
IN2120 Information Security
Autumn 2018

L12: Application Security and
Secure System Development

Audun Jøsang

University of Oslo

Outline

1. Application Security
Malicious Software

Attacks on web applications

Secure System Development

2. Security by Design (Dagfinn Bergsager, USIT)

L12: App. Security 2UiO - IN2120 Autumn 2018

How do computers get infected ?

Executing attachments to emails which
contain exploits or malicious programs

Accessing a malicious or
infected website which
contains a malicious script, or
installing and starting malicious
programs from a website

Direct attacks from the network, which e.g.
exploit vulnerabilities in OS or applications
such web servers or SQL databases

L12: App. Security 3UiO - IN2120 Autumn 2018

Installing infected/malicious softwarePlugging in external
devices that are infected
with malicious software

Malware types
Backdoor or trapdoor
Logic bomb,
Trojan horse
Worm
Virus

Stealth virus

Uses techniques to hide itself, e.g. encryption

Polymorphic virus

Different for every system

Metamorphic virus

Different after every activation on same system

Exploit
A method to infect systems by using malicious program or input data
(e.g. document) that triggers and exploits a software bug in the systems

L12: App. Security 4UiO - IN2120 Autumn 2018

Exploits
A piece of software, data, or a sequence of
commands that exploits a software/hardware vulnerability
Can be carried in common data formats such as pdf
documents, office documents or media files.

Often contains carefully designed corrupt datatypes
Causes unintended or unanticipated behavior to occur on
computer software or hardware
Exploit functionality typically is to

Download a program/backdoor which allows the attacker to
control the platform
Directly take control of a computer system, allowing privilege
escalation, or a denial-of-service or other sabotage.

L12: App. Security 5UiO - IN2120 Autumn 2018

Backdoor or Trapdoor
Installed by exploit:

Provides remote control capabilities by attackers
Can reside on system for long periods before being used
Can be removed after use

Installed by user:
User can be tricked to install malicious program (see Trojan horse)

Installed during design:
is a hidden/secret entry point into a program,
allows those who know access bypassing usual security procedures
is commonly used by developers for testing
is a threat when left in production software allowing, exploit by attackers
is very hard to block in O/S
can be prevented with secure development lifecycle

L12: App. Security 6UiO - IN2120 Autumn 2018

The Cyber Kill Chain (Hutchins et al. 2011)

L12: App. Security UiO - IN2120 Autumn 2018 7

Cyberthreat execution and
possible steps to kill it

Reconaissance1

Weaponisation

Delivery

Exploitation

Installation

C&C

2

3

4

5

6

7

Time scale

Days, months, years

Days, months

Hours, days

Action/Exfiltration

Minutes, hours

Seconds

Milliseconds

Hours, days, years

Logic Bomb

one of oldest types of malicious software

code embedded in legitimate program

activated when specified conditions met
eg presence/absence of some file

particular date/time

particular user

causes damage when triggered
modify/delete files/disks, halt machine, etc

L12: App. Security 8UiO - IN2120 Autumn 2018

Trojan Horse

program with hidden side-effects
e.g. a back door

program is usually superficially attractive
eg game, s/w upgrade etc

performs additional tasks when executed
allows attacker to indirectly gain access they do not
have directly

often used to propagate a virus/worm or to install
a backdoor

L12: App. Security 9UiO - IN2120 Autumn 2018

Malicious Mobile Code

Program/script/macro that runs unchanged
on homogeneous platforms (e.g. Windows)

will only affect specific platforms

on heterogeneous platforms

will affect any platform that supports script/macro language

e.g. Office macros

Transmitted from remote system to local system & then
executed on local system

To inject Trojan horse, spyware, virus, worm etc. which can

directly perform specific attacks, such as unauthorized data
access, root compromise, sabotage

indirectly infect other systems and thereby spread

L12: App. Security 10UiO - IN2120 Autumn 2018

Viruses

piece of software that infects programs

specific to operating system and hardware
taking advantage of their details and weaknesses

a typical virus goes through phases of:
dormant

propagation

triggering

execution

L12: App. Security 11UiO - IN2120 Autumn 2018

Worms
Replicating programs that propagate over net

Access remote systems via network protocols to open ports

Attack vulnerable processes in remote systems

Can also use email, remote exec, remote login

Can have characteristics like a virus:
Dormant, triggering, execution, propagation & replication

Propagation phase: searches for other systems to infect

May disguise itself as a system process when executing

Morris Worm, the first and the best know worm, 1988
released by Robert Morris Jr., paralyzed the Internet (of 1988)

exploited vulnerabilities in UNIX systems

WannaCry Worm, epidemic infection in May 2017
exploits known, but unpatched, vulnerability in Windows XP

L12: App. Security 12UiO - IN2120 Autumn 2018

Worm Propagation Speed

L12: App. Security 13UiO - IN2120 Autumn 2018

What is a botnet ?
A botnet is a collection of computers infected with
malicious software agents (robots) that can be controlled
remotely by an attacker.

