IN2120 Information Security Autumn 2018

Lecture 9: User Authentication

Audun Jøsang
University of Oslo

Outline

- Context of user authentication
 - Component of IAM (Identity and Access Management)
- User Authentication
 - Knowledge-based authentication
 - Passwords
 - Ownership-based authentication
 - Tokens
 - Inherence-based authentication
 - Biometrics
 - Authentication based on secondary channel
 - SMS authorization code
- Authentication frameworks for e-Government

Taxonomy of Authentication

Identity and Access Management (IAM) Phases

User authentication credentials

A credential is the 'thing' used for authentication.

- Credential categories:
 - 1. Knowledge-based (something you know): Passwords

2. Ownership-based (something you have): Tokens

- 3. Inherence-based (something you are/do): Biometrics
 - physiological biometric characteristics
 - behavioural biometric characteristics

4. Secondary channel (a channel you control): SMS, email, etc.

5

Combinations, called multi-factor authentication

Knowledge-Based Authentication

Something you know: Passwords

- Passwords are a simple and the most common authentication credential.
 - Something the user knows
- Problems:
 - Easy to share (intentionally or not)
 - Easy to forget
 - Often easy to guess (weak passwords)
 - Can be written down (both god and bad)
 - If written down, then "what you know" is "where to find it"
 - Often remains in computer memory and cache

https://haveibeenpwned.com/Passwords 500,000,000 passwords (2018)

Secure password strategies

- Passwords length ≥ 13 characters
- Use ≥ 3 categories of characters
 - L-case, U-case, numbers, special characters
- Do not use ordinary words (names, dictionary wds.)
- Change typically every 3 13 months
- OK to reuse between low-sensitivity accounts
- Do not reuse between high-sensitivity accounts
- Store passwords securely
 - In brain memory
 - On paper, adequately protected
 - In cleartext on offline digital device, adequately protected
 - Encrypted on online digital device

Strategies for strong passwords

- User education and policies
 - Not necessarily with strict enforcement
- Proactive password checking
 - User selects a potential password which is tested
 - Weak passwords are not accepted
- Reactive password checking
 - SysAdmin periodically runs password cracking tool (also used by attackers) to detect weak passwords that must be replaced.
- Computer-generated passwords
 - Random passwords are strong but difficult to remember
 - FIPS PUB 181 http://www.itl.nist.gov/fipspubs/fip181.htm specifies automated pronounceable password generator

Password storage in OS

- /etc/shadow is the file where modern Linux/Unix stores it passwords
 - Earlier version stored it in /etc/passwd
 - Need root access to modify it
- \windows\system32\config\sam is the file Windows system normally stores its passwords
 - Undocumented binary format
 - Need to be Administrator to access it
- Network environments store passwords centrally
 - AD (Active Directory) on Windows servers
 - LDAP (Lightweight Directory Access Protocol) on Linux

Protection of password file

- Systems need to verify user passwords against stored values in the password file
 - Hence, the password file must be available to the OS
 - But this file needs protection from users and applications
- Protection measures for password file
 - Access control (only accessible by Root/Admin)
 - Hashing or encryption (passwords not stored in cleartext)
- In case a password file gets stolen, then hashing/encryption provides a level of protection
 - It happens quite frequently that password files get stolen and also leaked to the Internet

Hash functions

One-way function

Collision free

- A hash function is easy to compute but hard to invert.
- Passwords are typically stored as hash values.
- Authentication function first computes hash of received password, then compares against the stored hash value

Cracking hashed passwords

- The attacker hashes a possible password and checks if the hash value is found in the password file.
 - The password has been cracked if the hash value is found
- Brute-force search
 - Hash and check all possible passwords (a powerful GPU computer can test passwords up to 8 characters in 1 day)
- Intelligent search
 - User names
 - Names of friends/relatives
 - Phone numbers
 - Birth dates
 - Dictionary attack
 - Try all words from an dictionary

Cracking with hash and rainbow tables

- Attackers can compute and store hash values for all possible passwords up to a certain length
- A list of password hashes is a hash table
- A compressed hash table is a rainbow table
- Comparing and finding matches between hashed passwords and hash/rainbow table is the method to determine cleartext passwords.

