
 1-3 Virtual memory
 In Inspera, questions 1-6 have 10 points. This must be ignored. We use 0-3 points for every question. As the exam cover page states, every
 question has the same value for the exam.

 Question in English Spørsmål på norsk Retteveiledning

 1 What is virtual memory? Why do we
 use it and how does it work?

 Hva er virtuelt minne? Hvorfor bruker vi
 det og hvordan fungerer det?

 ● 3: Virtual memory can exceed the
 physical RAM of a computer and use
 other storage resources as well. We
 want to use it to allow processes to use
 a large amount of memory without a lot
 of effort for the programmer. It requires
 hardware support (MMU) that can
 (a) translate transparently the addresses
 used by a running process from virtual
 address to physical address,
 (b) detect that a virtual address does not
 have a physical address right now (page
 fault), and start the page replacement
 procedure,
 (c) update the MMU data.

 ● 2: the explanation is missing either the
 answer to “Why do we use it” or one of
 the major points

 ● 1: only the basic idea is recognizable

 2 Assume you have a 32-bit memory
 system, you are using 4 KB pages,
 and have a request for a particular
 virtual memory address. Explain
 how a traditional 1-level memory
 look-up works, and how the

 Anta at du har et 32-bits minnesystem,
 du bruker 4 KB-sider og har en
 forespørsel om en bestemt virtuell
 minneadresse. Forklar hvordan et
 tradisjonelt 1-nivås minneoppslag
 fungerer, og hvordan den fysiske

 ● 3: You need 12 bits for the offset in the
 page, so the page table is 2^20 entries
 long (approx 1 mio). Each entry contains
 at least the base address in physical
 memory (if the address is in physical
 memory) or info about its location on

 physical address is found. adressen blir funnet. disk, a dirty bit and a present bit. If
 written to, dirty is set. If looked up and
 not present, start the replacement
 procedure. If the replacement procedure
 expunges a dirty page, write it to swap
 space on disk first.
 If looked up and the page is present,
 take the 20 bits from the page table
 entry and add the least significant bits
 from the requested virtual address, and
 you have the physical memory address.

 ● 2: One major part is missing, for
 example the writeback or the means for
 finding the actual physical address.

 ● 1: Rudimentary knowledge of the
 process can be seen in the answer.

 3 When our memory is full, we need a
 way to replace elements so that we
 can fetch new requested data. Can
 you give an example of such an
 algorithm, and briefly discuss what
 properties such an algorithm should
 have?

 Når minnet vårt er fullt, trenger vi en
 måte å erstatte elementer slik at vi kan
 hente nye forespurte data. Kan du gi et
 eksempel på en slik algoritme, og kort
 diskutere hvilke egenskaper en slik
 algoritme bør ha?

 A page replacement algorithm should be simple
 (efficient, low overhead), make optimal
 decisions (read from and write to disk very
 rarely).

 A possible replacement algorithm is LRU, which
 reshuffles the list of pages in physical memory
 every time a read or write operation to a page is
 performed. When a page is addressed, it is
 moved to the top of the list. When a different
 page needs to be swapped in, the page that is
 at the tail end of the sorted list is replaced (ie.
 written to disk if dirty, and its physical memory
 overwritten by the requested page from disk).

 ● 3: According to the task, it is sufficient to
 write the algorithm’s name and the

 properties “simple”+”good” decisions.
 The reason is that the task uses the
 word “such an algorithm” instead of “this
 algorithm”.

 ● 2: One of the points is correct. The
 name of the algorithm makes no sense
 (e.g. Round Robin makes no sense), or
 the properties are wrong.

 ● 1: Just one property is correct.

 4-6 Storage

 Question in English Spørsmål på norsk Retteveiledning

 4 Accessing secondary storage like
 mechanical hard drives takes a lot
 of time compared to accessing
 memory in RAM. Briefly explain why
 and what operations the access
 latency consists of.

 Tilgang til sekundær lagring som
 mekaniske harddisker tar mye tid
 sammenlignet med tilgang til minne i
 RAM. Forklar kort hvorfor og hvilke
 operasjoner tilgangsforsinkelsen består
 av.

