ⁱ Exam information

University of Oslo - Faculty of Mathematics and Natural Sciences

Digital exam in IN2120 "Informasjonssikkerhet" (Autumn 2019)

Date and time: 11 December 2019, 09:00h - 13:00h

Permitted materials: Translation of security terms

Please regard the following directions:

- The exam contains 43 questions with a total of 100 points (= 100 %).
- The questions are grouped under 10 parts that correspond approximately to 10 of the lectures in this course.
- Each question states explicitly the marking scheme. There can be negative points for incorrect answers/selections. However, the overall score for the total question is always at least 0 points (even if the sum over all answers is negative).
- Be concise. When answering a question, it is often sufficient to write a single expression or sentence to describe each concept that the question asks for.
- In the navigation bar on the bottom of the screen, blue bars indicate completed questions/parts.
- Answers can be written in English or in Norwegian.

ⁱ Part 1: General Security

^{1.1} Information Security

Write the names (not the abbreviations) of the three (3) properties of **information security** according to the standard ISO 27000. Name one (1) additional property of information security (also according to the standard).

Points: max 2 total score

Fill in your answer here

- Confidentiality, Integrity, Availability
- privacy, non-repudiation, authentication, or ...

Maximum marks: 2

^{1.2} Confidentiality

Write the definition (approximately) of **confidentiality** according to ISO 27000 and give an example for a typical security control to ensure this property.

Points: max 2

Fill in your answer here

Information is not disclosed to unauthorized entities.

^{1.3} Availability

Which is the most relevant **threat against availability**? *Points: 1 for correct, 0 for wrong, 0 for no selection* **Select one alternative:**

- Phishing email
- Zero-day exploit
- SQL injection
- DDoS attack
- Cryptanalysis

What is the most relevant **security control for ensuring availability**? *Points: 1 for correct, 0 for wrong, 0 for no selection* **Select one alternative**

- Load balancing
- Blockchain
- User authentication
- Awareness training
- Encryption

^{1.4} Authentication

Please mark in every row if it describes an example or application of **data authentication** or **entity authentication**.

Points: 0.5 for each correct, -0.5 for wrong, 0 for no selection

Please match the values:

	entity authentication	data authentication
The integrity of a contract is protected by a digital signature.	\bigcirc	• 🗸
TLS record protocol uses HMAC for protecting the payload.	\bigcirc	○ ✔
User logs in using username and password.	○ ✓	0
TLS server authenticates using a certificate.	○ ✓	

Maximum marks: 2

^{1.5} GDPR

Mark the statements that are true for the EU **GDPR regulation**. *Points: 1 for each correct, -1 for each wrong, 0 for no selection, max 2 total* **Select one or more alternatives:**

- The GDPR applies only to EU citizens.
- The GDPR gives users the right to request all information about them stored by a company/organization.
- The GDPR forbids unauthorized processing of personal identifying information.
- The GDPR requires security controls for protecting business secrets.

Maximum marks: 2

ⁱ Part 2: Cryptography

^{2.1} Symmetric Encryption

Mark the statements about **AES** that are true. *Points: 1 for each correct, -1 for each wrong, 0 for no selection, max 2 total* **Select one or more alternatives:**

- AES can be used in different modes, which have different security properties.
- AES can be used with 2 different keys: one for encrypting and one for decrypting.
- AES can only encrypt messages up to the block size.
- AES can be used with different key sizes.

Maximum marks: 2

^{2.2} Asymmetric Encryption

Which keys are involved in the overall process of **encrypting and decrypting using RSA**? *Points: 1 for each correct, -1 for each wrong, 0 for no selection, max 2 total score* **Select one or more alternatives:**

- Symmetric key generated by the recipient
- Symmetric key generated by the sender
- Public key of the recipient
- Private key of the sender
- Public key of the sender
- Private key of the recipient

^{2.3} MAC + Digital Signature

Please select for each property, if it applies to **Message Authentication Codes** (MAC), **Digital Signature** (DSig), both (MAC + DSig) or none of these two. Points: 0.5 for each correct, -0.5 for each wrong, 0 for no selection, max 3 total score

Please match the values:

	MAC	DSig	Both	None
It ensure confidentiality of the message.	\bigcirc	\bigcirc	\bigcirc	● ◆
It ensures integrity of the message.	\bigcirc	0	✓	\bigcirc
It ensures non-repudiation of the message.	\bigcirc		\bigcirc	\bigcirc
Only the recipient (and the sender) can authenticate the message origin.	○ ✔	•	0	0
The implementation is based on hash functions.	\bigcirc	\bigcirc	✓	\bigcirc
Any party can authenticate the message origin.	\bigcirc	•	\bigcirc	\bigcirc

^{2.4} Hash functions

Mark common **application(s) of cryptographic hash functions**. *Points: 1 for each correct, -1 for each wrong, 0 for no selection* **Select one or more alternatives:**

- Password storage
- Digital signature
- Key exchange
- Asymmetric encryption

In which of these application(s) is the **fast computation** of hash functions a disadvantage? *Points: 1 for each correct, -1 for each wrong, 0 for no selection* **Select one or more alternatives**

- Digital signature
- Key exchange
- Password storage
- Asymmetric encryption

Overall score: max 3 points

Maximum marks: 3

ⁱ Part 3: Key Management

^{3.1} Crypto Period

Mark the statements on the **crypto period** of cryptographic keys that are true? *Point: 1 for each correct, -1 for each incorrect, 0 for no selection, max 2 total score.* **Select one or more alternatives:**

- The length of the crypto period should be adjusted according to sensitivity of the information.
- For very sensitive applications the crypto period should always be very short.
- For digital signatures, the period for signing and verifying is always the same.
- The crypto period limits cryptanalytic attacks.

Maximum marks: 2

 \checkmark

^{3.2} Key distribution

Select for each key type the correct statement for **key distribution** of the specific key type. *Points: 1 for each correct, -1 for wrong, 0 for no selection, max 3 total score*

Select the correct statement.

	Confidentiality during distribution required	Authenticity of key source required	Keys are usually not distributed	None of the other statements
Symmetric keys	•	•		
Asymmetric public keys		• 🗸		
Asymmetric private keys			• •	

^{3.3} Certificates + PKI

Please select the statements on **certificates** and **browser PKIs** (Public Key Infrastructure) that are true. *Points: 1 for each correct, -1 for wrong, 0 for no selection, max 3*

Select one or more alternatives:

- For an extended-validation certificate (EV), the requester must prove the honest intention of the Web site.
- Certificates allow the user to detect phishing Web sites.
- If a single CA is compromised, any company on the Internet can be spoofed.
- A CA verifies the ownership of a domain before signing a certificate request.
- Certificates ensure authentic exchange of private keys.
- The trust model is based not on one, but on many root CAs.

Maximum marks: 3

^{3.4} Trust in PKI

A browser opens the web page "https://example.com". As part of the TLS connection the browser receives a server certificate. This certificate is signed by the CA "X". The certificate of "X" again is signed by the CA "Y". Mark the statements that are true for this scenario. *Points: 1 for each correct, -1 for each wrong, 0 for no selection, max 2 total* **Select one or more alternatives:**

Select one or more alternatives:

- The certificate of example.com contains a reference to the CA "Y".
- The CA "X" is called root CA.
- The certificate "Y" must be stored in the "certificate root store" of the browser (or t^{+} OS), in order to trust the certificate of example.com.
- The CA "X" is called intermediate CA.

Maximum marks: 2

ⁱ Part 4: Network Security

^{4.1} TLS

Select the statements on **TLS** that are true. *Points: 1 for each correct, -1 for each wrong, 0 for no selection, max 3 total score* **Select one or more alternatives:**

- TLS ensures integrity of transferred data.
- The subject of the server certificate must be equal to the server's host name enter 1 in the browser.
- Client and server must authenticate inside a TLS connection.
- For exchange of session keys, RSA is more secure than DH.
- The algorithms used inside a session are negotiated between client and server.
- HTTP and HTTPS can be offered on the same TCP port.

Maximum marks: 3

^{4.2} VPN

Assume the following situation: a client accesses a server trough either a cloud **VPN** or the **TOR** network. Mark the statements that are true (here "knowing" means "can learn the IP address when looking at the network communication").

