=y, c=US. Assume further that the CA of organization A has cross-certified the CAs of both organizations X and Y
and that the CA of organization B wishes to cross-certify CA A and, in addition, to trust the certificates that are issued
by CAs X and Y. If CA B issues one cross-certificate to CA A containing a name constraints extension, with permitted
subtrees of x.com and o=y,c=US (in addition to the name space of CA A), then, if either CA X or CA Y add additional
name forms to their certificates that contain either distinguished names or domain names (respectively), then their
certificates will no longer be valid for relying parties who have CA B as their trust anchor. One solution to this problem
is that CA B should issue two cross-certificates to CA A, one containing a name constraints extension with the
permitted subtree of x.com, and the other containing the permitted subtree of o=y,c=US.

178 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

Annex H

Guidance on determining for which policiesa certification path isvalid

(Thisannex does not form an integral part of this Recommendation | International Standard.)

The purpose of this annex is to provide guidance for PKI-enabled applications with respect to control of the certificate
policy-related processing of certification path validation. Control of certificate policy-related processing by the PKI
through the contents of certificates is described in the " Certification path processing procedure” clause of this Directory
Specification.

This annex addresses the initialization of two of the policy-related inputs in the path processing procedure: initial-
policy-set and initial-explicit-policy. In addition to these, the initial-policy-mapping-inhibit and
initial-inhibit-any-policy inputsto the procedure, which can aso be initialized by the user, impact the processing of
policy-related information during path processing; however, these are outside the scope of this annex. Setting the
initial-policy-mapping-inhibit to TRUE prevents policy mappings from being used in successful path validations. Setting
the initial-inhibit-any-policy to TRUE prevents the special OID for anyPolicy, if present in a certificate, from being an
acceptable match for a specific policy OID.

The term "user” in this annex can be used to mean a"human user" or a PK1-enabled "application”.

The following scenarios are envisioned:
1) Theuser requiresthat the certification path be valid for one of the policies of interest to the user.

2) The user requires that the certification path be valid for at least a policy, but the user does not care which
policy it is. This scenario should (can) be used when the user intends to do additional policy processing
using other contextual information and information content, to determine if one of the policies the
certification path isvalid for is acceptable to the user for the particular transaction.

3) The user has no policy-related requirements on the certification path. In other words, the user is willing
to accept a certification path that is not valid for any policy, but is otherwise valid.

4) The user desires that the certification path be valid for one of the policies of interest to the user, but
failing that, the user wants the opportunity to reconsider paths that are not valid for the policies of
interest to them. This scenario should (can) be used when the user generally requires the certification
path to be valid for a policy acceptable to the user, but based on other contextual information and
information content, the user may wish to override policy failure.

The following clauses describe how the user should go about obtaining the desired information from a compliant path
relying party.

H.1 Certification path valid for a user-specified policy required

In this scenario, the user requires that the certification path be valid for one of the policies of interest to the user. In
order to obtain the desired information, the user should set the policy processing related certification path validation
inputs as follows:

initial-policy-set = { set of policies of interest to the user}
initial-explicit-policy = TRUE

If the path validation is successful, the certification path is valid for at least one of the policies of interest to the user.
The certification path is valid for the policies listed in the user-constrained-policy-set output variable.

Under this scenario, applications should not use a certification path if it is rejected by a path relying party for certificate
policy-related failuresd).

3 A path validation failure is a certificate policy-related failure when failure is caused by the certificate policy-related extension(s)
or certificate policy-related state variable(s). The certificate policy-related extensions are: certificatePolicies, policyM appings,
policyConstraints, and inhibitAnyPolicy. Certificate policy-related state variables are: authorities-constrained-policy-set,
explicit-policy-indicator, policy-mapping-inhibit-indicator, and inhibit-any-policy-indicator.

Rec. ITU-T X.509 (10/2012) 179

| SO/l EC 9594-8:2014 (E)

H.2 Certification path valid for any policy required

In this scenario, the user requires that the certification path be valid for at least a policy, but the user does not care
which policy it is. In order to obtain the desired information, the user should set the policy processing related
certification path validation inputs as follows:

initial-policy-set = {anyPolicy}
initial-explicit-policy = TRUE

If the path validation is successful, the certification path is valid for at least a policy. The certification path is valid for
the policieslisted in the user-constrained-policy-set output variable.

Under this scenario, applications should not use a certification path if it is rejected by a path relying party for certificate
policy-related failures.

H.3 Certification path valid regardless of policy

In this scenario, the user has no policy-related requirements on the certification path. In order to obtain the desired
information, the user should set the policy processing related certification path validation inputs as follows:

initial-policy-set = {anyPolicy}
initial-explicit-policy = FALSE

If the path validation is successful, the certification path is valid for the policies listed in the user-constrained-policy-set
output variable.

Under this scenario, applications should not use a certification path if it is rejected by a path relying party for certificate
policy-related failures.

It should be noted that in this scenario, the certification path can have policy-related failure. An example is if the
infrastructure (i.e., a CA-certificate in the certification path) causes the setting of explicit-policy-indicator. In this case,
if the path is not valid for any policy, i.e., authorities-constrained-policy-set is empty, a compliant path relying party
will return afailure. Applications should reject the certification path for failure of thistype.

H.4 Certification path valid for a user-specific policy desired, but not required

In this scenario, the user desires that the certification path be valid for one of the policies of interest to the user, but does
not want to reject paths that are not valid for any of the policies of interest to the user. In order to obtain the desired
information, the user should set the policy processing related certification path validation inputs as follows:

initial-policy-set = { set of policies of interest to the user}
initial-explicit-policy = FALSE

If the path validation is successful, the certification path is valid for the policies listed in the user-constrained-policy-set
output variable. The user-constrained-policy-set is a subset of the initial-policy-set. Please note that user-constrained-
policy-set could be NULL in this case when explicit-policy-indicator is not set. The application should examine the
returned user-constrained-policy-set to determine if the path is acceptable to the user.