 ● 3: Mechanical hard drives must move
 the disk head to the correct position on
 the disk to read the requested data. This
 requires
 (a) motion of the disk arm, which is very
 slow, and
 (b) rotation of the disk, which is fairly
 slow.
 Optional: Once this position is reached,
 data must be read and copied into RAM.

 ● 2: e.g. one of the points above is
 mentioned, but not more. Possible some
 incorrect statements.

 ● 1: Just general statements about the
 slowness of disks.

 5 What is typically done to improve
 the performance of mechanical
 disks today in terms of access
 latencies and data transfers? State
 2 approaches and explain them.

 Hva gjøres vanligvis for å forbedre
 ytelsen til mekaniske disker i dag når
 det gjelder tilgangsforsinkelser og
 dataoverføringer? Nevn 2 tilnærmingen
 og forklar dem.

 There are a lot of things that are attempted: (a)
 a large RAM or FLASH cache where tracks are
 kept when they have been accessed before, (b)
 data placement putting the more frequently
 read data onto those disk positions that are
 statistically closer to the disk head, (c) data
 prefetching into RAM, (d) making data in a file
 contiguous on disk to avoid a lot of arm
 movement, …

 ● 3: 2 approaches with explanations
 ● 2: 2 approaches with somewhat correct

 explanations

 ● 1: 1 approach with somewhat correct
 explanation

 6 Let us assume that we have a (very
 small) disk which has 50 tracks,
 numbered from 0 to 49, and which
 the disk head moves above and
 reads data from. Assume that at a
 given time, the disk head is
 positioned above and reading data
 from track 14. After this request, the
 following requests are in the disk
 scheduling queue (each number
 denotes the track on which the
 requested data block is stored, and
 the sequence shows the order in
 which the requests arrived in the
 queue, i.e., request 2 is the first that
 arrived in the system):

 La oss anta at vi har en (veldig liten)
 disk som har 50 spor, nummerert fra 0 til
 49, og som diskhodet beveger seg over
 og leser data fra. Anta at på et gitt
 tidspunkt er diskhodet plassert over og
 leser data fra spor 14. Etter denne
 forespørselen er følgende forespørsler i
 diskscheduleringskøen (hvert nummer
 angir sporet som den forespurte
 datablokken er lagret på, og sekvensen
 viser rekkefølgen forespørslene ankom i
 køen, dvs. forespørsel 2 er den første
 som ankom systemet):

 Drawing is the preferred response. Listing the
 steps in text form does not reduce the number
 of points. Minor mistakes (such as missing one
 or two numbers) are OK.
 3: All correct. We accept going into the wrong
 direction first, but only if SCAN does correctly
 turn at track 0 and not at track 2.
 2: Both attempted. Mostly correct but with some
 essential errors. Starting at one of the disk
 edges for SCAN gives at most one point.
 1: The spirit of FCFS and SCAN is visible, but
 not much more; or only one of the parts is
 answered.

 45 15 3 49 19 40 5 16 33 9 17 23 46 2

 Make a graphical figure that shows
 how the disk head moves over the
 different tracks (in what order are
 request serviced) if we use
 “First-Come-First-Serve” (FCFS)
 and SCAN (the head is currently
 moving from low- numbered tracks
 to high-numbered tracks),
 respectively, and assume that all
 requests in the queue can be
 served during the same round.

 Lag en grafisk figur som viser hvordan
 diskhodet beveger seg over de
 forskjellige sporene (i hvilken rekkefølge
 betjenes forespørselene) hvis vi bruker
 "First-Come- First-Serve" (FCFS) og
 SCAN (hodet beveger seg for øyeblikket
 fra lavt nummerert spor til
 høynummererte spor), henholdsvis, og
 forutsetter at alle forespørsler i køen
 kan betjenes i samme runde.

 7-9 Routing

 Question in English Spørsmål på norsk Retteveiledning

 7

 What is Dijkstra's Algorithm?

 Given the links in the figure with the
 distances between them, what is
 the best route from A to F based on
 Dijkstra’s algorithm?

 In which order will the nodes B, C,
 D, E and F be visited?

