IN2120 Information Security University of Oslo Autumn 2018

Lecture 2 Cryptography

University of Oslo, Autumn 2018
Nils Gruschka

Outline

- What is cryptography?
- Brief crypto history
- Security issues
- Symmetric cryptography
- Stream ciphers

Want to learn more?
Look up UNIK 4220

- Block ciphers
- Hash functions
- Asymmetric cryptography
- Factoring based mechanisms
- Discrete Logarithms
- Digital signatures
- Quantum Resistant Crypto

The security pyramid

Mathematics

Electronics
Statistics

Informatics

Quantum physics

What is cryptology?

Oscar

Terminology

Cryptology

- Cryptography is the science of secret writing with the goal of hiding the meaning of a message.
- Cryptanalysis is the science and sometimes art of breaking cryptosystems.

Model of symmetric cryptosystem

Confidential Communication

Caesar cipher

Encryption: Move all characters by K positions "to the right"
 Decrytion: Move all characters by K positions "to the left"

Example: $\mathrm{K}=5$
Plaintext: kryptologi er et spennende fag
Chiphertext: pwduytqtln jw jy xujssjsij kfl
(Note: In the original Caesar cipher K was set fix to 3 .)

Numerical encoding of the alphabet

a	b	c	d	e	f	g	h	i	j	k	l	m	n	o
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14

p	q	r	s	t	u	v	w	x	y	z	\mathfrak{x}	\varnothing	a	
14	16	17	18	19	20	21	22	23	24	25	26	27	28	

Using this encoding many classical crypto systems can be expressed as algebraic functions over \mathbb{Z}_{26} (English alphabet) or \mathbb{Z}_{29} (Norwegian alphabet)

Shift cipher

Let $\mathcal{B}=\mathbb{Z}_{26}$. For $0 \leq K \leq 25$, we define
$\mathrm{E}(x, K)=x+K(\bmod 26)$
and
$\mathrm{D}(y, K)=y-K(\bmod 26)$
$\left(x, y \in \mathbb{Z}_{26}\right)$
Question: What is the size of the key space?
Puzzle: ct =
LAHYCXPAJYQHRBWNNMNMOXABNLDANLXVVDWRLJCRXWB Find the plaintext!

Exhaustive search

$$
\begin{aligned}
& \text { For }[\mathrm{i}=0, \mathrm{i}<26, \mathrm{i}++ \text {, Print["Key = ", i, " Plain = ", decrypt[ct,1,i]]] } \\
& \hline \text { Key }=0 \text { Plain }=\text { LAHYCXPAJYQHRBWNNMNMOXABNLDANLXVVDWRLJCRXWB } \\
& \text { Key }=1 \text { Plain }=\text { KZGXBWOZIXPGQAVMMLMLNWZAMKCZMKWUUCVQKIBQWVA } \\
& \text { Key }=2 \text { Plain }=\text { JYFWAVNYHWOFPZULLKLKMVYZLJBYLJVTTBUPJHAPVUZ } \\
& \text { Key }=3 \text { Plain }=\text { IXEVZUMXGVNEOYTKKJKJLUXYKIAXKIUSSATOIGZOUTY } \\
& \text { Key }=4 \text { Plain }=\text { HWDUYTLWFUMDNXSJJIIIKTWXJHZWJHTRRZSNHFYNTSX } \\
& \text { Key }=5 \text { Plain }=\text { GVCTXSKVETLCMWRIIHIHJSVWIGYVIGSQQYRMGEXMSRW } \\
& \text { Key }=6 \text { Plain }=\text { FUBSWRJUDSKBLVQHHGHGIRUVHFXUHFRPPXQLFDWLRQV } \\
& \text { Key }=7 \text { Plain }=\text { ETARVQITCRJAKUPGGFGFHQTUGEWTGEQOOWPKECVKQPU } \\
& \text { Key }=8 \text { Plain }=\text { DSZQUPHSBQIZJTOFFEFEGPSTFDVSFDPNNVOJDBUJPOT } \\
& \text { Key }=9 \text { Plain }=\text { CRYPTOGRAPHYISNEEDEDFORSECURECOMMUNICATIONS } \\
& \text { Key }=10 \text { Plain }=\text { BQXOSNFQZOGXHRMDDCDCENQRDBTQDBNLLTMHBZSHNMR } \\
& \text { Key }=11 \text { Plain }=\text { APWNRMEPYNFWGQLCCBCBDMPQCASPCAMKKSLGAYRGMLQ } \\
& \text { Key }=12 \text { Plain }=\text { ZOVMQLDOXMEVFPKBBABACLOPBZROBZLJJRKFZXQFLKP }
\end{aligned}
$$