Point: 1 for each correct, -1 for each wrong, 0 for no selection, max 2 total score **Select one or more alternatives:**

- When using TOR, the entry-node does not know the exit-node.
- When using a cloud VPN, the VPN provider knows the client.
- When using TOR, the entry-node knows the server.
- When using a cloud VPN, the user's ISP knows the server.

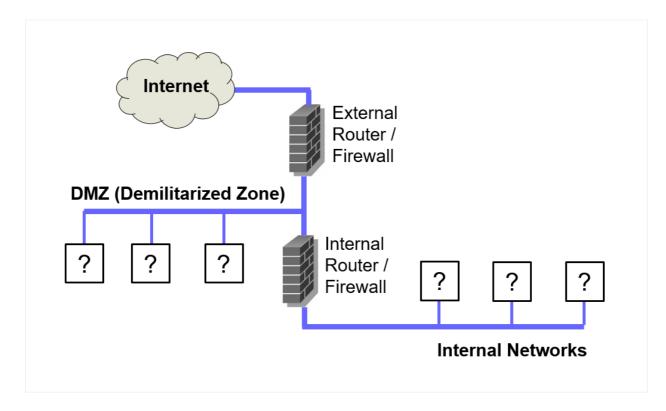
^{4.3} Firewall

Select the statements on **firewalls** that are true. *Points: 1 for each correct, -1 for wrong, 0 for no selection, max 2 total score* **Select one or more alternatives:**

- Stateful packet filters can correlate a DNS response to a prior DNS request.
- A packet filter operates on the OSI layers 3 (network) and 4 (transport).
- A application level gateway can always handle all protocols on top of TCP.
- A network firewall blocks all traffic between two networks.

Maximum marks: 2

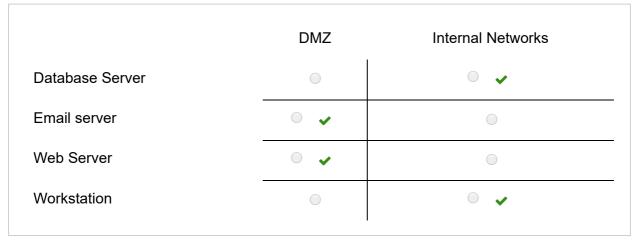
^{4.4} IDS


The two main techniques used in **Intrusion Detection Systems** (IDS) are Signature-Based Detection and Anomaly-Based Detection respectively. Select the *relevant IDS technique* for each property in the left column below.

Points: 0.5 for each correct, -0.5 for wrong, 0 for no selection

Select the relevant IDS technique for each property:

	Signature Detection	Anomaly Detection
Based on learning normal behaviour	\bigcirc	• •
Can only detect known attacks	• •	0


^{4.5} DMZ

In the case of two firewalls with a so-called **DMZ (Demilitarized Zone)** between them, servers/systems can be connected to either the DMZ or to internal networks. Select the *typical location* for connecting the servers/systems in the left column below.

Points: 0.5 for each correct, -0.5 for each wrong, 0 for no selection, max 2 total score

Select correct placement of each type of system:

Maximum marks: 2

ⁱ Part 5: Incident Response

^{5.1} Incident Response

Mark the statements on **incident response** that are true. *Points: 1 for each correct, -1 for each wrong, 0 for no selection, max 2 total* **Select one or more alternatives:**

- Incident response shall reduce negative consequences of an incident.
- As incident response reacts on unexpected events, it can not be planned.
- Incident response is a reaction to unexpected events.
- Incident response is a proactive process (like SIEM or SOC).

^{5.2} Incident Response Phases I

What is typical order of **phases in incident response**? *Points: 2 for correct, 0 for wrong, 0 for no selection* **Select one alternative:**

- Analysis Containment Eradiction Normalisation
- Eradiction Analysis Normalisation Containment
- Normalisation Containment Analysis Eradiction
- Containment Normalisation Eradiction Analysis

^{5.3} Incident Response Phases II

Consider the incident from the workshop: "ransomware has encrypted important data from the research department and is requesting 100.000 \$ in bitcoin".