Applications should reject the certification path for policy-related failure caused by the infrastructure in this scenario,
(i.e., when the authorities-constrained-policy-set is empty and the explicit-policy-indicator is set).

It should be noted that in this scenario, the certification path can have policy-related failure. An example is if the
infrastructure (i.e., a CA-certificate in the certification path) causes the setting of explicit-policy-indicator. In this case,
if the path is not valid for any policy, i.e., authorities-constrained-policy-set is empty, a compliant path relying party
will return afailure. Applications should reject the certification path for failure of thistype.

Another example is the combination of the user input and infrastructure causes policy-related failure. This occurs when
a CA-certificate in the certification path causes the setting of explicit-policy-indicator, authorities-constrained-policy-
set is not empty, and user-constrained-policy-set is empty. A compliant path relying party will return a failure. Under
these conditions, if the only reason for the path relying party returning afailure is that the user-constrained-policy-set is
empty, applications may choose to override that failure and accept the certification path. Authority imposed constraints
are still respected, by virtue of the authorities-constrained-policy-set not being empty. Acceptance of this path by an
application is equivalent to the application re-submitting the path to the relying party with initial-policy-set equal to
anyPolicy initia-explicit-policy equal to FaLsE, and examining the returned user-constrained-policy-set to determine
if the path is acceptable.

180 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

Annex |

K ey usage certificate extension issues

(Thisannex does not form an integral part of this Recommendation | International Standard.)

Combining the contentcommitment bit in the keyUsage certificate extension with other keyUsage bits may have
security implications depending on the security environment in which the certificate is to be used. If the subject's
environment can be fully controlled and trusted, then there are no specific security implications. For example, in cases
where the subject is fully confident about exactly which data is signed or cases where the subject is fully confident
about the security characteristics of the authentication protocol being used. If the subject's environment is not fully
controlled or not fully trusted, then unintentional signing of commitmentsis possible. Examples include the use of badly
formed authentication exchanges and the use of a rogue software component. If untrusted environments are used by a
subject, these security implications can be limited through use of the following measures:

— to not combine the contentCommitment key usage setting in certificates with any other key usage
setting and to use the corresponding private key only with this certificate;

— tolimit the use of private keys associated with certificates that have the contentCommi tment key usage
bit set, to environments which are considered adequately controlled and trustworthy.

Rec. ITU-T X.509 (10/2012) 181

| SO/l EC 9594-8:2014 (E)

Annex J

External ASN.1 modules

(Thisannex does not form an integral part of this Recommendation | International Standard.)

This annex provides external ASN.1 modules referenced by these Directory Specifications. These modules shall not be
considered part of this Directory Specification, but are only provided for easy compilation of the ASN.1 modules

defined by these Directory Specifications.
-- The following module is an abstract of the module specified by RFC 2459
PKIX1Implicit93 {iso(1l) identified-organization(3) dod(6) intermet (1)

security(5) mechanisms(5) pkix(7) id-mod(0) id-pkixl-implicit-93(4)}
DEFINITIONS IMPLICIT TAGS ::=

BEGIN
UserNotice ::= SEQUENCE {
noticeRef NoticeReference OPTIONAL,

explicitText DisplayText OPTIONAL }

NoticeReference ::= SEQUENCE {
organization DisplayText,
noticeNumbers SEQUENCE OF INTEGER }

DisplayText ::= CHOICE {
visibleString VisibleString(SIZE (1..200)),

bmpString BMPString (SIZE (1..200)),
utf8sString UTF8String (SIZE (1..200)) }
END -- PKIX1Implicit93

/* The following module is an abstract of the module specified by

Rec. ITU-T X.411 | ISO/IEC 10021-4. An import statement has been changed to only
import from the current Directory Specifications not to be dependent on modules from

previous editions.*/

MTSAbstractService {joint-iso-itu-t mhs(6) mts(3) modules (0)
mts-abstract-service(l) version-1999(1)} DEFINITIONS IMPLICIT TAGS ::=
BEGIN

--EXPORTS All
IMPORTS
PresentationAddress
FROM SelectedAttributeTypes {joint-iso-itu-t ds(5) module (1)
selectedAttributeTypes(5) 7};

G3FacsimileNonBasicParameters ::= BIT STRING {
two-dimensional(8), -- As defined in ITU-T Recommendation T.30
fine-resolution(9),
unlimited-length(20), -- These bit values are chosen such that when
b4-length(21), -- encoded using ASN.1l Basic Encoding Rules
a3-width(22), -- the resulting octets have the same values
b4-width(23), -- as for T.30 encoding
t6-coding(25),
uncompressed(30), -- Trailing zero bits are not significant
width-middle-864-0£f-1728(37), -- It is recommended that implementations

width-middle-1216-0£-1728(38), -- should not encode more than 32 bits unless

resolution-type(44), -- higher numbered bits are non-zero
resolution-400x400(45), resolution-300x300(46), resolution-8x15(47),
edi(49), dtm(50), bft(51), mixed-mode(58), character-mode(60),
twelve-bits (65), preferred-huffmann(66), full-colour(67), jpeg(68),
processable-mode-26(71) }

ORAddress ::= SEQUENCE {
built-in-standard-attributes BuiltInStandardAttributes,

built-in-domain-defined-attributes BuiltInDomainDefinedAttributes OPTIONAL,

182 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

-- see also teletex-domain-defined-attributes
extension-attributes ExtensionAttributes OPTIONAL }

-- The OR-address is semantically absent from the OR-name if the built-in-standard-

attribute

-- sequence is empty and the built-in-domain-defined-attributes and extension-
attributes are both omitted.