Exhaustive search

$$
\begin{aligned}
& \text { For }[\mathrm{i}=0, \mathrm{i}<26, \mathrm{i}++ \text {, Print["Key = ", i, " Plain = ", decrypt[ct,1,i]]] } \\
& \hline \text { Key }=0 \text { Plain }=\text { LAHYCXPAJYQHRBWNNMNMOXABNLDANLXVVDWRLJCRXWB } \\
& \text { Key }=1 \text { Plain }=\text { KZGXBWOZIXPGQAVMMLMLNWZAMKCZMKWUUCVQKIBQWVA } \\
& \text { Key }=2 \text { Plain }=\text { JYFWAVNYHWOFPZULLKLKMVYZLJBYLJVTTBUPJHAPVUZ } \\
& \text { Key }=3 \text { Plain }=\text { IXEVZUMXGVNEOYTKKJKJLUXYKIAXKIUSSATOIGZOUTY } \\
& \text { Key }=4 \text { Plain }=\text { HWDUYTLWFUMDNXSJJIIIKTWXJHZWJHTRRZSNHFYNTSX } \\
& \text { Key }=5 \text { Plain }=\text { GVCTXSKVETLCMWRIIHIHJSVWIGYVIGSQQYRMGEXMSRW } \\
& \text { Key }=6 \text { Plain }=\text { FUBSWRJUDSKBLVQHHGHGIRUVHFXUHFRPPXQLFDWLRQV } \\
& \text { Key }=7 \text { Plain }=\text { ETARVQITCRJAKUPGGFGFHQTUGEWTGEQOOWPKECVKQPU } \\
& \text { Key }=8 \text { Plain }=\text { DSZQUPHSBQIZJTOFFEFEGPSTFDVSFDPNNVOJDBUJPOT } \\
& \text { Key }=9 \text { Plain }=\text { CRYPTOGRAPHYISNEEDEDFORSECURECOMMUNICATIONS } \\
& \text { Key }=10 \text { Plain }=\text { BQXOSNFQZOGXHRMDDCDCENQRDBTQDBNLLTMHBZSHNMR } \\
& \text { Key }=11 \text { Plain }=\text { APWNRMEPYNFWGQLCCBCBDMPQCASPCAMKKSLGAYRGMLQ } \\
& \text { Key }=12 \text { Plain }=\text { ZOVMQLDOXMEVFPKBBABACLOPBZROBZLJJRKFZXQFLKP }
\end{aligned}
$$

Exhaustive search

Finding the correct key is hard, without knowledge of the plaintext.

One-Time Pad Encryption Exhaustive search

Brute-Force Attack (or Exhaustive Key Search)

- Treats the cipher as a black box
- Requires (at least) one plaintext-ciphertext pair $\left(x_{0}, y_{0}\right)$
- Check all possible keys K until condition is fulfilled:

$$
d_{k}\left(y_{0}\right)=x_{0}
$$

- How many keys do we need to test?

Substitution cipher - example

a	b	c	d	e	f	g	h	i	j	k	l	m	n	o
U	D	M	I	P	Y	Æ	K	O	X	S	N	\AA	F	A
p	q	r	s	t	u	v	w	x	y	z	\mathfrak{x}	\varnothing	a	
E	R	T	Z	B	\varnothing	C	Q	G	W	H	L	V	J	

Plaintext: fermatssisteteorem Ciphertext: YPTÅUBZZOZBPBPATPÅ

What is the size of the key space?

$$
29!\approx 2^{103}
$$

Breaking (monoalphabetic) Substitution ciphers

- How to break a message like this?
- Tvctujuvujpo djqixs jt b nxuipe pg xodszqujoh cz fijdi vojut pg qmbjouxyu bsx sxqmbdxe fjui djqixsuxyu; bddpsejoh up b gjyxe tztuxn- uix vojut nbz cx tjohmx mxuuxst uix nptu dpnnpo; qbjst pg mxuuxst; usjqmxut pg mxuuxst; njyuvsxt pg uix bcpwx; boe tp gpsui, Uix sxdxjwxs exdjqixst uix uxyu cz qxsgpsnjoh uix jowxstx tvctujuvujpo,