 Hva er Dijkstras algoritme?
 Gitt koblingene i bildet med avstander
 mellom dem, hva er den beste ruten fra
 A til F basert på Dijkstras algoritme?
 I hvilken rekkefølge vil nodene B, C, D,
 E og F besøkes.

 Dijkstra's algorithm allows us to find the
 shortest path between any two vertices of a
 graph.

 The shortest path between A and F is through
 A-B-D-F with a total distance of 9. Starting from
 A, I will relabel all directly adjacent nodes with
 the distance to A. So D’s label will be D(9,A),
 B’s label will be B(3,A) and C’s label will be
 C(5,A). I pick B and from B, I will relabel, C as
 C(6,B) and D as D(7,B), and I label E as
 E(10,B). I pick C and for D I choose the
 previous label as it is smaller, D (7,B), and I
 label E as E(10,C) and F as F(14,C). I pick D
 and relabel F as F(9,D) and E as E(9, D). This
 reaches the destination F. Note, while making
 the nodes label permanent, choose the smallest
 distance.

 Three components: (i) Disjkstra is explained, (ii)
 the problem is correctly solved (A-B-D-F) and
 the visited node order is correct (B-C-D-E-F).

 ● 3: Dijkstra's algorithm is explained, the
 problem is correctly solved and
 explained.

 ● 2: Two of the above are addressed.

 ● 1: Only one of the above is addressed.

 8 How does Distance Vector Routing
 work? List and explain the steps.

 Hvordan fungerer en Distance Vector
 Routing?
 Oppgi og forklar stegene.

 With Distance Vector Routing (DVR), every IS
 maintains a table (i.e., vector) stating the best
 known distance to all known destinations and
 the best line (direct neighbour) to be used on
 the way to the destination. Distance to direct
 neighours is measured. Distance to far-away
 neighbours is computed by adding
 measurements to neighbours’ information. ISes
 then update tables by exchanging their
 complete routing information with their
 neighbors. DVR is imagined to work in rounds.

 ● 3: All DVR steps are described.
 ● 2: One of the main steps is missing or

 incorrect, for example that complete
 tables are sent, or that they are sent
 only to direct neighbours, or that the
 best route is determined by adding
 measurements to neighbours tables.

 ● 1: The DVR steps are buggy or
 incomplete, but DVR is still recognizable
 - especially in being different from
 broadcast-based Link State Routing.

 9 You are the head of a company that
 is building a network in an
 underdeveloped area where
 resources such as energy are
 scarce. In this area, the power
 outages can also result in link
 failures. What are the 2 main
 properties you will consider for a

 Du er leder for et selskap som bygger et
 nettverk i et underutviklet område hvor
 ressurser som energi er knappe. I dette
 området kan strømbruddene også føre
 til koblingsfeil. Hva er de 2
 hovedegenskapene du vil vurdere for en
 rutingalgoritme som bør fungere godt
 innenfor dette området. Hvorfor?

 ● Robustness
 ○ Compensation for IS and link failures,

 especially due to outages
 ○ Handling of topology and traffic changes

 ● Simplicity
 ○ Minimize load of ISes since the resources

 are scarce

 routing algorithm that should work
 well within this area. Why?

 ● Optimality, especially in terms of overall
 energy usage

 ● Correctness/stability is important, even it is
 not specific to this problem

 ● 3: Have 2 of the above points correct
 with reasoning

 ● 2: Have 1 of the above points correct
 with reasoning

 ● 1: Have a few points listed without
 reasoning

 10-12 Flow control

 Question in English Spørsmål på norsk Retteveiledning

 Intro text Flow control enables the sender to
 make sure that the receiver is not
 flooded.
 An important family of flow control
 mechanisms are the sliding window
 protocols. Sliding Window has
 further 3 different flavors:
 Go-Back-N, Selective Repeat and
 Credit Mechanism.

 Flytkontroll gjør at senderen kan unngå
 å oversvømme mottakeren.
 En viktig familie av
 flytkontrollmekanismer er sliding window
 protokollene. Sliding window har
 ytterligere 3 forskjellige variasjoner: Go-
 Back-N, Selective Repeat og Credit
 Mechanism.