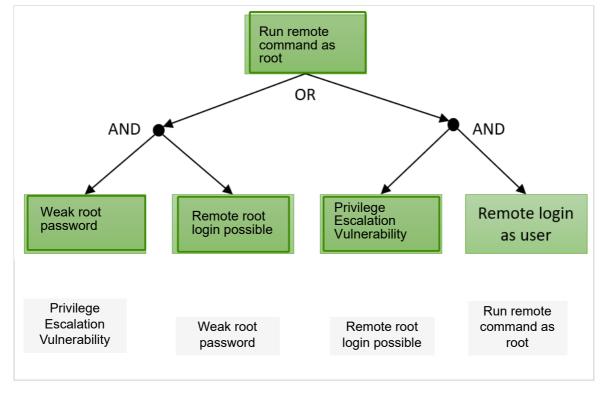
Select for each measure to which **phase in incident response** it belongs.

Points: 1 for each correct, -1 for wrong, 0 for no selection, max 6 total score

Please match the values:

	Analysis	(none of these)	Containment	Eradiction	Normalisation
Performing backups before attack	0	•		۲	
Unplugging infected computers from network	۲		• •	۲	۲
Restoring data from backup	0				•
Collecting log files from IDS systems	•			0	0
Erasing hard drives of infected computers	0	0		•	•
Payment of ransom	\bigcirc	• •	0	0	0

Maximum marks: 6


ⁱ Part 6: Risk Management

^{6.1} Threat Tree

Below you see a **threat tree** with one node already filled. Move the four (4) terms below the tree to right position inside the tree.

Points: 3 total score for all answers correct, 0 if any error

Move the terms to the tree nodes

^{6.2} Risk Estimation I

The following values are the result of a **risk estimation** analysis:

- Annualized Rate of Occurence: ARO = 12
- Exposure Factor: EF = 1 (100%)
- Asset Value: AV = 2000 \$

How is this type of analysis called? Point: 1 for correct, -1 for wrong answer, 0 for no selection

Quantitative	Qualitative
• •	\bigcirc

You have to calculate the Annualized Loss Expectancy (ALE) for the given case. What is the unit for the ALE?

Point: 1 for correct, -1 for wrong answer, 0 for no selection

(⊃ (no unit, plain number)	
(\$	~
(%	

Maximum marks: 2

^{6.3} Risk Estimation II

The following values are the result of a **risk estimation** analysis:

- Annualized Rate of Occurence: ARO = 12
- Exposure Factor: EF = 1 (100%)
- Asset Value: AV = 2000 \$

Calculate the Annualized Loss Expectancy (ALE) (enter just the number; without any unit if there is any).

Point: 1 for correct

ALE = (24000)

^{6.4} Risk Analysis

Select for each statement whether it is true for **qualitative** or **quantitative** risk-analysis methods.

Points: 0.5 for each correct, -0.5 for wrong, 0 for no selection, max 2 total **Please match the values:**

	Qualitative	Quantitative
The input parameters are easy to estimate.	•	\bigcirc
The risk levels are obtained with a look-up table.	•	0
The resulting risk levels are absolute.	0	•
The risk levels are obtained with computation.	\bigcirc	•

Maximum marks: 2

6.5 Risk Identification

What is most logical order in **risk identification**? Enter the numbers 1, 2 and 3 accordingly. *Points: 2 total for all answers correct, 0 total if any error*

(2) Identify exploitable vulnerabilities

(1) Identify a relevant threat

(3) Identify impact

Maximum marks: 2

ⁱ Part 7: User Authentication

7.1 Authentication Factors

Name the three (3) general credential categories (called **authentication factors**) and give one example for each of them

Points: 0.5 for each correct factor, 0.5 for each correct example, 0 for wrong/no answer, max 3 total

- Knowledge-based, ex.: password, PIN
- Ownership-based, ex.: security token
- Inherence-based, ex.: face recognition, iris
- (also OK: Secondary channel, ex.: SMS)

Give one (1) example of a wide-spread commercial **2-factor authentication system** and name the involved factors.

Points: 1 for correct answer, 0 for wrong, 0 for no answer

e.g. ATM: knowledge (PIN) + ownership (card)

7.2 Password Handling

Please answer the following questions on **password handling**. *Points: 1 for each correct, -1 for each wrong, 0 for no selection, max 3 total score*

Image the following situation: an attacker has stolen a password file containing hashed passwords. Which of the following methods can make **brute force attacks** on a specific password inside this file more difficult?