Lessons learned

- A cipher with a small keyspace can easily be attacked by exhaustive search
- A large keyspace is necessary for a secure cipher, but it is by itself not suffcient
- Monoalphabetical substitution ciphers can easily be broken

Cryptanalysis: Attacking Cryptosystems

- Classical Attacks
- Mathematical Analysis
- Brute-Force Attack
- Implementation Attack: Try to extract the key through reverse engineering or power measurement, e.g., for a banking smart card.
- Social Engineering: E.g., trick a user into giving up her password

Does secure ciphers exist?

- What is a secure cipher?
- Perfect security
- Computational security
- Provable security

A perfect secure crypto system

Offers perfect security assuming the key is perfectly random, of same length as The Message; and only used once. Proved by Claude E. Shannon in 1949.

ETCRRM

- Electronic Teleprinter

Cryptographic Regenerative Repeater Mixer (ETCRRM)

- Invented by the Norwegian Army Signal Corps in 1950
- Bjørn Rørholt, Kåre Mesingseth
- Produced by STK
- Used for "Hot-line" between Moskva and Washington
- About 2000 devices produced

White House Crypto Room 1960s

Symmetric encryption

- Is it possible to design secure and practical crypto?

Symmetric stream cipher

Symmetric stream cipher

- Examples:
- A5/1 and A5/2 (1989; used in GSM) \rightarrow broken
- RC4 (1987) \rightarrow broken
- Salsa20 (2005)
- ChaCha20 (2008)

Symmetric Block Cipher

Symmetric block cipher

Ciphertext

- The algorithm represents a family of permutations of the message space
- Normally designed by iterating a less secure round function
- May be applied in different operational modes
- Must be impossible to derive K based on knowledge of P and C

Data Encryption Standard

- Published in 1977 by the US National Bureau of Standards for use in unclassified government applications with a 15 year life time.
- 16 round Feistel cipher with 64-bit data blocks, 56-bit keys.
- 56-bit keys were controversial in 1977; today, exhaustive search on 56-bit keys is very feasible.
- Controversial because of classified design criteria, however no loop hole was ever found.

Breaking DES

- Brute force attack on a 56 bit DES key:
- 1998: EFF DES Cracker (ASICs), 4.5 days, 250.000\$
- 2006: COPACOBANA (FPGA), 6.4 days, $10.000 \$$
- 2012: Pico Computing (FPGA), 0.5 days

Advanced Encryption Standard

- Public competition to replace DES: because 56bit keys and 64-bit data blocks no longer adequate.
- Rijndael nominated as the new Advanced Encryption Standard (AES) in 2001 [FIPS-197].
- Rijndael (pronounce as "Rhine-doll") designed by Vincent Rijmen and Joan Daemen.
- 128-bit block size (Note error in Harris p. 809)
- 128-bit, 192-bit, and 256-bit key sizes.

Rijndael round function

Breaking AES

- How long does a brute force attack on a 128 or 256 bit AES key take?
- Assumption: breaking 56 bit in 1 second

Key length	Duration
56 bit	1 s
64 bit	4 m
80 bit	194 d
112 bit	$10^{9} \mathrm{a}$
128 bit	$10^{14} \mathrm{a}$
192 bit	$10^{33} \mathrm{a}$
256 bit	$10^{52} \mathrm{a}$

Key length in bit	Key space	Security life time (assuming brute-force as best possible attack)
64	2^{64}	Short term (few days or less)
128	2^{128}	Long-term (several decades in the absence of quantum computers)
256	2^{256}	Long-term (also resistant against quantum computers - note that QC do not exist at the moment and might never exist)

Block Cipher: Electronic Code Book

Lo\%91Pa*/qF8Q10 Lo\%91Pa*/qF8Q10 Lo\%91Pa*/qF8Q10

Modes in Block Ciphers

Plaintext
Ciphertext using ECB mode

Ciphertext using CBC mode

Block Ciphers: Modes of Operation

- Block ciphers can be used in different modes in order to provide different security services.
- Common modes include:
- Electronic Code Book (ECB)
- Cipher Block Chaining (CBC)
- Galois Counter Mode (GCM) \{Authenticated encryption\}