 10 How does Stop-and-wait work?
 What are the pros and cons of
 Stop-and-wait?

 Hvordan funker Stop-and-wait? Hva er
 fordelene og ulemper med
 Stop-and-wait?

 Stop-and-wait implements a timeout
 mechanism. Basic operation is as follows:

 1. Sender: Transmits a single frame at a time.
 2. Sender waits to receive ACK within time

 out.
 3. Receiver: Transmits acknowledgement

 (ACK) when it receives a frame.
 4. Go to step 1 when ACK is received.
 5. Repeat step 1 (e.g. retransmit the frame) if

 a frame or ACK is lost during transmission
 and timeout is reached.

 Pros: very simple mechanism

 Cons: can be very inefficient as the sender needs
 to wait to receive an ACK for each successful
 transmission. This results in very long idle times
 and underutilization of the channel.

 3 points: Mechanism explained, pros/cons are
 discussed.
 2 points: Mechanism explained but pros/cons
 are not discussed.
 1 point: Mechanism not explained but pros/cons
 discussed.

 11 Please explain how Go-back-N and
 Selective Repeat work. Which of
 these two sliding- window
 approaches would you use for
 wireless networks where random
 losses happens often (but usually
 only one packet loss at a time) and
 why?

 Vennligst forklar hvordan Go-back-N or
 Selective Repeat fungerer. Hvilken av
 disse to sliding window-protokollene
 ville du brukt for trådløse nettverk da
 tilfeldig pakketap skjer ofte (men som
 oftest bare ett pakketap om gangen) og
 hvorfor?

 Go-back-N: Receiver accepts packets only in
 order and discards all the packets arriving out
 of order. Therefore there is no buffer allocation.

 Selective Repeat: Receiver accepts the packets
 that arrive out of order, and buffers the packets
 but in a window. Therefore, there is a static
 buffer allocation.

 I would choose Selective Repeat as it uses
 bandwidth better when the network losses are
 random and only 1 packet in a row.

 3 points: Mechanism explained, correct
 argument for the selection for random loss.
 2 points: Mechanism explained but incorrect
 argument for the selection for random loss.
 1 point: Mechanism not explained but correct
 argument for the selection for random loss.

 12 What is a credit mechanism and
 how does it work? How do you
 handle situations where no credit
 remains?

 Hva er en kredittmekanisme og hvordan
 fungerer den? Hvordan håndterer du
 situasjoner der ingen kreditt gjenstår?

 The Credit mechanism is a sliding window
 based flow control where the receiver
 dynamically allocates the buffer based on the
 situation.

 The main principle:
 ● Sender requests required buffer amount
 ● Receiver reserves as many buffers as

 the actual situation permits
 ● Receiver returns ACKs and

 buffer-credits separately
 ○ ACK: confirmation only (does not

 imply buffer release)
 ○ CREDIT: buffer allocation

 ● Sender is blocked when all credits are
 used up

 3 points: Credit mechanism is introduced and
 how it works is explained. Etter at kreditt har
 blitt brukt opp vil overføringen stoppe, når
 mottaker har ny bufferplass må den sende en
 ACK med gammel segmentnummer og ny
 kreditt.
 2 points: Credit mechanism is not properly
 introduced but how it works is explained.
 1 point: Credit mechanism is introduced but
 how it works is not explained.

 13-15 Domain Name System

 Question in English Spørmsål på norsk Retteveiledning

 Intro text The Domain Name System
 (DNS) acts as an intermediary
 between the user and the
 internet, translating
 human-friendly domain names to
 machine-friendly IP addresses.

 Domenenavnsystemet (DNS)
 fungerer som et mellomledd
 mellom brukeren og internett, og
 oversetter menneskevennlige
 domenenavn til maskinvennlige
 IP-adresser.

 Each question addresses several
 elements of comprehension,
 indicated by a bracketed asterisk
 in the solutions below. Award one
 point for each element that has
 been fully and correctly
 explained. One half point may be
 awarded where the explanation
 is somewhat lacking in either
 fullness or correctness. Zero
 points should be given where an
 element is either wrongly
 explained or not explained at all.
 Negative points should not be
 given. The order in which
 elements are addressed does not
 matter. A maximum of three
 points may be awarded per
 question.