-- Built-in Standard Attributes

BuiltInStandardAttributes ::= SEQUENCE {

country-name CountryName OPTIONAL,
administration-domain-name AdministrationDomainName OPTIONAL,
network-address [0] NetworkAddress OPTIONAL,
-- see also extended-network-address
terminal-identifier [1] TerminalIdentifier OPTIONAL,
private-domain-name [2] PrivateDomainName OPTIONAL,
organization-name [3] OrganizationName OPTIONAL,
-- see also teletex-organization-name
numeric-user-identifier [4] NumericUserIdentifier OPTIONAL,
personal-name [5] PersonalName OPTIONAL,
-- see also teletex-personal-name
organizational-unit-names [6] OrganizationalUnitNames OPTIONAL
-- see also teletex-organizational-unit-names --}

CountryName ::= [APPLICATION 1] CHOICE {
x121-dcc-code NumericString (SIZE (ub-country-name-numeric-length)),

iso-3166-alpha2-code PrintableString(SIZE (ub-country-name-alpha-length)) }

AdministrationDomainName ::= [APPLICATION 2] CHOICE {
numeric NumericString (SIZE (0..ub-domain-name-length)),
printable PrintableString(SIZE (0..ub-domain-name-length)) }

NetworkAddress ::= X121Address
-- see also extended-network-address
X121Address ::= NumericString(SIZE (1l..ub-xl2l1-address-length))
TerminalIdentifier ::= PrintableString(SIZE (1l..ub-terminal-id-length))
PrivateDomainName ::= CHOICE {
numeric NumericString (SIZE (1..ub-domain-name-length)),
printable PrintableString(SIZE (1..ub-domain-name-length)) }
OrganizationName ::= PrintableString(SIZE (1l..ub-organization-name-length))
-- see also teletex-organization-name
NumericUserIdentifier ::= NumericString(SIZE (1l..ub-numeric-user-id-length))
PersonalName ::= SET {
surname [0] PrintableString(SIZE (1l..ub-surname-length)),
given-name
[1] PrintableString(SIZE (1l..ub-given-name-length)) OPTIONAL,
initials
[2] PrintableString(SIZE (1l..ub-initials-length)) OPTIONAL,
generation-qualifier
[3] PrintableString(SIZE (1l..ub-generation-qualifier-length)) OPTIONAL }

-- see also teletex-personal-name

OrganizationalUnitNames ::=
SEQUENCE SIZE (1l..ub-organizational-units) OF OrganizationalUnitName

-- see also teletex-organizational-unit-names
OrganizationalUnitName ::=
PrintableString (SIZE (1l..ub-organizational-unit-name-length))

-- Built-in Domain-defined Attributes

BuiltInDomainDefinedAttributes ::=
SEQUENCE SIZE (l..ub-domain-defined-attributes) OF

Rec. | TU-T X.509 (10/2012)

183

| SO/IEC 9594-8:2014 (E)
BuiltInDomainDefinedAttribute

BuiltInDomainDefinedAttribute ::= SEQUENCE {
type PrintableString (SIZE (l..ub-domain-defined-attribute-type-length)),
value PrintableString(SIZE (1..ub-domain-defined-attribute-value-length)) }

-- Extension Attributes

ExtensionAttributes ::=
SET SIZE (l..ub-extension-attributes) OF ExtensionAttribute

ExtensionAttribute ::= SEQUENCE {
extension-attribute-type
[0] EXTENSION-ATTRIBUTE.&id({ExtensionAttributeTable}),
extension-attribute-value
[1] EXTENSION-ATTRIBUTE.&Type
({ExtensionAttributeTable}{@extension-attribute-type}) }

EXTENSION-ATTRIBUTE ::= CLASS {
&id INTEGER (0. .ub-extension-attributes) UNIQUE,
&Type }

WITH SYNTAX {
&Type
IDENTIFIED BY &id }

ExtensionAttributeTable EXTENSION-ATTRIBUTE ::=
{common-name | teletex-common-name | universal-common-name |
teletex-organization-name | universal-organization-name |
teletex-personal-name | universal-personal-name |
teletex-organizational-unit-names | universal-organizational-unit-names |
teletex-domain-defined-attributes | universal-domain-defined-attributes |
pds-name | physical-delivery-country-name | postal-code |
physical-delivery-office-name | universal-physical-delivery-office-name |
physical-delivery-office-number | universal-physical-delivery-office-number
| extension-OR-address-components |
universal-extension-OR-address-components | physical-delivery-personal-name
| universal-physical-delivery-personal-name |
physical-delivery-organization-name |
universal-physical-delivery-organization-name |
extension-physical-delivery-address-components |
universal-extension-physical-delivery-address-components |
unformatted-postal-address | universal-unformatted-postal-address |
street-address | universal-street-address | post-office-box-address |
universal-post-office-box-address | poste-restante-address |
universal-poste-restante-address | unique-postal-name |
universal-unique-postal-name | local-postal-attributes |
universal-local-postal-attributes | extended-network-address | terminal-type }

-- Extension Standard Attributes
common-name EXTENSION-ATTRIBUTE ::= {
CommonName
IDENTIFIED BY 1 }
CommonName ::= PrintableString(SIZE (1..ub-common-name-length))
teletex-common-name EXTENSION-ATTRIBUTE ::= {
TeletexCommonName
IDENTIFIED BY 2 }
TeletexCommonName ::= TeletexString(SIZE (1l..ub-common-name-length))
universal-common-name EXTENSION-ATTRIBUTE ::= {
UniversalCommonName
IDENTIFIED BY 24 }
UniversalCommonName ::= UniversalOrBMPString{ub-common-name-length}
teletex-organization-name EXTENSION-ATTRIBUTE ::= {