Integrity Check Functions

Hash functions

Data

ISBN-13 Number

- 978-0-306-40615-r

$r=\left(10-\left(x_{1}+3 x_{2}+x_{3}+3 x_{4}+\cdots+x_{11}+3 x_{12}\right) \bmod 10\right)$
- $\mathrm{r}=7 \rightarrow$ 978-0-306-40615-7
- (Weak) integrity protection:
- Transmit ISBN number (just the first 12 digits)
- Transmit check digit on a secure channel
- Receiver compares calculated r_{1} and received check digit r_{2}
- If any one of the 12 digits is changed during transmission $\rightarrow r_{1} \neq r_{2}$

Applications of hash functions

Hash functions (message digest functions)

Requirements for a one-way hash function h :

1. Ease of computation: given x, it is easy to compute $h(x)$.
2. Compression: h maps inputs x of arbitrary bitlength to outputs $h(x)$ of a fixed bitlength n.
3. One-way: given a value y, it is computationally infeasible to find an input x so that $h(x)=y$.
4. Collision resistance: it is computationally infeasible to find x and x^{\prime}, where $x \neq x^{\prime}$, with $h(x)=h\left(x^{\prime}\right)$ (note: two variants of this property).

Properties of hash functions

Ease of Pre-image Collision Weak collision computationresistance resistance

Strong ($2^{\text {nd }}$ pre-image resistance resistance)

Further applications of hash functions

- Comparing files
- Protection of password
- Authentication of SW distributions
- Bitcoin
- Generation of Message Authentication Codes (MAC)
- Digital signatures
- Pseudo number generation/Mask generation functions
- Key derivation

Frequently used hash functions

- MD5: 128 bit digest. Broken. Often used in Internet protocols but no longer recommended.
- SHA-1 (Secure Hash Algorithm):160 bit digest. Potential attacks exist.
- SHA-2: Replacement for SHA-1. 256, 384 or 512 bit digest (called SHA-256, SHA-384, SHA-512). Still secure.
- RIPEMD-160: 160 bit digest. Still secure. Hash function frequently used by European cryptographic service providers.
- NIST competition for new secure hash algorithm (SHA-3), closed in 2012

And the winner is?

- NIST announced Keccak as the winner of the SHA-3 Cryptographic Hash Algorithm Competition on October 2, 2012, and ended the fiveyear competition.
- Keccak was designed by a team of cryptographers from Belgium and Italy, they are:
- Guido Bertoni (Italy) of STMicroelectronics,
- Joan Daemen (Belgium) of STMicroelectronics,
- Michaël Peeters (Belgium) of NXP Semiconductors, and
- Gilles Van Assche (Belgium) of STMicroelectronics.

Keccak and sponge functions

MAC and MAC algorithms

- MAC means two things:

1. The computed message authentication code $h(M, k)$
2. General name for algorithms used to compute a MAC

- In practice, the MAC algorithm is e.g.
- HMAC (Hash-based MAC algorithm))
- CBC-MAC (CBC based MAC algorithm)
- CMAC (Cipher-based MAC algorithm)
- MAC algorithms, a.k.a. keyed hash functions, support data origin authentication services.

Practical message integrity with MAC

HMAC

- Define: ipad $=3636 \ldots 36$ (512 bit)
- opad = 5C5C...5C (512 bit)
- $\operatorname{HMAC}_{K}(x)=\operatorname{hash}((K \oplus$ opad $) \| \operatorname{hash}((K \oplus i p a d) \| x))$

Public-Key Cryptography

Symmetric cryptosystem

Asymmetric crypto system

Public key inventors?

Marty Hellman and Whitfield Diffie, Stanford 1976

R. Rivest, A. Shamir and L. Adleman, MIT 1978

James Ellis, CESG 1970

C. Cocks, M. Williamson, CESG 1973-1974

Asymmetric crypto

Public key Cryptography was born in May 1975, the child of two problems and a misunderstanding!