Password salting: Prevents cracking with hash-tables

- Prepend or append random data (salt) to a user's password before hashing
 - In Unix: a randomly chosen integer from 0 to 4095.
 - Different salt for each user
 - Produces different hashes for equal passwords
 - Prevents that users with identical passwords get the same password hash-value
 - Increases the amount of work for hash precomputation
 - Makes it necessary to compute new table for each user
 - Makes hash tables and rainbow tables impractical for password cracking

Storing and checking passwords

Never send unprotected passwords in clear

- A password sent "in clear" can be captured during transmission, so an attacker may reuse it.
- An attacker setting up a fake server can get the password from the user
 - E.g. phishing attack.
- Solutions to these problems include:
 - Encrypted communication channel
 - One-time passwords (token-based authentication)
 - Challenge-response protocols

HTTP Digest Authentication A simple challenge-response protocol (rarely used)

- A simple challenge response protocol specified in RFC 2069
- Server sends:
 - WWW-Authenticate = Digest
 - realm="service domain"
 - nonce="some random number"
- User types Id and password in browser window
- Browser produces a password digest from nonce, Id and password using a 1-way hash function
- Browser sends Id and digest to server that validates digest

Ownership-Based Authentication

Something you have: Tokens

Taxonomy of Authentication Tokens

Clock-based OTP Tokens: Operation

- Token displays time-dependent code on display
 - User copies code from token to terminal to log in
- Possession of the token is necessary to know the correct value for the current time
- Each code computed for specific time window
- Codes from adjacent time windows are accepted
- Clocks must be synchronised
- Example: BankID and SecurID

Clock-based OTP Token Operation with (optional) input PIN

Clock-based OTP Tokens:

SafeID OTP token with PIN

ActiveID OTP token with PIN

BankID OTP token with PIN

Feitan OTP token witout PIN

RSA SecurID without PIN

BankID OTP token without PIN

Compromised OTP Tokens

- RSA was hacked in 2007.
- Secret key for OTP tokens stolen
- Hackers could generate OTP and spoof users
- Companies using RSA SecureID were vulnerable
- Lockheed Martin used RSA SecureID
- Chinese attackers spoofed Lockheed Martin staff
 - Stole plans for F-35 fighter jet

530

Counter-based OTP Tokens: Overview

- Counter-based tokens generate a 'password' result value as a function of an internal counter and other internal data, without external inputs.
- HOTP is a HMAC-Based One-Time Password Algorithm described in RFC 4226 (Dec 2005) http://www.rfc-archive.org/getrfc.php?rfc=4226
 - Tokens that do not support any numeric input
 - The value displayed on the token is designed to be easily read and entered by the user.

Counter-based OTP Token Operation

Challenge Response Based Tokens for User Authentication:

- A challenge is sent in response to access request
 - A legitimate user can respond to the challenge by performing a task which requires use of information only available to the user (and possibly the host)
- User sends the response to the host
 - Access is approved if response is as expected by host.
- Advantage: Since the challenge will be different each time, the response will be too – the dialogue can not be captured and used at a later time
- Could use symmetric or asymmetric crypto

Token-based User authentication Challenge Response Systems

Contactless Cards: Overview

Antenna

- Contactless cards, also called RFID (Radio Frequency Id) cards, consists of a chip and an antenna.
 - No need to be in physical contact with the reader.
 - Uses radio signals to communicate
 - Powered by magnetic field from reader
 - When not within the range of a reader it is not powered and remains inactive.
 - Battery powered RFID tags also exist
- Suitable for use in hot, dirty, damp, cold, foggy environments

Computer chip

Inherence-Based Authentication

Biometrics

Something you do

Biometrics: Overview

- What is it?
 - Automated methods of verifying or recognizing a person based upon a physiological characteristics.
- Biometric modalities, examples:
 - fingerprint
 - facial recognition
 - eye retina/iris scanning
 - hand geometry
 - written signature
 - voice print
 - keystroke dynamics

Biometrics: Requirements

Universality:

Each person should have the characteristic;

Distinctiveness:

Any two persons should be sufficiently different in terms of the characteristic;

Permanence:

The characteristic should be sufficiently invariant (with respect to the matching criterion) over a period of time;

Collectability

The characteristic should be measurable quantitatively.