TeletexOrganizationName
IDENTIFIED BY 3 }

184 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

TeletexOrganizationName ::=
TeletexString (SIZE (1..ub-organization-name-length))
universal-organization-name EXTENSION-ATTRIBUTE ::= {
UniversalOrganizationName
IDENTIFIED BY 25 }

UniversalOrganizationName ::= UniversalOrBMPString{ub-organization-name-length}

teletex-personal-name EXTENSION-ATTRIBUTE ::= {
TeletexPersonalName
IDENTIFIED BY 4 }

TeletexPersonalName ::= SET {
surname [0] TeletexString(SIZE (1l..ub-surname-length)),
given-name
[1] TeletexString(SIZE (1l..ub-given-name-length)) OPTIONAL,
initials
[2] TeletexString(SIZE (1l..ub-initials-length)) OPTIONAL,
generation-qualifier
[3] TeletexString(SIZE (1l..ub-generation-qualifier-length)) OPTIONAL }

universal-personal-name EXTENSION-ATTRIBUTE ::= {
UniversalPersonalName
IDENTIFIED BY 26 }

UniversalPersonalName ::= SET (

surname

[0] UniversalOrBMPString{ub-universal-surname-length},
-- If a language is specified within surname, then that language applies to each of the
-- following optional components unless the component specifies another language.
given-name

[1] UniversalOrBMPString{ub-universal-given-name-length} OPTIONAL,
initials

[2] UniversalOrBMPString{ub-universal-initials-length} OPTIONAL,
generation-qualifier

[3] UniversalOrBMPString{ub-universal-generation-qualifier-length} OPTIONAL }

teletex-organizational-unit-names EXTENSION-ATTRIBUTE ::= {
TeletexOrganizationalUnitNames
IDENTIFIED BY 5 }

TeletexOrganizationalUnitNames ::=
SEQUENCE SIZE (1l..ub-organizational-units) OF TeletexOrganizationalUnitName

TeletexOrganizationalUnitName ::=
TeletexString (SIZE (1l..ub-organizational-unit-name-length))

universal-organizational-unit-names EXTENSION-ATTRIBUTE ::= {
UniversalOrganizationalUnitNames
IDENTIFIED BY 27 }

UniversalOrganizationalUnitNames ::=
SEQUENCE SIZE (1l..ub-organizational-units) OF UniversalOrganizationalUnitName

-- If a unit name specifies a language, then that language applies to subordinate unit

-- names unless the subordinate specifies another language.

UniversalOrganizationalUnitName ::=
UniversalOrBMPString{ub-organizational-unit-name-length}

UniversalOrBMPString{INTEGER:ub-string-length} ::= SET {

character-encoding CHOICE {
two-octets BMPString (SIZE (l..ub-string-length)),
four-octets UniversalString (SIZE (1..ub-string-length))},

iso-639-language-code PrintableString(SIZE (2 | 5)) OPTIONAL }
pds-name EXTENSION-ATTRIBUTE ::= {

PDSName
IDENTIFIED BY 7 }

Rec. ITU-T X.509 (10/2012) 185

| SO/l EC 9594-8:2014 (E)
PDSName ::= PrintableString(SIZE (1l..ub-pds-name-length))

physical-delivery-country-name EXTENSION-ATTRIBUTE ::= {
PhysicalDeliveryCountryName
IDENTIFIED BY 8 }

PhysicalDeliveryCountryName ::= CHOICE {
x121-dcc-code NumericString (SIZE (ub-country-name-numeric-length)),
iso-3166-alpha2-code PrintableString(SIZE (ub-country-name-alpha-length)) }

postal-code EXTENSION-ATTRIBUTE ::= {
PostalCode
IDENTIFIED BY 9 }

PostalCode ::= CHOICE {
numeric-code NumericString (SIZE (1l..ub-postal-code-length)),
printable-code PrintableString(SIZE (1l..ub-postal-code-length))

physical-delivery-office-name EXTENSION-ATTRIBUTE ::= {
PhysicalDeliveryOfficeName
IDENTIFIED BY 10 }
PhysicalDeliveryOfficeName ::= PDSParameter
universal-physical-delivery-office-name EXTENSION-ATTRIBUTE ::= {
UniversalPhysicalDeliveryOfficeName
IDENTIFIED BY 29 }
UniversalPhysicalDeliveryOfficeName ::= UniversalPDSParameter
physical-delivery-office-number EXTENSION-ATTRIBUTE ::= {
PhysicalDeliveryOfficeNumber
IDENTIFIED BY 11 }
PhysicalDeliveryOfficeNumber ::= PDSParameter
universal-physical-delivery-office-number EXTENSION-ATTRIBUTE ::= {
UniversalPhysicalDeliveryOfficeNumber
IDENTIFIED BY 30 }
UniversalPhysicalDeliveryOfficeNumber ::= UniversalPDSParameter
extension-OR-address-components EXTENSION-ATTRIBUTE ::= {
ExtensionORAddressComponents
IDENTIFIED BY 12 }
ExtensionORAddressComponents ::= PDSParameter
universal-extension-OR-address-components EXTENSION-ATTRIBUTE ::= {
UniversalExtensionORAddressComponents
IDENTIFIED BY 31 }
UniversalExtensionORAddressComponents ::= UniversalPDSParameter
physical-delivery-personal-name EXTENSION-ATTRIBUTE ::= {
PhysicalDeliveryPersonalName
IDENTIFIED BY 13 }
PhysicalDeliveryPersonalName ::= PDSParameter
universal-physical-delivery-personal-name EXTENSION-ATTRIBUTE ::= {
UniversalPhysicalDeliveryPersonalName
IDENTIFIED BY 32 }
UniversalPhysicalDeliveryPersonalName ::= UniversalPDSParameter
physical-delivery-organization-name EXTENSION-ATTRIBUTE ::= {