One-way functions

Modular power function

Given $n=p q$, where p and q are prime numbers. No
efficient algoritms to find p and q.
Chose a positive integer b and define $f: Z_{n} \rightarrow Z_{n}$

$$
f(x)=x^{b} \bmod n
$$

Modular exponentiation
Given prime p, generator g and a modular power $a=g^{x}(\bmod p)$. No
efficient algoritms to find $x . f: Z_{p} \rightarrow Z_{p}$

$$
f(x)=g^{x} \bmod p
$$

Diffie-Hellman Key Exchange

- https://www.youtube.com/watch?v=YEBfamvdo\&t=2m6s

Diffie-Hellman key agreement (key exchange) (provides no authentication)

Alice picks random integer a

$g^{a} \bmod p$

$g^{b} \bmod p$
Computationally impossible to compute discrete logarithm

Bob picks random integer b

Alice computes the shared secret

$$
\left(g^{b}\right)^{a}=g^{a b} \bmod p
$$

Bob computes the same secret

$$
\left(g^{a}\right)^{b}=g^{a b} \bmod p .
$$

Example

- Z_{11} using $g=2$:
$-2^{1}=2(\bmod 11) 2^{6}=9(\bmod 11)$
$-2^{2}=4(\bmod 11) 2^{7}=7(\bmod 11)$
$-2^{3}=8(\bmod 11) 2^{8}=3(\bmod 11)$
$-2^{4}=5(\bmod 11) 2^{9}=6(\bmod 11)$
$-2^{5}=10(\bmod 11) 2^{10}=1(\bmod 11)$
- $\log _{2} 5=4$
- $\log _{2} 7=7$
- $\log _{2} 1=10(\equiv 0 \bmod 10)$

Example (2)

Abstract

p = 3019662633453665226674644411185277127204721722044543980521881984280643980698016315342127777985323 7655786915947633907457862442472144616346714598423225826077976000905549946633556169688641786953396 0040623713995997295449774004045416733136225768251717475634638402409117911722715606961870076297223 4159137526583857970362142317237148068590959528891803802119028293828368386437223302582405986762635 8694772029533769528178666567879514981999272674689885986300092124730492599541021908208672727813714 8522572014844749083522090193190746907275606521624184144352256368927493398678089550310568789287558 75522700141844883356351776833964003 g = 1721484410294542720413651217788953849637988183467987659847411571496616170507302662812929883501017 4348250308006877834103702727269721499966768323290540216992770986728538508742382941595672248624817 9949179397494476750553747868409726540440305778460006450549504248776668609868201521098873552043631 7965394509849072406890541468179263651065250794610243485216627272170663501147422628994581789339082 7991578201408649196984764863302981052471409215846871176739109049866118609117954454512573209668379 5760420560620966283259002319100903253019113331521813948039086102149370446134117406508009893347295 86051242347771056691010439032429058

Finn a når $\mathrm{g}^{\mathrm{a}}(\bmod \mathrm{p})=$ 4411321635506521515968448863968324914909246042765028824594289876687657182492169027666262097915382 0952830455103982849705054980427000258241321067445164291945709875449674237106754516103276658256727 2413603372376920980338976048557155564281928533840136742732489850550648761094630053148353906425838 5317698361559907392252360968934338558269603389519179121915049733353702083721856421988041492207985 6566434665604898681669845852964624047443239120501341277499692338517113201830210812184500672101247 2700988032756016626566167579963223042395414267579262222147625965023052419869061244027798941410432 6855174387813098860607831088110617

Solution

$\mathrm{a}=$
71893136149709653804503478677866573695060790720621260648699193249561437588126371185 81694154929099396752251787268346548051895320171079663652680741564200286881487888963 19895353311170236034836658449187117723820644855184055305945501710227615558093657781 93109639893698220411548578601884177129022057550866690223052160523604836233675971504 25938247630127368253363295292024736143937779912318142315499711747531882501424082252 28164641111954587558230112140813226698098654739025636607106425212812421038155501562 37005192231836155067262308141154795194735834753570104459663325337960304941906119476 18181858300094662765895526963615406

It is easy to compute $g^{a}(\bmod p)\{0.016 s\}$, but it is computaionally infeasable to compute the exponent a from the g^{a}.