Select one or more alternatives:

- Access control for the password file
- Complex password
- Salting
- Using "slow" hash functions (e.g. scrypt)

Which of the following methods can be influenced by the user (i.e. the owner of the password)?

Select one or more alternatives

- Using "slow" hash functions (e.g. scrypt)
- Access control for the password file
- Complex password
- Salting

Maximum marks: 3

1

^{7.3} Biometric Authentication

Compare the two **biometric authentication** methods *face recognition* and *fingerprint scan*. For each criterion mark the method that is *better* or *more secure*. *Points: 0.5 for each correct answer, -0.5 for each wrong, 0 for no selection*

Please mark the "better" / "more secure" method:

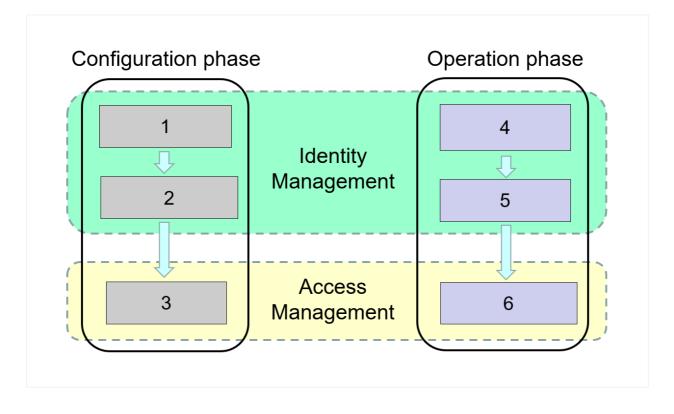
	Finger	Face
Uniqueness	•	0
Permanence	•	0
Circumvention (e.g. presentation attacks)	•	0
Universality	\bigcirc	• •
		•

Maximum marks: 2

^{7.4} Authentication Tokens

What is the main advantage of passwords/PINs generated by an **authentication token** compared to "normal" passwords/PINs?

Points: max 1


Enter text here

The password/PIN is different for every authentication attempt ("one time password")

Maximum marks: 1

ⁱ Part 8: Identity & Access Management

^{8.1} Phases in Identity & Access Management

The diagram shows that the configuration phase and the operation phase of **Identity & Access Management** (IAM) consists of steps which represent specific activities. Match each activity in the left column with the corresponding step in the diagram.

Points: 0.5 for each correct, -0.5 for each wrong, 0 for no selection, max 3

Match activity with step number:

	1	2	3	4	5	6
Access Control	\bigcirc	0	\bigcirc	\bigcirc	0	•
Authentication	0	0	\bigcirc	\bigcirc	•	\bigcirc
Access Authorization	0	0	•	\bigcirc	0	\bigcirc
Self Identification	\bigcirc	\bigcirc	\bigcirc	• 🗸	0	\bigcirc
Provisioning of credentials	\bigcirc	• 🗸	\bigcirc	\bigcirc	0	\bigcirc
Registration of identities	•	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc

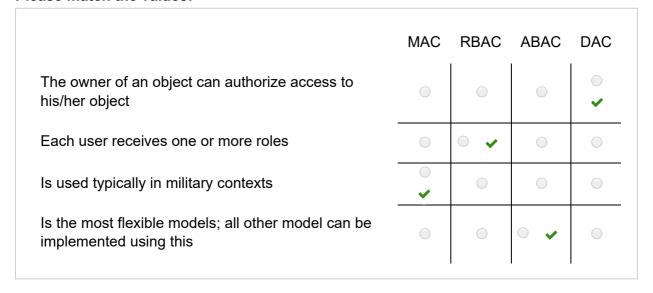
8.2 Federation I

Order the steps in a typical **federated Web authentication** scenario by entering the numbers 1 to 5.

Points: 2 total score for all correct, 0 if any error

- (3). User authenticates to the Identity Provider.
- (4). User is redirected to the Service Provider.
- (2). User is redirected to the Identity Provider.
- (5). User gets access to the resource at the Service Provider.
- (1). User tries to access a resource at the Service Provider.