PhysicalDeliveryOrganizationName
IDENTIFIED BY 14 }

186 Rec. ITU-T X.509 (10/2012)

| SO/IEC 9594-8:2014 (E)
PhysicalDeliveryOrganizationName ::= PDSParameter

universal-physical-delivery-organization-name EXTENSION-ATTRIBUTE ::= {
UniversalPhysicalDeliveryOrganizationName
IDENTIFIED BY 33 }

UniversalPhysicalDeliveryOrganizationName ::= UniversalPDSParameter

extension-physical-delivery-address-components EXTENSION-ATTRIBUTE ::= {
ExtensionPhysicalDeliveryAddressComponents
IDENTIFIED BY 15 }

ExtensionPhysicalDeliveryAddressComponents ::= PDSParameter

universal-extension-physical-delivery-address-components EXTENSION-ATTRIBUTE ::= {
UniversalExtensionPhysicalDeliveryAddressComponents
IDENTIFIED BY 34 }

UniversalExtensionPhysicalDeliveryAddressComponents ::= UniversalPDSParameter

unformatted-postal-address EXTENSION-ATTRIBUTE ::= {
UnformattedPostalAddress
IDENTIFIED BY 16 }

UnformattedPostalAddress ::= SET {
printable-address SEQUENCE SIZE (1l..ub-pds-physical-address-lines) OF
PrintableString (SIZE (1l..ub-pds-parameter-length)) OPTIONAL,
teletex-string TeletexString (SIZE (1..ub-unformatted-address-length)) OPTIONAL }

universal-unformatted-postal-address EXTENSION-ATTRIBUTE ::= {
UniversalUnformattedPostalAddress

IDENTIFIED BY 35 }

UniversalUnformattedPostalAddress ::=
UniversalOrBMPString{ub-unformatted-address-length}

street-address EXTENSION-ATTRIBUTE ::= {
StreetAddress
IDENTIFIED BY 17 }
StreetAddress ::= PDSParameter
universal-street-address EXTENSION-ATTRIBUTE ::= {
UniversalStreetAddress
IDENTIFIED BY 36 }
UniversalStreetAddress ::= UniversalPDSParameter
post-office-box-address EXTENSION-ATTRIBUTE ::= {
PostOfficeBoxAddress
IDENTIFIED BY 18 }
PostOfficeBoxAddress ::= PDSParameter
universal-post-office-box-address EXTENSION-ATTRIBUTE ::= {
UniversalPostOfficeBoxAddress
IDENTIFIED BY 37 }
UniversalPostOfficeBoxAddress ::= UniversalPDSParameter
poste-restante-address EXTENSION-ATTRIBUTE ::= {
PosteRestanteAddress
IDENTIFIED BY 19 }
PosteRestanteAddress ::= PDSParameter
universal-poste-restante-address EXTENSION-ATTRIBUTE ::= {
UniversalPosteRestanteAddress

IDENTIFIED BY 38 }

UniversalPosteRestanteAddress ::= UniversalPDSParameter

Rec. ITU-T X.509 (10/2012) 187

| SO/l EC 9594-8:2014 (E)

unique-postal-name EXTENSION-ATTRIBUTE ::= {
UniquePostalName
IDENTIFIED BY 20 }

UniquePostalName ::= PDSParameter
universal-unique-postal-name EXTENSION-ATTRIBUTE ::= {
UniversalUniquePostalName
IDENTIFIED BY 39 }
UniversalUniquePostalName ::= UniversalPDSParameter
local-postal-attributes EXTENSION-ATTRIBUTE ::= {
LocalPostalAttributes
IDENTIFIED BY 21 }
LocalPostalAttributes ::= PDSParameter
universal-local-postal-attributes EXTENSION-ATTRIBUTE ::= {
UniversalLocalPostalAttributes
IDENTIFIED BY 40 }
UniversallLocalPostalAttributes ::= UniversalPDSParameter
PDSParameter ::= SET {
printable-string PrintableString(SIZE (1l..ub-pds-parameter-length)) OPTIONAL,
teletex-string TeletexString (SIZE (1..ub-pds-parameter-length)) OPTIONAL }
UniversalPDSParameter ::= UniversalOrBMPString{ub-pds-parameter-length}
extended-network-address EXTENSION-ATTRIBUTE ::= {
ExtendedNetworkAddress
IDENTIFIED BY 22 }

ExtendedNetworkAddress ::= CHOICE (

el63-4-address SEQUENCE {
number [0] NumericString(SIZE (1l..ub-el63-4-number-length)),
sub-address [1] NumericString(SIZE (1l..ub-el63-4-sub-address-length))
OPTIONAL},

psap-address [0] PresentationAddress }

terminal-type EXTENSION-ATTRIBUTE ::= {
TerminalType
IDENTIFIED BY 23 }

TerminalType ::= INTEGER {
telex(3), teletex(4), g3-facsimile(5), g4-facsimile(6), ia5-terminal(7),
videotex(8) } (0. .ub-integer-options)

-- Extension Domain-defined Attributes

teletex-domain-defined-attributes EXTENSION-ATTRIBUTE ::= {
TeletexDomainDefinedAttributes
IDENTIFIED BY 6 }

TeletexDomainDefinedAttributes ::=
SEQUENCE SIZE (l..ub-domain-defined-attributes) OF
TeletexDomainDefinedAttribute

TeletexDomainDefinedAttribute ::= SEQUENCE {
type TeletexString (SIZE (1..ub-domain-defined-attribute-type-length)),
value TeletexString(SIZE (1l..ub-domain-defined-attribute-value-length)) }

universal-domain-defined-attributes EXTENSION-ATTRIBUTE ::= {
UniversalDomainDefinedAttributes
IDENTIFIED BY 28 }

UniversalDomainDefinedAttributes ::=

SEQUENCE SIZE (1l..ub-domain-defined-attributes) OF
UniversalDomainDefinedAttribute

