IN2120 Information Security Autumn 2018

Lecture 9: User Authentication

Audun Jøsang
University of Oslo

Outline

- Context of user authentication
- Component of IAM (Identity and Access Management)
- User Authentication
- Knowledge-based authentication
- Passwords
- Ownership-based authentication
- Tokens
- Inherence-based authentication
- Biometrics
- Authentication based on secondary channel
- SMS authorization code
- Authentication frameworks for e-Government

Taxonomy of Authentication

Identity and Access Management (IAM) Phases

Configuration phase

Operation phase

User authentication credentials

- A credential is the 'thing' used for authentication.
- Credential categories:

1. Knowledge-based (something you know): Passwords
2. Ownership-based (something you have): Tokens
3. Inherence-based (something you are/do): Biometrics

- physiological biometric characteristics
- behavioural biometric characteristics

4. Secondary channel (a channel you control): SMS, email, etc.

- Combinations, called multi-factor authentication

Knowledge-Based Authentication

Something you know: Passwords

Authentication:

- Passwords are a simple and the most common authentication credential.
- Something the user knows
- Problems:
- Easy to share (intentionally or not)
- Easy to forget
- Often easy to guess (weak passwords)
- Can be written down (both god and bad)
- If written down, then "what you know" is "where to find it"
- Often remains in computer memory and cache
https://haveibeenpwned.com/Passwords 500,000,000 passwords (2018)

123456	20,760,336
123,456,789	7,016,669
qwerty	3,599,486
password	3,303,003
111111	2,900,049
12,345,678	2,680,521
abc123	2,670,319
password1	2,310,111
1234567	2,298,084
12,345	2,088,998
1234567890	2,075,018
123,123	2,048,411
0	1,832,944
iloveyou	1,462,146
1234	1,143,408
1q2w3e4r5t	1,109,333
qwertyuiop	1,028,295
123	977,827
monkey	932,064
123456a	928,360
dragon	913,822
123,321	856,401
654321	836,566

Secure password strategies

- Passwords length ≥ 13 characters
- Use ≥ 3 categories of characters
- L-case, U-case, numbers, special characters
- Do not use ordinary words (names, dictionary wds.)
- Change typically every 3-13 months
- OK to reuse between low-sensitivity accounts
- Do not reuse between high-sensitivity accounts
- Store passwords securely
- In brain memory
- On paper, adequately protected
- In cleartext on offline digital device, adequately protected
- Encrypted on online digital device

Strategies for strong passwords

- User education and policies
- Not necessarily with strict enforcement
- Proactive password checking
- User selects a potential password which is tested
- Weak passwords are not accepted
- Reactive password checking
- SysAdmin periodically runs password cracking tool (also used by attackers) to detect weak passwords that must be replaced.
- Computer-generated passwords
- Random passwords are strong but difficult to remember
- FIPS PUB 181 http://www.itl.nist.gov/fipspubs/fip181.htm specifies automated pronounceable password generator

Password storage in OS

- /etc/shadow is the file where modern Linux/Unix stores it passwords
- Earlier version stored it in /etc/passwd
- Need root access to modify it
- \windows\system32\config\sam is the file Windows system normally stores its passwords
- Undocumented binary format
- Need to be Administrator to access it
- Network environments store passwords centrally
- AD (Active Directory) on Windows servers
- LDAP (Lightweight Directory Access Protocol) on Linux

Protection of password file

- Systems need to verify user passwords against stored values in the password file
- Hence, the password file must be available to the OS
- But this file needs protection from users and applications
- Protection measures for password file
- Access control (only accessible by Root/Admin)
- Hashing or encryption (passwords not stored in cleartext)
- In case a password file gets stolen, then hashing/encryption provides a level of protection
- It happens quite frequently that password files get stolen and also leaked to the Internet

Hash functions

One-way function

Collision free

- A hash function is easy to compute but hard to invert.
- Passwords are typically stored as hash values.
- Authentication function first computes hash of received password, then compares against the stored hash value

Cracking hashed passwords

- The attacker hashes a possible password and checks if the hash value is found in the password file.
- The password has been cracked if the hash value is found
- Brute-force search
- Hash and check all possible passwords (a powerful GPU computer can test passwords up to 8 characters in 1 day)
- Intelligent search
- User names
- Names of friends/relatives
- Phone numbers
- Birth dates
- Dictionary attack
- Try all words from an dictionary

Cracking with hash and rainbow tables

- Attackers can compute and store hash values for all possible passwords up to a certain length
- A list of password hashes is a hash table
- A compressed hash table is a rainbow table
- Comparing and finding matches between hashed passwords and hash/rainbow table is the method to determine cleartext passwords.