 13 DNS maintains a hierarchical, as
 opposed to a flat, namespace.
 Explain the difference between
 these two ways of organizing a
 namespace and the motivation
 for this structure.

 DNS har et hierarkisk, i
 motsetning til et flatt, navnerom.
 Forklar forskjellen mellom disse
 to måtene å organisere et
 navnerom på og motivasjonen for
 denne strukturen.

 A flat namespace consists of a
 single level only. All names must
 be unique within the entire
 namespace.
 A hierarchical namespace
 consists of two or more levels
 DNS calls them domains. A
 name needs only be unique

 within its domain. One good
 motivation is distributed
 management (ownership),
 leading to better scaling.

 ● 3: difference is explained
 and at least one
 advantage (such as
 administration) is given

 ● 2: either the difference of
 organization or the
 motivation is given and
 correct

 ● 1: Student seems to have
 understood that DNS is
 hierarchical.

 14 DNS constitutes a typically wide
 and shallow tree: nodes can
 have a very large number of
 children, but most leaf nodes are
 located not too far from the root
 (such as .com). Why does DNS
 exhibit this structure?

 DNS utgjør et typisk bredt og
 grunt tre: noder kan ha et svært
 stort antall barn, men de fleste
 bladnoder er plassert ikke så
 langt fra roten (som f.eks. .com).
 Hvorfor fremviser DNS denne
 strukturen?

 A fully qualified domain name
 should be short and memorable,
 that is, human friendly.

 Arbitrary words are allowed at
 every level (the vocabulary is
 huge), allowing very wide trees.

 3: Student explains in some way
 that domain names with few
 elements are easier to remember
 and words can be long.
 2: Allow for some confusion.
 Maybe the student talks about
 the hierarchical ownership of
 DNS. Maybe the student talks
 about the physical location of
 DNS servers. The explanation

 makes sense.
 1: The same as 2, but the
 explanation makes no sense.

 15 DNS queries can be handled in
 one of two ways: recursively or
 iteratively. Explain the difference
 between them, highlighting their
 pros and cons.

 DNS-spørringer kan håndteres
 på én av to måter: rekursivt eller
 iterativt. Forklar forskjellen
 mellom dem, og fremhev deres
 fordeler og ulemper.

 A recursive DNS query is sent
 from a local DNS server to a
 DNS root server (assuming no
 cache), which forwards the query
 down the DNS hierarchy,
 eventually reaching the DNS
 server responsible for the remote
 domain, whence the answer is
 returned along the same path
 back to the local DNS server.

 An iterative DNS query is sent
 from a local DNS server to a
 DNS root server (assuming no
 cache), which provides the
 address to a second-level DNS
 server so that the local DNS
 server can redirect its query.
 Redirection occurs at each level
 of the DNS hierarchy, eventually
 reaching the DNS server
 responsible for the remote
 domain, whence the answer is
 returned directy to the local DNS
 server.

 3: The explanation is as above.
 2: The explanation has mistakes.
 For example, caching only on the
 client, or asking the actual

 machine for its IP address (the
 low-level DNS servers should do
 this)
 1: The answer has a sensible
 core but a lot of confusion. E.g., if
 the local DNS server is always
 asking root servers directly, or
 when root servers know every IP
 address in the world

 16-18 Congestion control

 Question in English Spørsmål på norsk Retteveiledning

 Intro text Congestion control is essential to
 maintain proper operation of a
 computer network that does not
 have allocation of resources.

 Metningskontroll er essensielt for å
 opprettholde normal operasjon av et
 datanettverk som ikke har allokering av
 ressurser.

 16 Briefly explain what congestion is
 and how it is dealt with by
 intermediate- and end- systems in
 the Internet.

 Forklar kort what metningskontroll er og
 hvordan intermediate- og
 ende-systemer håndtere det i
 Internettet.

 - Caused by input rate > output rate.
 - Difference between persistent and

 transient congestion.
 - Intermediate buffers
 - Intermediate drops/marks
 - End-system adjust sending rate

 3 points: 4 / 5 discussed
 2 points: 2 / 5 discussed
 1 point: 1/ 5 discussed

 17 Briefly explain how TCP New Reno
 congestion control is designed and
 which phases it consists of.

 Forklar kort hvordan TCP New Reno
 metningskontroll er designet og hvilke
 faser den består av.