Biometrics: Practical considerations

Accuracy:

 The correctness of a biometric system, expressed as ERR (Equal Error Rate), where a low ERR is desirable.

Performance:

- the achievable speed of analysis,
- the resources required to achieve the desired speed,

Acceptability:

- the extent to which people are willing to accept the use of a particular biometric identifier (characteristic)
- Circumvention/spoofing resistance:
 - The difficulty of fooling the biometric system
- Safety:
 - Whether the biometric system is safe to use

Biometrics Safety

- Biometric authentication can be safety risk
 - Attackers might want to "steal" body parts
 - Subjects can be put under duress to produce biometric authenticator
- Necessary to consider the physical environment where biometric authentication takes place.

Car thieves chopped off part of the driver's left index finger to start S-Class Mercedes Benz equipped with fingerprint key. Malaysia, March 2005 (NST picture by Mohd Said Samad)

Biometrics: Modes of operation

Enrolment:

- analog capture of the user's biometric attribute.
- processing of this captured data to develop a template of the user's attribute which is stored for later use.
- Verification of claimed identity (1:1, one-to-one):
 - capture of a new biometric sample.
 - comparison of the new sample with that of the user's stored template.
- Identification (1:N, one-to-many)
 - capture of a new biometric sample.
 - search the database of stored templates for a match based solely on the biometric.

Extracting biometric features Example fingerprints: Extracting minutia

Biometrics: System components

Biometrics Enrolment Phase

Biometric Verification / Authentication

Biometric Recognition: Security and Privacy Concerns

Biometric Identification

Biometric Recognition: Security and Privacy Concerns

Evaluating Biometrics:

- Features from captured sample are compared against those of the stored template sample
- Score s is derived from the comparison.
 - Better match leads to higher score.
- The system decision is tuned by threshold *T*:
 - System gives a match (same person) when the sample comparison generates a score s where s ≥T
 - System gives non-match (different person) when the sample comparison generates a score s where s < T

Comparison characteristics

- True positive
 - User's sample matches → User is accepted
- True negative
 - Stranger's sample does not match → Stranger is rejected
- False positives
 - Stranger's sample matches → Stranger is falsely accepted
- False negatives
 - User's sample does not match → User is falsely rejected
- False Match Rate vs. False Non-Match Rate
 FMR = (# matching strangers) / (# strangers in total)
 - FNMR = (# non-matching users) / (# users in total)
- T determines tradeoff between FMR and FNMR

Evaluating Biometrics: System Errors

- Comparing biometric samples produces score s
- Acceptance threshold *T* determines FMR and FNMR
 - If T is set low to make the system more tolerant to input variations and noise, then FMR increases.
 - On the other hand, if *T* is set high to make the system more secure, then FNMR increases accordingly.
- EER (Equal Error Rate) is the rate when FMR = FNMR.
- Low EER is good, it means good separation of curves.

Spoofed Biometrics: Presentation Attacks

- It is relatively simple to trick a biometric system
 - Terminology: Presentation Attacks

False finger

False face

- Biometric authentication on smartphones is insecure
- PAD (Presentation Attack Detection) is the subject of intensive research, to make biometrics more secure
- Alternative solution is to capture biometrics in controlled environments

Secondary Channel

- Independent from the primary channel!
- Controlled by user, not necessarily very secure
- Increased authentication assurance through Increased complexity for attackers
- Typically used as second authentication factor

sms

Authentication: Multi-factor

- Multi-factor authentication aims to combine two or more authentication techniques in order to provide stronger authentication assurance.
- Two-factor authentication is typically based on something a user knows (factor one) plus something the user has (factor two).
 - Usually this involves combining the use of a password and a token
 - Example: BankID OTP token with PIN + static password

Authentication Assurance

- Authentication assurance = robustness of authentication
- Resources have different sensitivity levels
 - High sensitivity gives high risk in case of authentication failure
- Authentication has a cost
 - Unnecessary authentication assurance is a waste of money
- Authentication assurance should balance authentication risk

e-Authentication Frameworks for e-Gov.