Password salting: Prevents cracking with hash-tables

- Prepend or append random data (salt) to a user's password before hashing
- In Unix: a randomly chosen integer from 0 to 4095.
- Different salt for each user
- Produces different hashes for equal passwords
- Prevents that users with identical passwords get the same password hash-value
- Increases the amount of work for hash precomputation
- Makes it necessary to compute new table for each user
- Makes hash tables and rainbow tables impractical for password cracking

Storing and checking passwords

Salted hash

Never send unprotected passwords in clear

- A password sent "in clear" can be captured during transmission, so an attacker may reuse it.
- An attacker setting up a fake server can get the password from the user
- E.g. phishing attack.
- Solutions to these problems include:
- Encrypted communication channel
- One-time passwords (token-based authentication)
- Challenge-response protocols

HTTP Digest Authentication
 A simple challenge-response protocol (rarely used)

- A simple challenge response protocol specified in RFC 2069
- Server sends:
- WWW-Authenticate = Digest
- realm="service domain"
- nonce="some random number"
- User types Id and password in browser window
- Browser produces a password digest from nonce, Id and password using a 1-way hash function
- Browser sends ld and digest to server that validates digest

Ownership-Based Authentication

Something you have: Tokens

Taxonomy of Authentication Tokens

Clock-based OTP Tokens: Operation

- Token displays time-dependent code on display
- User copies code from token to terminal to log in
- Possession of the token is necessary to know the correct value for the current time
- Each code computed for specific time window
- Codes from adjacent time windows are accepted
- Clocks must be synchronised
- Example: BankID and SecurID

Clock-based OTP Token Operation with (optional) input PIN

HOST

Clock-based OTP Tokens:

SafeID OTP token with PIN

ActiveID OTP token with PIN

RSA SecurID without PIN

BankID OTP token with PIN

BankID OTP token without PIN

Compromised OTP Tokens

- RSA was hacked in 2007.
- Secret key for OTP tokens stolen
- Hackers could generate OTP and spoof users
- Companies using RSA SecureID were vulnerable
- Lockheed Martin used RSA SecureID
- Chinese attackers spoofed Lockheed Martin staff
- Stole plans for F-35 fighter jet

Counter-based OTP Tokens: Overview

- Counter-based tokens generate a 'password' result value as a function of an internal counter and other internal data, without external inputs.
- HOTP is a HMAC-Based One-Time Password Algorithm described in RFC 4226 (Dec 2005)
http://www.rfc-archive.org/getrfc.php?rfc=4226
- Tokens that do not support any numeric input
- The value displayed on the token is designed to be easily read and entered by the user.

Counter-based OTP Token Operation

USER'S TOKEN
HOST

Challenge Response Based Tokens for User Authentication:

- A challenge is sent in response to access request
- A legitimate user can respond to the challenge by performing a task which requires use of information only available to the user (and possibly the host)
- User sends the response to the host
- Access is approved if response is as expected by host.
- Advantage: Since the challenge will be different each time, the response will be too - the dialogue can not be captured and used at a later time
- Could use symmetric or asymmetric crypto

Token-based User authentication Challenge Response Systems

HOST
TOKEN

Symmetric algorithm case

Contactless Cards: Overview

- Contactless cards, also called RFID (Radio Frequency Id) cards, consists of a chip and an antenna.
- No need to be in physical contact with the reader.
- Uses radio signals to communicate
- Powered by magnetic field from reader
- When not within the range of a reader it is not powered and remains inactive.
- Battery powered RFID tags also exist

- Suitable for use in hot, dirty, damp, cold, foggy environments

Inherence-Based Authentication

Biometrics

Something you do

Biometrics: Overview

- What is it?
- Automated methods of verifying or recognizing a person based upon a physiological characteristics.
- Biometric modalities, examples:
- fingerprint
- facial recognition
- eye retina/iris scanning
- hand geometry
- written signature
- voice print
- keystroke dynamics

Biometrics: Requirements

- Universality:

Each person should have the characteristic;

- Distinctiveness:

Any two persons should be sufficiently different in terms of the characteristic;

- Permanence:

The characteristic should be sufficiently invariant (with respect to the matching criterion) over a period of time;

- Collectability:

The characteristic should be measurable quantitatively.