188 Rec. ITU-T X.509 (10/2012)

UniversalDomainDefinedAttribute ::= SEQUENCE {
type UniversalOrBMPString{ub-domain-defined-attribute-type-length},
value UniversalOrBMPString{ub-domain-defined-attribute-value-length} }

ub-integer-options
ub-el63-4-number-length
ub-el63-4-sub-address-length
ub-unformatted-address-length
ub-pds-parameter-length
ub-pds-physical-address-lines
ub-postal-code-length
ub-pds-name-length
ub-universal-surname-length
ub-universal-given-name-length
ub-universal-initials-length
ub-universal-generation-qualifier-length
ub-common-name-length
ub-extension-attributes
ub-domain-defined-attribute-type-length
ub-domain-defined-attribute-value-length
ub-domain-defined-attributes
ub-organizational-unit-name-length
ub-organizational-units
ub-generation-qualifier-length
ub-initials-length
ub-given-name-length

ub-surname-length
ub-numeric-user-id-length
ub-organization-name-length
ub-terminal-id-length
ub-x121-address-length
ub-domain-name-length
ub-country-name-alpha-length
ub-country-name-numeric-length

END -- MTSAbstractService

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

@ s s s ee es ss es e es ss e e e se es ss es e s ss e ee s ss es ee ee ee e

@6 06 s s 6s es es ee e es es es es e ss es ss ee s s es e s s es es e ee s s

256
15
40
180
30
6
16
16
64
40
16
16
64
256
8
128
4

| SO/l EC 9594-8:2014 (E)

Rec. | TU-T X.509 (10/2012)

189

I SO/I EC 9594-8:2014 (E)
Annex K

Use of Protected Passwordsfor Bind operations

(Thisannex does not form an integral part of this Recommendation | International Standard.)

The protected component of SimpleCredentials specifies an OCTET STRING to be hashed. This annex provides
information about how this octet-string may be constructed. It also proposes some suggested associated procedures.

Inits smple form, the octet-string is constructed as the DER encoding of the following:

SEQUENCE {
name DistinguishedName,
timel GeneralizedTime,
randoml BIT STRING,

password OCTET STRING }

The name component is the distinguished name of the sender and the password component is the password of the
sender.
The sender generates the two other values as follows:

a) The timel value should specify the time after which the authentication should fail. This time should be
"closely" after the current time.

b) The randoml value is a new random number generated for each authentication attempt. The value
should be sufficiently large to prevent the same number to be generated frequently.
The same pair of timel and randoml should never be used more than once.

The same value of name, timel and random1 shall be supplied in the simpleCredentials datatype of the Bind.
NOTE 1 — The hashing algorithm is also transferred.

Thereceiver of aBind request/result will perform the authentication as follows:

a) If thevauein timel, assupplied in the simpleCredentials, islessthan the current time seen by the
recipient, the authentication already fails here. Also, the time value should be different from recently
received time values.

b) If the value in the random1, as supplied in the simpleCredentials, iSequal to avaue received in a
recent Bind request/response, the authentication also fails.

¢) |If timel and randoml appear to be vdid, the name, timel and randoml included in the Bind
request/result, together with the local copy of the password, are used to generate a copy of the message
digest using the algorithm indicated.

d) [If the generated message digest is equal to the message digest received in the Bind request/result, the
authentication is positive, otherwise it fails.

The above procedure alows the password to be protected during transfer and it prevents a replay of the transmission
sequence. If the attempted reply is done early, the random number will cause the authentication to fail. If the reply is
attempted sometime later, the random number may be accepted, but the authentication will fail due to the time value.

The scheme above may be extended by using the following sequence.

SEQUENCE {
£f1 OCTET STRING, -- hashed octet string from above
time2 GeneralizedTime,

random2 BIT STRING }
The DER encoding of this data type is then used as the octet-string in the simpleCredentials.
In this casg, also the time2 and random2 have to beincluded in simpleCredentials.

The hashing algorithm used for producing the £1 component shall be the same as used for the hashing, as indicated
within the HasH data type within simpleCredentials.

NOTE 2 — This Directory Specification does not give any recommendation as to how values for time2 and random2 are
selected.

190 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

Annex L

Examples of password hashing algorithms

(Thisannex does not form an integral part of this Recommendation | International Standard.)

L.1 Null Hashing method

The null algorithm defined in Annex B is used when no hashing is to take place. The output of the method is the
unmodified password.

L.2 M D5 method

The hashed password is an octet string of 16 octets which is the MD5 digest of the concatenation of the clear password
and the salt which is an octet string, parameter of the algorithm. This hashing method is defined by the object identifier
mD5Algorithm defined in Annex B.

L.3 SHA-1 method

The hashed password is an octet string of 20 octets which is the SHA-1 digest of the concatenation of the clear
password and the salt which is an octet string, parameter of the algorithm. This hashing method is defined by the object
identifier shalalgorithm defined in Annex B.

Rec. ITU-T X.509 (10/2012) 191

| SO/l EC 9594-8:2014 (E)

Annex M

Alphabetical list of information item definitions

(Thisannex does not form an integral part of this Recommendation | International Standard.)

This annex provides an alphabetical index to the definitions of certificate and CRL formats, certificate extensions,
object classes, name forms, attribute types and matching rules defined in this Directory Specification.