Diffie-Hellman Applications

- SSL/TLS
- (Ephemeral) Diffie-Hellman is nowadays the standard for key exchange in SSL/TLS protocol
- IPSec (IP Security)
- IKE (Internet Key Exchange) is part of the IPSec protocol suite
- IKE is based on Diffie-Hellman Key Agreement

Ron Rivest, Adi Shamir and Len Adleman

- Read about public-key cryptography in 1976 article by Diffie \& Hellman: "New directions in cryptography"
- Intrigued, they worked on finding a practical algorithm
- Spent several months in 1976 to re-invent the method for non-secret/public-key encryption discovered by Clifford Cocks 3 years earlier
- Named RSA algorithm

RSA parameters (textbook version)

- Bob generates two large prime numbers p and q and computes $n=$ $p \cdot q$.
- He then computes a public encryption exponent e, such that
- $\operatorname{gcd}(e,(p-1)(q-1)))=1$ and computes the corresponding decryption exponent d, by solving:

$$
d \cdot e \equiv 1(\bmod (p-1)(q-1))
$$

- Bob's public key is the pair $\mathrm{P}_{\mathrm{B}}=(e, n)$ and the corresponding private and secret key is $\mathrm{S}_{\mathrm{B}}=(d, n)$.

Encryption: $\mathrm{C}=\mathrm{M}^{e}(\bmod n)$
Decryption: $\mathrm{M}=\mathrm{C}^{d}(\bmod n)$

RSA toy example

- Set $p=157, q=223$. Then $n=p \cdot q=157 \cdot 223=35011$ and $(p-1)(q-1)=156 \cdot 222=34632$
- Set encryption exponent: $e=14213\{\operatorname{gcd}(34632,14213)=1\}$
- Public key: $(14213,35011)$
- Compute: $d=e^{-1}=14213^{-1}(\bmod 34632)=31613$
- Private key: $(31613,35011)$
- Encryption:
- Plaintext $\mathrm{M}=19726$, then $\mathrm{C}=19726^{14213}(\bmod 35011)=32986$
- Decryption:
- Cipherertext $C=32986$, then $M=32986^{31613}(\bmod 35011)=19726$

Factoring record- December 2009

Find the product of
$\mathrm{p}=33478071698956898786044169848212690817704794983713768568$
912431388982883793878002287614711652531743087737814467999489
and
$\mathrm{q}=367460436667995904282446337996279526322791581643430876426$ $76032283815739666511279233373417143396810270092798736308917 ?$

Answer:
$\mathrm{n}=123018668453011775513049495838496272077285356959533479219732$ 245215172640050726365751874520219978646938995647494277406384592 519255732630345373154826850791702612214291346167042921431160222 1240479274737794080665351419597459856902143413

Computation time ca. 0.0000003 s on a fast laptop!
RSA768 - Largest RSA-modulus that have been factored (12/12-2009) Up to 2007 there was $50000 \$$ prize money for this factorisation!

Computational effort?

- Factoring using NFS-algorithm (Number Field Sieve)
- 6 mnd using 80 cores to find suitable polynomial
- Solding from August 2007 to April 2009 (1500 AMD64-år)
- 192796550 * 192795550 matrise (105 GB)
- 119 days on 8 different clusters
- Corresponds to 2000 years processing on one single core 2.2GHz AMD Opteron (ca. 2^{67} instructions)

Asymmetric Ciphers: Examples of Cryptosystems

- RSA: best known asymmetric algorithm.
- RSA = Rivest, Shamir, and Adleman (published 1977)
- Historical Note: U.K. cryptographer Clifford Cocks invented the same algorithm in 1973, but didn't publish.
- ElGamal Cryptosystem
- Based on the difficulty of solving the discrete log problem.
- Elliptic Curve Cryptography
- Based on the difficulty of solving the EC discrete log problem.
- Provides same level of security with smaller key sizes.

Elliptic curves

- Let $p>3$ be a prime. An elliptic curve $y^{2}=x^{3}+a x+b$ over $\mathrm{GF}(p)=Z_{p}$ consist of all solutions $(x, y) \in Z_{p} \times Z_{p}$ to the equation

$$
y^{2} \equiv x^{3}+a x+b(\bmod p)
$$

- where $a, b \in Z_{p}$ are constants such that $4 a^{3}+27 b^{2} \neq 0(\bmod p)$, together with a special point m_{-}which is denoted as the point at infinity.

Elliptic curve over R

Point addition

Asymmetric Encryption: Basic encryption operation

- In practice, large messages are not encrypted directly with asymmetric algorithms. Hybrid systems are used, where only symmetric session key is encrypted with asymmetric alg.
Alice

Hybrid Cryptosystems

- Symmetric ciphers are faster than asymmetric ciphers (because they are less computationally expensive), but ...
- Asymmetric ciphers simplify key distribution, therefore ...
- a combination of both symmetric and asymmetric ciphers can be used - a hybrid system:
- The asymmetric cipher is used to distribute a randomly chosen symmetric key.
- The symmetric cipher is used for encrypting bulk data.