Biometrics: Practical considerations

- Accuracy:
- The correctness of a biometric system, expressed as ERR (Equal Error Rate), where a low ERR is desirable.
- Performance:
- the achievable speed of analysis,
- the resources required to achieve the desired speed,
- Acceptability:
- the extent to which people are willing to accept the use of a particular biometric identifier (characteristic)
- Circumvention/spoofing resistance:
- The difficulty of fooling the biometric system
- Safety:
- Whether the biometric system is safe to use

Biometrics Safety

- Biometric authentication can be safety risk
- Attackers might want to "steal" body parts
- Subjects can be put under duress to produce biometric authenticator
- Necessary to consider the physical environment where biometric authentication takes place.

Car thieves chopped off part of the driver's left index finger to start S-Class Mercedes Benz equipped with fingerprint key. Malaysia, March 2005
(NST picture by Mohd Said Samad)

Biometrics: Modes of operation

- Enrolment:
- analog capture of the user's biometric attribute.
- processing of this captured data to develop a template of the user's attribute which is stored for later use.
- Verification of claimed identity (1:1, one-to-one):
- capture of a new biometric sample.
- comparison of the new sample with that of the user's stored template.
- Identification (1:N, one-to-many)
- capture of a new biometric sample.
- search the database of stored templates for a match based solely on the biometric.

Extracting biometric features Example fingerprints: Extracting minutia

Biometric
Minutia Points
Minutia Map
Data Stream

0101010001101000011010 0101110011001000000110 1001011100110010000001 1011100110111101110100 0010000001100001011000 1101110100011101010110 0001011011000110110001 1110010010000001100110 0110100101101110011001 1101100101011100100111 0000011100100110100101 1011100111010000100000 0110010001100001011101 0001100001001011000010

Biometrics: System components

Biometrics Enrolment Phase

Biometric Verification / Authentication

Biometric Identification

Evaluating Biometrics:

- Features from captured sample are compared against those of the stored template sample
- Score \boldsymbol{s} is derived from the comparison.
- Better match leads to higher score.
- The system decision is tuned by threshold \boldsymbol{T} :
- System gives a match (same person) when the sample comparison generates a score \boldsymbol{s} where $\mathbf{s} \geq \boldsymbol{T}$
- System gives non-match (different person) when the sample comparison generates a score \boldsymbol{s} where $\boldsymbol{s}<\boldsymbol{T}$

Comparison characteristics

- True positive
- User's sample matches \rightarrow User is accepted
- True negative
- Stranger's sample does not match \rightarrow Stranger is rejected
- False positives
- Stranger's sample matches \rightarrow Stranger is falsely accepted
- False negatives
- User's sample does not match \rightarrow User is falsely rejected
- False Match Rate vs. False Non-Match Rate

FMR = (\# matching strangers) / (\# strangers in total)
FNMR = (\# non-matching users) / (\# users in total)

- T determines tradeoff between FMR and FNMR

Evaluating Biometrics: System Errors

- Comparing biometric samples produces score s
- Acceptance threshold \boldsymbol{T} determines FMR and FNMR
- If \boldsymbol{T} is set low to make the system more tolerant to input variations and noise, then FMR increases.
- On the other hand, if \boldsymbol{T} is set high to make the system more secure, then FNMR increases accordingly.
- EER (Equal Error Rate) is the rate when FMR = FNMR.
- Low EER is good, it means good separation of curves.

Spoofed Biometrics: Presentation Attacks

- It is relatively simple to trick a biometric system
- Terminology: Presentation Attacks

False finger

False face

- Biometric authentication on smartphones is insecure
- PAD (Presentation Attack Detection) is the subject of intensive research, to make biometrics more secure
- Alternative solution is to capture biometrics in controlled environments

Secondary Channel

- Independent from the primary channel!
- Controlled by user, not necessarily very secure
- Increased authentication assurance through Increased complexity for attackers
- Typically used as second authentication factor

Authentication:

 Multi-factor

sms

- Multi-factor authentication aims to combine two or more authentication techniques in order to provide stronger authentication assurance.
- Two-factor authentication is typically based on something a user knows (factor one) plus something the user has (factor two).
- Usually this involves combining the use of a password and a token
- Example: BankID OTP token with PIN + static password

Authentication Assurance

- Authentication assurance = robustness of authentication
- Resources have different sensitivity levels
- High sensitivity gives high risk in case of authentication failure
- Authentication has a cost
- Unnecessary authentication assurance is a waste of money
- Authentication assurance should balance authentication risk

e-Authentication Frameworks for e-Gov.