- Trust in identity is a requirement for e-Government
- Authentication assurance produces identity trust.
- Authentication depends on technology, policy, standards, practice, awareness and regulation.
- Common e-authentication frameworks allow crossnational and cross-organisational solutions that give convenience, cost savings and security.

Alignment of e-Authentication Frameworks

Authentication Framework	User Authentication Assurance Levels					
NIST SP800-63-3			Some	High	Very High	
USA 2017			(1)	(2)	(3)	
eIDAS			Low	Substantial	High	
EU 2014			(1)	(2)	(3)	
ISO 29115	Low (Little or no)		Medium	High	Very High	
ISO/IEC 2013	(1)		(2)	(3)	(4)	
e-Pramaan	None	Minimal	Minor	Significant	Substantial	
India 2012	(0)	(1)	(2)	(3)	(4)	
NeAF	None	Minimal	Low	Moderate	High	
Australia 2009	(0)	(1)	(2)	(3)	(4)	
RAU / FAD	Little or no assurance		Low	Moderate	High	
Norway 2008	(1)		(2)	(3)	(4)	

L09 - User Auth. IN2120 - UiO 2018 50

AAL: Authentication Assurance Level

AAL is determined by the weakest of three links:

User Identity
Registration Assurance
(UIRA) requirements

User Credential
Management Assurance
(UCMA) requirements

User Authentication
Method Strength
(UAMS) requirements

Requirements for correct registration:

- Pre-authentication credentials, e.g.
 - birth certificate
 - biometrics

Requirements for secure handling of credentials:

- Creation
- Distribution
- Storage

Requirements for mechanism strength:

- Password length and quality
- Cryptographic algorithm strength
- Tamper resistance of token
- Multiple-factor methods

eIDAS

electronic IDentification, Authentication and trust Services

- eIDAS is EU's regulation on e-Authentication and trust services for e-transactions.
- "Trust service" is EU jargon for PKI certification services.
- eIDAS specifies three authentication assurance levels (AALs).

The EU trust mark for qualified trust services

Low Assurance eDAS AAL-1	Substantial Assurance eIDAS AAL-2	High Assurance eIDAS AAL-3
Limited degree of confidence in the claimed or asserted identity of a person	substantial degree of confidence in the claimed or asserted identity of a person	higher degree of confidence in the claimed or asserted identity of a person

Risk Analysis for eAuthentication

Determining the appropriate AAL for an application

	Impact of e-Authentication Failure					
	Minor	Moderate	Major			
Required AAL →	Low eIDAS AAL-1	Substantial eIDAS AAL-2	High eIDAS AAL-3			

 E-Authentication Failure means that an imposter is able to attack and steal somebody else's identity

Example risk matrix applied to eIDAS

RAU Norway 2008 Rammeverk for Autentisering og Uavviselighet (Framework for Authentication and Non-Repudiation)

RAU AAL-4: High authentication assurance

 E.g. two-factor, where at least one must be dynamic, and at least one is provisioned in person

RAU AAL-3: Moderate authentication assurance

• E.g. OTP calculator with PIN provisioned by mail to user's official address

RAU AAL-2: Low authentication assurance

• E.g. fixed password provisioned in person or by mail to user's official address

RAU AAL-1: Little or no authentication assurance:

• E.g. Online self-registration and self-chosen password

Norway will adopt eIDAS in 2018 (RAU will no longer be used)

Only Three AALs in Modern eAuth. Frameworks

- Early eAuthentication frameworks typically had four AALs
- In practice the very low AAL is not used
- Very low AAL is inadequate for Cross-border/Federated auth.
 - eIDAS assumes cross-border authentication
 - NIST SP800-63-3 assumes federated authentication
- Current providers of highest AAL (RAU AAL-4) in Norway
 - Commfides
 - Buypass
 - BankID
 - BankID på mobil
- Adoption of eIDAS in Norway will probably be relatively simple
 - Some authentication service providers may need to make changes to keep accreditation for the highest AAL (eIDAS AAL-3)

End of lecture