Confidentiality Services: Hybrid Cryptosystems

Digital Signatures

Digital Signature Mechanisms

- A MAC cannot be used as evidence that should be verified by a third party.
- Digital signatures used for non-repudiation, data origin authentication and data integrity services, and in some authentication exchange mechanisms.
- Digital signature mechanisms have three components:
- key generation
- signing procedure (private)
- verification procedure (public)
- Algorithms
- RSA
- DSA and ECDSA

Practical digital signature based on hash value

Digital Signatures

- To get an authentication service that links a document to A 's name (identity) and not just a verification key, we require a procedure for B to get an authentic copy of A's public key.
- Only then do we have a service that proves the authenticity of documents 'signed by A '.
- This can be provided by a PKI (Public Key Infrastructure)
- Yet even such a service does not provide nonrepudiation at the level of persons.

Difference between MACs \& Dig. Sig.

- MACs and digital signatures are both authentication mechanisms.
- MAC: the verifier needs the secret that was used to compute the MAC; thus a MAC is unsuitable as evidence with a third party.
- The third party does not have the secret.
- The third party cannot distinguish between the parties knowing the secret.
- Digital signatures can be validated by third parties, and can in theory thereby support both non-repudiation and authentication.

Key length comparison:

Symmetric and Asymmetric ciphers offering comparable security

AES Key Size	RSA Key Size	Elliptic curve Key Size
-	1024	163
128	3072	256
192	7680	384
256	15360	512

Another look at key lengths

Table 1. Intuitive security levels.

security level				
	volume of water to bring to a boil	symmetric key	cryptographic hash	RSA modulus
teaspoon security	0.0025 liter	35	70	242
shower security	coler	50	100	453
pool security	2500000 liter	65	130	745
rain security	$0.082 \mathrm{~km}^{3}$	80	160	1130
lake security	$89 \mathrm{~km}^{3}$	90	180	1440
sea security	$3750000 \mathrm{~km}^{3}$	105	210	1990
global security	$1400000000 \mathrm{~km}^{3}$	114	228	2380
solar security	-	140	280	3730

The eavesdropper strikes back!

MIT
Technology
Review

Computing

NSA Says It "Must Act Now" Against the Quantum Computing Threat

The National Security Agency is worried that quantum computers will neutralize our best encryption - but doesn't yet know what to do about that problem.

by Tom Simonite February 3,2016

Quantum Computers

- Proposed by Richard Feynman 1982
- Boosted by P. Schor's algorithm for integer factorization and discrete logarithm in quantum polynomial time
- Operates on qubit - superposition of 0 and 1
- IBM built a 7-bit quantum computer and could find the factors of the integer 15 using NMR techniques in 2001
- NMR does not scale
- Progress continues, but nobody knows if or when a large scale quantum computer ever can be constructed
- QC will kill current public key techniques, but does not mean an end to symmetric crypto

Classical bit vs. qubits

$$
\Psi=\alpha|0\rangle+\beta|1\rangle \text {, where }|\alpha|^{2}+|\beta|^{2}=1
$$

QC impact to cryptography

-When will a quantum computer be built?
-15 years, \$1 billion USD, nuclear power plant (PQCrypto 2014, Matteo Mariantoni)

- m mact:
-Public key crypto:
-RSA
- Elliptic Curve Cryptography (ECDSA)
-Finite Field Cryptography (DSA)
-Diffie-Hellman key exchange
-Symmetric key crypto:
-AES Need larger keys

-Triple DES Need larger keys
-Hash functions:
-SHA-1, SHA-2 and SHA-3 Use longer output

Current world record of QF!