 - Keep the number of in flight packets
 under a congestion window.

 - Slow start. IW increase by 1 for each
 ack, opt double every RTT, opt
 exponential growth.

 - Congestion avoidance. Increase by 1/W
 for each ack, opt increase by 1 every
 RTT, opt additive increase.

 - Congestion avoidance. Packet loss
 causes a multiplicative decrease and
 possibly a new slow start.

 - (Bonus) Distinguish between dup-ack
 and timeout.

 3 points: all 4 bullet points are touched upon
 and are not clearly wrong.
 2 points: Missing 2 of the 4 bullet-points
 1 point: Getting 1 of the bullet-points right

 18 Packet loss is used as a signal for
 TCP New Reno congestion control.
 Briefly explain how packet loss is
 detected and what weaknesses
 these detections have.

 Pakketap blir brukt som et signal for
 TCP New Reno metningskontrol.
 Forklar kort hvordan pakketap blir
 detektert og hvilke svakheter disse
 deteksjonene har.

 - Packet loss through timeout
 - Timeout needs an appropriate value
 - Packet loss through dup-acks
 - Reordering can case spurious signals

 (and retrans)

 3 points: 3 / 4 discussed
 2 points: 2 / 4 discussed
 1 point: 1 / 4 discussed

 19-21 Scheduling

 Question in English Spørsmål på norsk Retteveiledning

 Intro text For different kinds of computers and
 expected workload, we will use
 scheduling algorithms with very
 different properties. Please consider
 the following questions.

 For ulike typer datamaskiner og
 forventet arbeidsmengde vil vi bruke
 scheduleringsalgoritmer med svært
 forskjellige egenskaper. Vennligst vurder
 følgende spørsmål.

 19 Describe how a Shortest-job-first
 (SJF) scheduler works. What is the
 advantage of SJF scheduling?

 Beskriv hvordan en Shortest-job-first
 (SJF) scheduler fungerer. Hva er
 fordelen med SJF-schedulering?

 For every new job, SJF determines how long it
 will run, and keep the ready queue sorted by
 runtime. SJF is simple and minimizes the
 average finishing time for jobs.

 ● 3: explanation as above
 ● 2: just the definition without stating the

 advantages of SJF
 ● 1: some confusion, for example if the

 student does not understand that SJF
 scheduling is not preemptive, they are
 not scheduled out and back in

 20 Why is SJF scheduling not used as
 the main scheduling strategy for
 desktop computers that are used
 interactively for typical office
 workloads? Provide and explain
 one reason.

 Hvorfor brukes ikke SJF-schedulering
 som den primære
 scheduleringsstrategien for stasjonære
 datamaskiner som brukes interaktivt for
 typisk kontorarbeid? Gi og forklar en
 grunn.

 SJF makes sense only when the duration of
 jobs is known. In a normal desktop computer,
 we do not know that for the majority of jobs.

 Add on (only briefly mentioned in lecture): even
 if job time would be known, the need for
 multi-tasking would make it more sensible
 anyway to use SRTF (Shortest remaining time
 first)

 ● 3: It is sufficient to state that desktop

 computers need long-running
 tasks/processes with IO and not jobs
 without IO. There may be more or other
 reasons.

 ● 2: e.g.: The student does not
 understand that SJF cannot work with
 interactive workloads; the student may
 claim that very long processes/jobs can
 be starved.

 ● 1: at least one sensible fact about using
 SJF for tasks that must block because of
 IO

 21 You manage a server that is meant
 for large, computation-heavy
 workloads without interactivity.
 Explain the kind of scheduling
 algorithm that you use on this
 server and why.

 Du administrerer en server som er ment
 for stor, beregningstung arbeidslast uten
 interaktivitet. Forklar hva slags
 scheduleringsalgoritme du bruker på
 denne serveren og hvorfor.

 The simplest answer is to use batch processing
 (ie. FIFO) because it has the small possible
 overhead and the least time to completion. One
 could also argue for SJF.
 Another answer could be the use of large time
 slices because overhead can be very small and
 time slices provide fairness.