Owners of bot computers are typically unaware of infection.

Botnet controller is called a "bot herder" or "bot master"

Botnets execute malicious functions in a coordinated way:
Send spam email

Collect identity information

Denial of service attacks

Create more bots

Bitcoin mining

A botnet is typically named after the malware used to infect

Multiple botnets can use the same malware, but can still be
operated by different criminal groups

L12: App. Security UiO - IN2120 Autumn 2018 14

Botnet Architecture
Victims

Bots

L12: App. Security 15UiO - IN2120 Autumn 2018

Bot-herder

L12: App. Security UiO - IN2120 Autumn 2018 16

DDoS
Flood
Types

Direct attack
Bots send traffic with
own or spoofed
sender address to
victim

Reflected attack
Bots send traffic to
innocent hosts with
victim address as
sender address.
Innocent hosts
become part of attack
by replying to victim.

The web application security challenge

Hardened OS

Web Server

App Server

Custom Developed
Application Code

application layer

L12: App. Security UiO - IN2120 Autumn 2018 17Network security (firewall, SSL, IDS, hardening) does not stop application attacks

APPLICATION
ATTACK

18

What is SQL?

Structured Query Language: interface to relational
database systems.
Allows for insert, update, delete, and retrieval of data in a
database.
ANSI, ISO Standard, used extensively in web
applications.
Example:

L12: App. Security UiO - IN2120 Autumn 2018

19

SQL at back-end of websites

1. Take input from a web-form via HTTP methods such as
POST or GET, and pass it to a server-side application.

2. Application process opens connection to SQL database.
3. Query database with SQL and retrieve reply.
4. Process SQL reply and send results back to user.

Web
Server

Application
Server

Database
Server

L12: App. Security UiO - IN2120 Autumn 2018

1 2 3

344

SQL interface

20

What is SQL Injection?

Database system misinterpretation of input data
Attacker disguises SQL commands as data-input

With SQL injection, an attacker can get complete
control of database

no matter how well the system is patched,

no matter how well the firewall is configured,

Vulnerability exists when web application fails to
sanitize data input before sending to it database

Flaw is in web application, not in SQL database.

L12: App. Security UiO - IN2120 Autumn 2018

21

What is SQL Injection?

For example, if input field ask for a product number,
40 or 1 = 1

The result SQL command becomes:

All product records will be returned.

Data leak.

L12: App. Security UiO - IN2120 Autumn 2018

XKCD Little Bobby tables

L12: App. Security 22UiO - IN2120 Autumn 2018

Stored XSS

Attacker

Web server
trusted by victim

Input to website in the
form of attack script
disguised as user content

1

Access web
page

3

Attack script sent in
web page to client

4

Victim

Script
executes

5

Store and display
attack script on
web page

2

L12: App. Security 23UiO - IN2120 Autumn 2018

Stored XSS

Data provided by users to a web application is stored

and later displayed to users in a web page.
Typical example: online message boards.
Attacker uploads data containing malicious script to
server.
Every time the vulnerable web page is visited, the
malicious script gets executed in client browser.
Attacker needs to inject script just once.

L12: App. Security UiO - IN2120 Autumn 2018 24

Preventing SQL Injection and XSS

Validate all user entered parameters
CHECK data types and lengths
DISALLOW unwanted data (HTML tags, JavaScript, SQL commands)
ESCAPE questionable characters (ticks, --,semi-colon, brackets, etc.)

Hide information about Error handling
Error messages divulge information that can be used by hacker
Error messages must not reveal potentially sensitive information

L12: App. Security 25UiO - IN2120 Autumn 2018

Login to website
to access service

1

Broken Authentication and Session Mgmt

Cheshire Cat

Web server
trusted by
user

Provide service, and
let user stay logged-in

2

Alice

Email info about
website, including
URL containing
session Id

3 Access website
as Alice and
request service

4

Request
fulfilled 5

L12: Dev.Ops. Security 26UiO INF3510 - Spring 2014

Broken Authentication and Session Mgmnt
Problem and Fix

User authentication does not necessarily provide continuous
authentication assurance

User authentication is only at one point in time

Insecure implementation of session control with a static
session Id which is passed in the URL

Unfortunately this can be misused

Recommendations for session Id must be followed
E.g friom OWASP

Examples of controls for session Id:
Link session Id to e.g. IP address, TLS session Id

.