Table 5: Quantum factorization records					
Number	\# of factors	\# of qubits needed	Algorithm	Year implemented	Implemented without prior knowledge of solution
15	2	8	Shor	2001 [2]	x
	2	8	Shor	2007 [3]	x
	2	8	Shor	2007 [3]	x
	2	8	Shor	2009 [5]	x
	2	8	Shor	2012 [6]	x
21	2	10	Shor	2012 [7]	x
143	2	4	minimization	2012 [1]	\checkmark
56153	2	4	minimization	2012 [1]	\checkmark
291311	2	6	minimization	not yet	\checkmark
175	3	3	minimization	not yet	\checkmark

Two variants of quantum safe crypto

Quantum cryptography:

-The use of quantum mechanics to guarantee secure communication.
-It enables two parties to produce a shared random secret key known only to them, which can then be used to encrypt and decrypt messages. Quantum resistant cryptography:
-The use of cryptographic mechanisms based on computationally difficult problems for which no efficient quantum computing algorithm is known

QKD via satellite

nature
Home \mid News \& Comment \mid Research \mid Careers \& Jobs \mid Current Issue \mid Archive \mid Audio \& Video \mid Fc News \& Comment \geqslant News >2017 〉September $>$ Article
NATURE | NEWS < 昌

China's quantum satellite clears major hurdle on way to ultrasecure communications

Probe sends entangled photons - which could underpin quantum-based data encryption - over unprecedented distance.

Davide Castelvecchi
15 June 2017
Q Rights \& Permissions

A composite photo from December 2016 shows a link established between China's quantum satellite Micius and a ground station in the Tibet Autonomous Region.

Quantum Resistant Cryptography

$>$ Code Based Asymmetric Algorithms
> Lattice Based Asymmetric Algorithms
> Asymmetric Crypto based on Multivariate Polynomials
> Asymmetric Crypto based on Cryptographic Hash Functions
$>$ Asymmetric Crypto based on Isogenies of (supersingular) elliptic curves

Should we worry about quantum computing?

X: Time it takes to develop post-quantum crypto
Y: Time period traditional crypto must remain secure
Z: Time it takes to develop practical quantum computers

Recent news

News room > News releases

IBM Announces Advances to IBM Quantum Systems \& Ecosystem

-- Client systems with 20 qubits ready for use; next-generation IBM Q system in development with first working $\mathbf{5 0}$ qubit processor
-- IBM expands its open-source quantum software package QISKit; offers the world's most advanced ecosystem for quantum computing

```
Select a topic or year
```

\downarrow News release
\downarrow Related XML feeds
\downarrow Contact(s) information
\downarrow Related resources

Yorktown Heights, N.Y. - 10 Nov 2017: IBM (NYSE: IBM) announced today two significant quantum processor upgrades for its IBM Q early-access commercial systems. These upgrades represent rapid advances in quantum hardware as IBM continues to drive progress across the entire quantum computing technology stack, with focus on systems, software, applications and enablement.

Recent news

KVANTEDATAMASKIN
 Svenske forskere får nær en milliard kroner til å utvikle kvantedatamaskin

AV: HARALD BROMBACH | MASKINVARE | PUBLISERT: 15. NOV. 2017-12:00

34

Twiter

Med et budsjett på nærmere en milliard svenske kroner (omtrent 970 millioner NOK) skal prosessor Per Delsing ved Chalmers tekniska högskola i Gøteborg lede et initiativ som har som mål å utvikle en virkelig kraftig kvantedatamaskin.

- Målet vårt er å ha en fungerende kvantedatamaskin med minst hundre qubit. En slik datamaskin har mye større regnekraft enn de beste superdatamaskinene i dag og kan bli bruk il for eksempel å løse optimaliseringsproblemer, avansert maskinlæring og tunge beregninge av egenskapene til molekyler, sier Delsing i en pressemelding.

Andre områder hvor kvanteteknologien er aktuell, er innen kryptering og design av medisiner.

Les også: Intels nye brikke skal være et giennombrudd innenfor kvantedatamaskiner

Minst 100 qubit
En qubit er i denne sammenheng en elektrisk mikrobrikke som tar vare på kvantetilstanden til ett enkelt foton. Mens 100 vanlig bit vanligvis er en ganske ubetydelig datamengde i dagens tradisjonelle datamaskiner, kan man i kvantedatamaskiner prosessere enorme datamengder selv med relativt fă qubit.

IBM kunngjorde iforrige uke at selskapet har fått en prosessor med 50 qubit til å fungere, så 100 qubit er ikke til å kimse av, selv om det svenske prosjektet skal pågå i et tiår.

I likhet med blant annet IBM, skal den svenske forskningsgruppen benytte superledende kretser. Superledende qubit-er er noe forskere ved Chalmers har jobbet med i nærmere 20 år.

Intels nye brikke skal være et gjennombrudd innenfor kvantedatamaskiner

Brave new crypto world.................

End of lecture