- Trust in identity is a requirement for e-Government
- Authentication assurance produces identity trust.
- Authentication depends on technology, policy, standards, practice, awareness and regulation.
- Common e-authentication frameworks allow crossnational and cross-organisational solutions that give convenience, cost savings and security.

Alignment of e-Authentication Frameworks

Authentication Framework	User Authentication Assurance Levels				
NIST SP800-63-3 USA 2017			Some (1)	High (2)	Very High (3)
elDAS EU 2014			Low (1)	Substantial (2)	High (3)
$\begin{aligned} & \text { ISO } 29115 \\ & \text { ISO/IEC } 2013 \end{aligned}$	Low (Little or no) (1)		Medium (2)	High (3)	Very High (4)
e-Pramaan India 2012	None (0)	Minimal (1)	Minor (2)	Significant (3)	Substantial (4)
NeAF Australia 2009	None (0)	Minimal (1)	Low (2)	Moderate (3)	High (4)
RAU / FAD Norway 2008	Little or no assurance (1)		Low (2)	Moderate (3)	High (4)

AAL: Authentication Assurance Level

- AAL is determined by the weakest of three links:

User Identity
Registration Assurance
(UIRA) requirements

User Credential Management Assurance (UCMA) requirements

User Authentication Method Strength (UAMS) requirements

Requirements for correct registration:

- Pre-authentication credentials, e.g.
- birth certificate
- biometrics

Requirements for secure handling of credentials:

- Creation
- Distribution
- Storage

Requirements for mechanism strength:

- Password length and quality
- Cryptographic algorithm strength
- Tamper resistance of token
- Multiple-factor methods

eIDAS

electronic IDentification, Authentication and trust Services

- eIDAS is EU's regulation on e-Authentication and trust services for e-transactions.
- "Trust service" is EU jargon for PKI certification services.
- eIDAS specifies three authentication assurance levels (AALs).

The EU trust mark for qualified trust services

Low Assurance eDAS AAL-1	Substantial Assurance eIDAS AAL-2	High Assurance elDAS AAL-3
Limited degree of confidence in the claimed or asserted identity of a person	substantial degree of confidence in the claimed or asserted identity of a person	higher degree of confidence in the claimed or asserted identity of a person

Risk Analysis for eAuthentication

Determining the appropriate AAL for an application

	Impact of e-Authentication Failure		
	Minor	Moderate	Major
Required AAL	Low	Substantial	High
eIDAS AAL-1	eIDAS AAL-2	eIDAS AAL-3	

- E-Authentication Failure means that an imposter is able to attack and steal somebody else's identity

RAU Norway 2008
 Rammeverk for Autentisering og Uavviselighet
 (Framework for Authentication and Non-Repudiation)

RAU AAL-4: High authentication assurance

- E.g. two-factor, where at least one must be dynamic, and at least one is provisioned in person
RAU AAL-3: Moderate authentication assurance
- E.g. OTP calculator with PIN provisioned by mail to user's official address RAU AAL-2: Low authentication assurance
- E.g. fixed password provisioned in person or by mail to user's official address RAU AAL-1: Little or no authentication assurance :
- E.g. Online self-registration and self-chosen password

Norway will adopt eIDAS in 2018 (RAU will no longer be used)

Only Three AALs in Modern eAuth. Frameworks

- Early eAuthentication frameworks typically had four AALs
- In practice the very low AAL is not used
- Very low AAL is inadequate for Cross-border/Federated auth.
- eIDAS assumes cross-border authentication
- NIST SP800-63-3 assumes federated authentication
- Current providers of highest AAL (RAU AAL-4) in Norway
- Commfides
- Buypass
- BankID
- BankID på mobil
- Adoption of eIDAS in Norway will probably be relatively simple
- Some authentication service providers may need to make changes to keep accreditation for the highest AAL (eIDAS AAL-3)

End of lecture