L12: App. Security 27UiO - IN2120 Autumn 2018

OWASP
The Open Web Application Security Project

Non-profit organisation
Local chapters in most countries, also in Norway

OWASP promotes security awareness and security
solutions for Web application development.

OWASP Top-10 security risks identify the most critical
security risks of providing online services

The Top 10 list also recommends relevant security solutions.

OWASP ASVS (Application Security Verification Standard)
specifies requirements for application-level security.

Provides and maintains many free tools for scanning and
security vulnerability fixing

L12: App. Security UiO - IN2120 Autumn 2018 28

Top-10 Web Application Risks

1. Injection

2. Broken Authentication and Session Management

3. Cross-Site Scripting (XSS)

4. Insecure Direct Object References

5. Security Misconfiguration

6. Sensitive Data Exposure

7. Missing Function Level Access Control

8. Cross-Site Request Forgery (CSRF)

9. Using Components with Known Vulnerabilities

10.Unvalidated Redirects and Forwards

L12: App. Security UiO - IN2120 Autumn 2018 29

Agile Software Development (e.g. Scrum)

Requirements are specified as stories

Each story implemented as sprint

Repeated sprint cycles until all stories
are implemented

L12: App. Security UiO - IN2120 Autumn 2018 30

Evaluate current
system

Release new software
Develop, integrate &
test new functionality

Plan new release
Break down user story

into functions
Select user stories for

the next release

Deploy system

Project planning

User Stories and Usecases
User Story Seen from the user perspective:
As an [actor] I want [action] so that [achievement].
For example: As a Flickr member, I want to set
different privacy levels on my photos, so I can control
who sees which of my photos.

Usecase Seen from the design perspective:
Description of a set of interactions between a system

or another system).

L12: App. Security UiO - IN2120 Autumn 2018
31

User
Story

Usecase Server logic

Secure Agile
Software Development

Secure agile has some additional steps

During project startup

During each sprint cycle

During final test and validation

Secure agile necessarily makes it a little less agile

L12: App. Security UiO - IN2120 Autumn 2018 32

Evaluate system &
review security

Release new
software

Develop, integrate
& test new function

Plan new release
Break down user

story into functions
Select user stories

for next release

Collect stakeholder
security concerns

Identify threat
scenarios to control

Project planning

Deploy system

Attacker Story and Misuse Case
(Attacker Goal and Threat Scenario)

Attacker Story The goal of the attacker:
As an [attacker] I want [action] so that [achievement].
So, for example: As an attacker, I want to hack into
Flickr accounts to steal photos and personal info.

Misuse Case (Threat Scenario)

Seen from the threat scenario perspective:
Description of a set of steps and interactions to be
executed by attacker to achieve goal.

L12: App. Security UiO - IN2120 Autumn 2018
33

Server logic

Attacker
Story

Misuse
case

Threat Modelling
in Secure Agile

Threat modelling is the process of identifying, analysing and describing
relevant threats (scenarios).

Do threat modelling and (light weight) risk assessment in each sprint.

Think: How could this new function be misused or attacked?

Which assets could be harmed? What consequences?

Stop or mitigate the threat (remove vulnerabilities) during the sprint.

L12: App. Security UiO - IN2120 Autumn 2018 34

Front-end
Web server

Back-end
app. logic

MySQL
database

Internet

Client platformUser

Threat agent with
attack goals

Threat scenarios

STRIDE Threat Modelling

Can an attacker gain access using a false identity?

Can an attacker modify data as it flows through the application?

If an attacker denies doing something, can we prove he did it?

Can an attacker gain access to private or potentially injurious data?

Can an attacker crash or reduce the availability of the system?

Can an attacker assume the identity of a privileged user?

L12: App. Security UiO - IN2120 Autumn 2018 35

Obligatorisk informasjonssikkerhet i IT-utdanningen

Stortinget har vedtatt at alle IT-studieprogrammer ved
universiteter og høyskoler må ha obligatoriske kurs I
informasjonssikkerhet
Source: https://www.tekna.no/aktuelt/tekna-gjennomslag-om-ikt-sikkerhet-i-utdanningen/

L12: App. Security UiO - IN2120 Autumn 2018 36

11. april 2018