Maximum marks: 2


^{8.3} Federation II

Select the **federation type** of the Norwegian "ID-porten" system. *Points: 1 for correct, 0 for wrong, 0 for no selection* **Select an alternative:**

- Centralized Identity + Distributed Authentication
- Distributed Identity + Distributed Authentication
- Distributed Identity + Centralized Authentication
- Centralized Identity + Centralized Authentication

^{8.4} Access Control I

Mark for each statement appropriate access control method. *Points: 0.5 for each correct, -0.5 for each wrong, 0 for no selection* **Please match the values:**

Maximum marks: 2

^{8.5} Access Control II

Your task is the development of an **access control system** for a new document storage system for your company. Which access control measures are reasonable? *Points: 1 for each correct, -1 for each wrong, 0 for no selection, max 2 total* **Select one or more alternatives:**

Maximum marks: 2

ⁱ Part 9: Ethical Hacking

^{9.1} Ethical Hacking

What separates an ethical hacker from an illegal hacker?

Points: max 2

Fill in your answer here

Ethical Hacker: has a contract with the company, checks for all vulnerabilities, writes a report. Goal is to improve security. Motivation: professional

Illegal Hacker: has no contract, use first or easiest way in, writes no report. Goal is to do damage, extract information or blackmail / make service unavailable. Motivation: criminal

Maximum marks: 2

9.2 Attack Phases

What is the typical **order of steps** when **attacking a system**? Enter a number between 1 and 4 for each step.

Points: 2 for all correct, 0 for any error

(3) Gain access
(1) Information gathering
(2) Scanning for weakness
(4) Maintain access

^{9.3} Reverse Engineering

Pair the keyword with its correct definition. Points: 0.5 for each correct, -0.5 for wrong, 0 for no selection, max 3 total

Please match the values:

	Instruction	Decompile	Register	Static analysis	Disassemble	Dynamic analysis
Turn machine code into assembly language					•	
Analysing code without running program	0	0	0	▶		0
A single operation by the processor	○ ✓	0	0	0		0
Analysing code and behaviour by running program						•
Small memory unit	0		• •	0	۲	0
Turn executable file into high-level language	۲	•		٢	۲	

^{9.4} Buffer Overflow

Select for the statements about **buffer overflow** if they are true and false. *Points: 0.5 for each correct, -0.5 for each wrong, 0 for no selection, max 3 total*

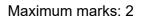
	True	False
32-bit sytems are vulnerable to this exploit, but not 64-bit systems.	\bigcirc	● ✔
Most buffer overflows are caused by user input.	✓	0
A stack overflow overwrites more memory locations than intended by the system.	● ✔	0
By filling an array with non-ASCII characters a stack overflow is triggered.	0	○ ✔
An attacker can crash a program using this exploit.	○ ✔	0
An attacker can divert the execution path using this exploit.	✓	

Maximum marks: 3

ⁱ Part 10: Application Security

^{10.1} OWASP

Select attacks/threats/vulnerabilities that are included in the **OWASP Top 10** list. *Points: 1 for each correct, -1 for each wrong, 0 for no selection, max 2 total score* **Select one or more alternatives:**


Trojan horse
Injection
Open TCP port
Broken Authentication

^{10.2} Web Security

A Web page allows visitors to leave comments, which can be read later by other users. Which attack might be possible through this feature (if not implemented correctly)? *Points: 2 for correct, 0 for wrong, 0 for no selection*

Select one alternative:

- SQL Injection
- DDoS
- XSS
- Broken Authentication

^{10.3} Cloud Security

Mark the statements regarding cloud computing security that are true. *Points: 1 for each correct, -1 for wrong, 0 for no selection, max 2 total* **Select one or more alternatives:**

- The use of multi-tenant environments increases the security.
- Office 365 is an example of Infrastructure-as-a-Service (laaS).
- Storage of data in international data centers can be in conflict to data protection \checkmark /s.
- Cloud computing offers the possibility for increased availability.

^{10.4} DevSecOps

Name one technical and one business benefit of DevSecOps.

Points: max 2

Fill in your answer here

technical: e.g. less complex problems to fix, faster resolution of issues when they arise business: e.g. faster delivery of features, more time available to add value

Explain (shortly) the meaning of **Shift-Left** in DevSecOps. *Points: max 2* **Fill in your answer here**

Shift-left means integrating security in the development phase in contrast to removing vulnerabilities in code during the operations phase.