Item Clause
Certificate and CRL formats
Attribute certificate format 12.1
Certificate revocation list 7.10
Public-key certificate format 7.2
Certificate, CRL & CRL entry extensions
AA issuing distribution point extension 8.6.2.7
Acceptable certificate policies extension 155.2.3
Acceptable privilege policies extension 15.1.24
Allowed attribute assignments extension 156.2.1
Attribute descriptor extension 153221
Attribute mappings extension 15.6.2.2
Authority attribute identifier extension 155.24.1
Authority key identifier extension 8221
Base update extension 8.6.25
Basic attribute constraints extension 155211
Basic constraints extension 8421
Certificate issuer extension 8.6.2.3
Certificate policies extension 8.2.2.6
CRL distribution points extension 8.6.2.1
CRL number extension 8521
CRL scope extension 85.2.2
CRL stream identifier extension 85.24
Delegated name constraints extension 155221
Delta CRL indicator extension 8.6.24
Deltainformation extension 8.5.2.6
Expired certificates on CRL extension 8.5.2.9
Extended key usage extension 8.2.24
Freshest CRL extension 8.6.2.6
Group AC extension 15.1.2.6
Holder name constraints extension 15.6.2.3
Hold instruction code extension 8.5.3.2
Indirect issuer extension 155.25
Inhibit any policy extension 84.24
Invalidity date extension 8.5.33
Issued on behalf of extension 155.2.6
Issuer alternative name extension 8322
Issuing distribution point extension 8.6.2.2
Key usage extension 8.223
Name constraints extension 8.4.2.2
No assertion extension 155.2.7

192 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

Item Clause
No revocation information extension 15.2.2.2
Ordered list extension 85.25
Policy constraints extension 8.4.23
Policy mappings extension 8.2.2.7
Private key usage period extension 8.2.25
Reason code extension 8531
Revoked group of certificates extension 8.5.2.8
Role specification certificate identifier extension 154211
Single use extension 15.1.25
SOA identifier extension 153211
Status referral extension 85.23
Subject alternative name extension 8321
Subject key identifier extension 8.2.2.2
Subject directory attributes extension 8.3.23
Targeting information extension 15.1.2.2
Time specification extension 151211
To be revoked extension 85.2.7
User notice extension 15.1.2.3
Object classes and name forms
Attribute certificate CRL distribution point object class 17.1.4
Certificate policy and CPS object class 1115
CRL distribution points object class and name form 11.1.3
Delta CRL object class 11.1.4
PKI1 CA object class 11.1.2
PKI certification path object class 11.1.6
PKI user object class 1111
PMI AA object class 17.1.2
PMI delegation path 17.15
PMI SOA object class 17.1.3
PMI user object class 17.11
Privilege policy object class 17.1.6
Protected privilege policy object class 17.1.7
Directory attributes
AA certificate attribute 17.2.2
AA certificate revocation list attribute 17.25
Attribute certificate attribute 17.21
Attribute certificate revocation list attribute 17.24
Attribute descriptor certificate attribute 17.2.3
Authority revocation list attribute 11.25
CA-certificate attribute 11.2.2
Certification practice statement attribute 11.2.8
Certificate policy attribute 11.2.9
Certificate revocation list attribute 1124
Cross-certificate pair attribute 11.2.3
Delegation path attribute 17.2.6
Deltarevocation list attribute 11.2.6
Permission attribute 14.8.1
PK1 path attribute 11.2.10

Rec. | TU-T X.509 (10/2012)

193

| SO/l EC 9594-8:2014 (E)

Item Clause
Privilege policy attribute 17.2.7
Protected privilege policy attribute 17.2.8
Role attribute 1451
Supported algorithms attribute 11.2.7
User certificate attribute 11.21
XML privilege information attribute 14.7
XML Protected privilege policy attribute 17.29
Matching rules
AA identifier match 155.2.4.2
Acceptable certificate policies match 155.2.3.2
Algorithm identifier match 11.3.7
Attribute certificate exact match 1731
Attribute certificate match 17.3.2
Attribute descriptor match 15.3.2.2.2
Basic attribute constraints match 155212
Certificate exact match 1131
Certificate list exact match 11.35
Certificate list match 11.36
Certificate match 11.3.2
Certificate pair exact match 11.3.3
Certificate pair match 11.34
Delegated name constraints match 155222
Delegation path match 17.3.4
Dual string match 14.8.2
Enhanced certificate match 11.3.10
Extension presence match 17.35
Holder issuer match 17.3.3
PKI Path match 11.39
Policy match 11.3.8
Role specification certificate ID match 154.2.1.2
SOA identifier match 153.2.1.2
Time specification match 15.1.2.1.2
PKI directory syntax definitions
X.509 Algorithm Identifier syntax 11511
X.509 Certificate Assertion 11.5.6
X.509 Certificate Exact Assertion 1155
X.509 Certificate List Assertion syntax 11.5.10
X.509 Certificate List Exact Assertion syntax 1159
X.509 Certificate List syntax 1152
X.509 Certificate Pair Assertion 1158
X.509 Certificate Pair Exact Assertion 11.5.7
X.509 Certificate Pair syntax 1153
X.509 Certificate syntax 1151
X.509 Supported Algorithm 11.5.4

194 Rec. ITU-T X.509 (10/2012)

| SO/l EC 9594-8:2014 (E)

Annex N

Amendmentsand corrigenda

(Thisannex does not form an integral part of this Recommendation | International Standard.)

This edition of this Directory Specification includes the following amendments that were balloted and approved
by ISO/IEC:

— Amendment 1 on Password policy support;
— Amendment 2 on Communications support enhancements; and
— Amendment 3 on Directory support for Identity Management.

This edition of this Directory Specification includes the following technical corrigenda correcting the defects
documented in Defect Reports against the sixth edition of this Directory Specification:

— Technical Corrigendum 1 (covering Defect Reports 348 and 352);
— Technical Corrigendum 2 (covering Defect Reports 353, 362, 365, 366, 368, 369, 372 and 373); and
— Technical Corrigendum 3 (covering Defect Report 388).

