
Student ID Points

91

Program Feature Max Additional remarks and clarification

Basic programming block block's points 42

Working makefile (compiles with make) 5 Ignore if dependencies are not perfect.

Makefile has targets all and clean 2

Executables have same names as in text 2

Client and server take given arguments (which, order) 2

Client: takes input, communicates over UDP, terminates, does not segfault 10 This is not about leaks

Server: communicates over UDP, does not segfault 10 This is not about leaks

Runs with given pre-code 2 Always use an original send_packet version for testing.

Client compiles without fixes 3

Server compiles without fixes 3

Checks for system call return value 3 (a) memory allocation, (b) network operations, (c) others

Server block's points 15

Server waits for UDP packets on the port given on the command line 1

Server does not busy wait 1 A select that waits 10ms for packets or timeout is not busy waiting. That is OK even if it does 
nothing after busy-waiting.

Server does not sleep without listening for something. 1

Registration list for clients is implemented. 3 The actual data structure is unimportant. Full points only if it can grow dynamically.

Registration list for clients is not leaking memory. 3 The list may still grow infinitely: if a nick's record is reused, but disabled without heartbeat, it 
may never shrink. That is OK. But no double nicks in the list.

Lookup sends correct information. 1

Lookup responds to client via address taken from recvfrom. 3

Server identifies correct IP and port from recvfrom in REG 2 Correct behaviour although not perfect: if the client sends from localhost, the server registers 
127.0.0.1 as IP.

Client basics block's points 6

Client registers itself at the server at start 1

Client quits when initial registration fails 1

Client implements an event loop centered on select 1 event loop means that there is only ONE select where everthing happens. select() is an explicit 
demand from the assignment. poll() and epoll() are not portable.

Waiting time is minimum of retrans times for all clients (or heartbeat) 1

Sending client implements a cache of IP/port addresses for each receiver 
nick

1

Client has no valgrind warning when terminating with QUIT 1

Stop-and-wait block's points 11

Client implements stop-and-wait semantics 5 Semantics: it does not have to be actual stop-and-wait. Semantics mean max one message in 
flight, retrans after timeout, msg and ack loss detected. OK even if it only works between 
exactly two clients.

Receiver does not print duplicates 1 needed to avoid duplicates; "sender" can be nick or IP/port - neither is 100% safe but both are 
accepted

Sender has one retransmission timeout per client 1

Sender maintains 1 sequence number per nick 1 equally ok to have one seq no per IP/port

Receiver maintains 1 sequence number per sender 1 client does distinct stop-and-wait instances with each other client; "sender" can be identified by 
nick or IP/port - neither is 100% safe but both are accepted

Receiver always answers MSG with an ACK containing same sequence 
number

1 We made this choice. Other choices would be possible, but this is explicitly stated in the 
assignment.

Sender has only one packet in flight per peer 1 We don't want sliding window here

Asynchronous client behaviour block's points 7

Client can wait for stdin and for retransmission timeout 5 (at the same time)

Client can read from stdin although a previous message is not ACKed yet 1

After 2 (or 3) timeouts, client executes lookup the lookup operation again 1 note that we allow these particular lookup operations to be completely synchronous and block 
everything else

Heartbeat block's points 5

Client sends heartbeat is sent every 10 seconds 1

Server does no longer return client info if no heartbeat for 40 seconds 1 It is not important how this is solved, with own timeout, by list removal, by flag ...

Heartbeat protocol makes sense 1 Students can use REG as we intended. Heartbeat can also be a different message.

Heartbeat does not use stop-and-wait 1

Server implements lookup disabling when heartbeat expires 1 There a many possible solutions, the server does not need to wait for the next expiration.

Blocking clients block's points 5

Client implements a list of blocked clients 1

Client receives messages from client, but does not print them 2

Client takes messages from stdin to blocked clients, but discards them 
silently

1

Client can unblock clients 1