 ● 3: a sensible answer as above
 ● 2: a misguided but coherent answer.

 E.g. a student has misunderstood
 “computation-heavy without
 interactivity”, but explains the properties
 of the workload - the scheduling
 algorithm makes sense for the student’s
 own scenario

 ● 1: the choice of scheduling algorithm is
 correct, but the explanation is missing or
 wrong.

 Example 3 poeng: FIFO + very few context
 switches, which leads to very little overhead.
 Example 1 poeng: FIFO + FIFO is easy to

 implement / FIFO has little runtime overhead.

 22-24 Processes

 Question in English Spørsmål på norsk Retteveiledning

 22 Explain what happens when a
 context switch between two
 processes happens because the
 timeslice of the running process is
 used up.

 Forklar hva som skjer når en
 kontekstbytte mellom to prosesser skjer
 fordi tiden (timeslice) til den kjørende
 prosessen er brukt opp.

 1. Scheduler stops the process A.
 2. Store process A’s state (like registers,

 instruction pointer) on stack or in PCB.
 3. Set the process to the ready state and

 into the ready queue.
 4. Restore the process state for the first

 process in the ready queues.
 5. Recover process state for that process.
 6. Start the timer for the new timeslices.
 7. Give control to that process.

 Points:
 ● 3: at least the details above are given,

 maybe even more
 ● 2: some elements from the list above

 are missing, either the fact that the
 scheduler does the stopping or starting
 of processes, or the details related to
 state saving are missing.

 ● 1: the student writes something sensible
 about putting the old process into the
 ready queue and get a new process
 from there

 Students may be confused with switching

 because the process blocks on IO. That should
 remove one point, give 2 or 1 depending on the
 remaining details.

 23 What can motivate a programmer to
 use multiple threads (kernel
 threads) instead of multiple
 processes?

 Hva kan motivere en programmerer til å
 bruke flere tråder (kjernetråder) i steden
 for flere prosesser?

 Only one reason is expected, but giving a lot of
 sensible motivations with limited explanation
 can compensate for a lack of depth. Example
 motivations:

 ● Processes have their own heap
 memory, threads do not. This makes
 communication difficult.

 ● Processes can not touch each other’s
 regular memory, threads can (including
 each other’s stack memory).

 Assuming a single reason:
 ● 3: an example is given, and the thread

 advantage is intuitive for the reader.
 ● 2: an example is given, but the

 explanation of the advantage is difficult
 to understand

 ● 1: an example is given without
 explanation

 24 Assume that the computer has only
 a single processing core.

 When a new process is started
 using fork(), should the parent
 process continue to run, or should
 the newly created child process run
 first?

 Provide arguments for your
 decision.

 Anta at datamaskinen bare har en enkel
 prosesseringskjerne.

 Når en ny prosess startes ved å bruke
 fork(), bør foreldreprosessen fortsette å
 kjøre, eller skal den nyopprettede
 barneprosessen kjøre først?

 Gi argumenter for avgjørelsen din.

 There is no clear answer, but an OS must make
 a decision on this point. There are lots of
 possible answers. fork() is a system call, so
 there is no additional overhead either way.

 Child-after-fork makes sense when those jobs
 are usually small and cheap, for example in
 shell scripts (bash, perl). The child processes
 can often be so short that they create their
 output within one timeslice.

 Parent-after-fork makes sense when processes
 wait very soon after starting anyway. For
 example for servers that wait for new
 connections and dispatch children after
 accepting. They can quickly go back to select
 and context-switch there.

 ● 3 (a): the student does not make a
 choice and explains that both is
 advantageous in some situations

 ● 3 (b): the student makes a choice and
 has one convincing example why this
 choice is right. Remember that we
 assume that the scheduler in the kernel
 will always run when fork() is called, so
 the advantage must come later! A
 student might allow user-space waiting.

 ● 2: the student makes a choice but the
 explanation is not easily understandable
 or not convincing.

 ● 1: The student has understood what
 fork() does and that it is somehow
 related to waiting queues (ready queue)
 in the kernel, but not more.