Rec. ITU-T X.509 (10/2012) 195

SeriesA
SeriesD
SeriesE
SeriesF
Series G
SeriesH
Series|

SeriesJ
SeriesK
SeriesL
SeriesM
SeriesN
SeriesO
SeriesP
SeriesQ
SeriesR
Series S
Series T
SeriesU
SeriesV
Series X
SeriesY
SeriesZ

SERIESOF ITU-T RECOMMENDATIONS

Organization of thework of ITU-T

General tariff principles

Overall network operation, telephone service, service operation and human factors
Non-tel ephone telecommunication services

Transmission systems and media, digital systems and networks

Audiovisual and multimedia systems

Integrated services digital network

Cable networks and transmission of television, sound programme and other multimedia signals
Protection against interference

Construction, installation and protection of cables and other elements of outside plant
Telecommunication management, including TMN and network maintenance
Maintenance: international sound programme and television transmission circuits
Specifications of measuring equipment

Terminals and subjective and objective assessment methods

Switching and signalling

Telegraph transmission

Telegraph services terminal equipment

Terminals for telematic services

Telegraph switching

Data communication over the telephone network

Data networks, open system communications and security

Glaobal information infrastructure, Internet protocol aspects and next-generation networks

Languages and general software aspects for telecommunication systems

Printed in Switzerland
Geneva, 2014

	ITU-T Rec. X.509 (10/2012) –
Information technology - Open Systems Interconnection - The Directory: Public-key and attribute certificate frameworks
	Summary
	History
	FOREWORD
	CONTENTS
	Introduction
	1 Scope
	2 Normative references
	2.1 Identical Recommendations | International Standards
	2.2 Paired Recommendations | International Standards equivalent in technical content
	2.3 Recommendations
	2.4 Other references

	3 Definitions
	3.1 OSI Reference Model security architecture definitions
	3.2 Baseline identity management terms and definitions
	3.3 Directory model definitions
	3.4 Access control framework definitions
	3.5 Public-key and attribute certificate definitions

	4 Abbreviations
	5 Conventions
	6 Frameworks overview
	6.1 Digital signatures
	6.2 Formal definitions for public-key cryptography
	6.3 Distinguished encoding of Basic Encoding Rules
	6.4 Applying distinguished encoding

	7 Public-keys and public-key certificates
	7.1 Introduction
	7.2 Public-key certificate
	7.3 Public-key certificate extensions
	7.4 Types of public-key certificates
	7.5 Trust anchor
	7.6 Entity relationship
	7.7 Certification path
	7.8 Generation of key pairs
	7.9 Public-key certificate creation
	7.10 Certificate revocation list
	7.11 Repudiation of a digital signing

	8 Public-key certificate and CRL extensions
	8.1 Policy handling
	8.2 Key and policy information extensions
	8.3 Subject and issuer information extensions
	8.4 Certification path constraint extensions
	8.5 Basic CRL extensions
	8.6 CRL distribution points and delta-CRL extensions

	9 Delta CRL relationship to base
	10 Certification path processing procedure
	10.1 Path processing inputs
	10.2 Path processing outputs
	10.3 Path processing variables
	10.4 Initialization step
	10.5 Certificate processing

	11 PKI directory schema
	11.1 PKI directory object classes and name forms
	11.2 PKI directory attributes
	11.3 PKI directory matching rules
	11.4 PKI directory syntax definitions

	12 Attribute Certificates
	12.1 Attribute certificate structure
	12.2 Attribute certification paths

	13 Attribute Authority, SOA and Certification Authority relationship
	13.1 Privilege in attribute certificates
	13.2 Privilege in public-key certificates

	14 PMI models
	14.1 General model
	14.2 Control model
	14.3 Delegation model
	14.4 Group assignment model
	14.5 Roles model
	14.6 Recognition of Authority Model
	14.7 XML privilege information attribute
	14.8 Permission attribute and matching rule

	15 Privilege management certificate extensions
	15.1 Basic privilege management extensions
	15.2 Privilege revocation extensions
	15.3 Source of Authority extensions
	15.4 Role extensions
	15.5 Delegation extensions
	15.6 Recognition of Authority Extensions

	16 Privilege path processing procedure
	16.1 Basic processing procedure
	16.2 Role processing procedure
	16.3 Delegation processing procedure

	17 PMI directory schema
	17.1 PMI directory object classes
	17.2 PMI Directory attributes
	17.3 PMI general directory matching rules

	18 Directory authentication
	18.1 Simple authentication procedure
	18.2 Password policy
	18.3 Strong Authentication

	19 Access control
	20 Protection of Directory operations
	Annex A –
 Public-Key and Attribute Certificate Frameworks
	Annex B –
Reference definition of algorithm object identifiers
	Annex C –
 CRL generation and processing rules
	C.1 Introduction
	C.2 Determine parameters for CRLs
	C.3 Determine CRLs required
	C.4 Obtain CRLs
	C.5 Process CRLs

	Annex D –
Examples of delta CRL issuance
	Annex E –
Privilege policy and privilege attribute definition examples
	E.1 Introduction
	E.2 Sample syntaxes
	E.3 Privilege attribute example

	Annex
 F – An introduction to public key cryptography2)
	Annex G –
Examples of use of certification path constraints
	G.1 Example 1: Use of basic constraints
	G.2 Example 2: Use of policy mapping and policy constraints
	G.3 Use of Name Constraints Extension

	Annex H –
Guidance on determining for which policies a certification path is valid
	H.1 Certification path valid for a user-specified policy required
	H.2 Certification path valid for any policy required
	H.3 Certification path valid regardless of policy
	H.4 Certification path valid for a user-specific policy desired, but not required

	Annex I –
Key usage certificate extension issues
	Annex J –
External ASN.1 modules
	Annex K –
 Use of Protected Passwords for Bind operations
	Annex L –
Examples of password hashing algorithms
	L.1 Null Hashing method
	L.2 MD5 method
	L.3 SHA-1 method

	Annex M –
Alphabetical list of information item definitions
	Annex N –
Amendments and corrigenda

