IN2140: Introduction to Operating Systems and Data Communication

Routing and Switching

End-to-end delivery on layer 3 in TCP/IP terms

- Primary task from a layer model perspective
 - To provide service to the transport layer
 - *Connectionless* or *connection-oriented* service

- Primary task from a layer model perspective
 - To provide service to the transport layer
 - *Connectionless* or *connection-oriented* service
 - Uniform addressing
 - Internetworking: provide transitions between networks

- Primary task from a layer model perspective
 - To provide service to the transport layer
 - *Connectionless* or *connection-oriented* service
 - Uniform addressing
 - Internetworking: provide transitions between networks
 - Routing

- Primary task from a layer model perspective
 - To provide service to the transport layer
 - *Connectionless* or *connection-oriented* service
 - Uniform addressing
 - Internetworking: provide transitions between networks
 - Routing
 - Congestion control

- Primary task from a layer model perspective
 - To provide service to the transport layer
 - *Connectionless* or *connection-oriented* service
 - Uniform addressing
 - Internetworking: provide transitions between networks
 - Routing
 - Congestion control
 - Quality of Service (QoS)
- Inside the network layer

Layer	Data entity
Transport	
Network	Packet
Data link	Frame
Physical	Bit/byte (bit stream)

Inside the Network Layer

An L3 packet includes

Inside the Network Layer

- An L3 packet includes
 - Payload from the transport layer
 - Headers and trailers
 - End system address or route label
 - QoS requirements

- Knowledge required by intermediate system
 - Subnetwork topology
 - Address / localization of the end system
 - Packet / data stream communication requirements (Quality of Service)
 - Network status (utilization,...)

Intermediate system can then route or switch packets

Routing and Switching: Terminology

- The general ideas apply in many fields, including route planning for cars or supplying electricity
- We stick to Internet terminology where that is possible
- **Routing** and **Switching** have one thing in common:
 - a packet arrives at an IS, and the IS (if it is not the target) decides choose the right interface for forwarding it
- In the Internet, there is a strong *historical* association of switching with L2 and routing with L3
- In packet-based networks like the Internet, we call something ...
 - ... routing, when an IS reads a destination address from an arriving packet, computes which of its direct neighbors is best suited for reaching that destination, and sends the packet to the neighbor.
 - ... switching, when an IS reads an identifier from an arriving packet, looks it up in a pre-filled mapping table that translates the identifier to a direct neighbor, and sends the packet to the neighbor.

IN2140: Introduction to Operating Systems and Data Communication

Routing and Switching

End-to-end delivery: general concepts

Circuit switching

Principle

- Connection exists physically for the duration of the conversation
- Refers to
 - Switching centers
 - Connections between switching centers (frequency spectrum, dedicated ports)
- Implementation examples
 - Historically: on switching boards
 - Mechanical positioning of the dialers

[Harris & Ewing, 1905]

Circuit switching

Principle

- Connection exists physically for the duration of the conversation
- Refers to
 - Switching centers
 - Connections between switching centers (frequency spectrum, dedicated ports)
- Implementation examples
 - Historically: on switching boards
 - Mechanical positioning of the dialers

- Today: optical networks (e.g. WDM)
- Setting coupling points in circuits

[from "Opto-VLSI-based N × M wavelength selective switch", DOI 10.1364/0E.21.018160]

Circuit switching

Principle

- Connection exists physically for the duration of the conversation
- Refers to
 - Switching centers
 - Connections between switching centers (frequency spectrum, dedicated ports)
- Implementation examples
 - Historically: on switching boards
 - Mechanical positioning of the dialers

- Today: optical networks (e.g. WDM)
- Setting coupling points in circuits
- Properties
 - Connection has to occur before transmission
 - Establishing a connection takes time
 - Resource allocation is rigid (possibly waste of resources)
 - Once connection is established it cannot be blocked anymore

Packet Switching

Principle

- Packets of limited size
- Dynamic route search (no connect phase)
- No dedicated path from source to destination

Properties

- Possibly only reservation of average bandwidth (static reservation)
- Possibility of congestion
- High utilization of resources

Comparison: Circuit and Packet Switching

- Circuit switching
 - Connection establishment can take a long time
 - Bandwidth is reserved
 - No danger of congestion
 - Possibly poor bandwidth utilization (burst traffic)

- Packet switching
 - No connect phase
 - No allocation of bandwidth
 - Danger of congestion
 - Potentially 100% bandwidth utilization

- constant transmission time
- all data is transmitted over the same path
- varying transmission time
- packets between same end systems may use different paths

Virtual Circuit Switching

Principle

- Setup path from source to destination for entire duration of call
 - Using state information in nodes but no physical connection
 - Connection setup: defines data path
 - Messages: as in packet switching, but:
 - No routing decision per packet
 - Simpler addressing: associate with virtual circuit instead of destination
- Properties
 - Possible to ensure Quality of Service
 - Possible to maintain order of packets

Flow label for virtual circuit identification:

- shorter than destination address
- received earlier than destination address

Comparison: Virtual Circuit and Packet Switching

- Virtual circuit switching
 - Connection establishment can take a long time
 - Bandwidth can be reserved
 - Provider can guarantee loss probability of package losses and probability of waiting times
 - Better bandwidth utilization than circuit switching

- Packet switching
 - No connect phase
 - No allocation of bandwidth
 - Danger of congestion
 - Potentially 100% bandwidth utilization

- varying transmission time
- all data is transmitted over the same path
- varying transmission time
- packets between same end systems may use different paths

Message Switching

Principle

- All data to be sent are treated as a "message"
- "Store and forward" network: in each node the message is handled as follows:
 - 1. Accepted (L2 frames are collected until L3 message is complete)
 - 2. Treatment of possible errors
 - 3. Stored
 - 4. Forwarded (divide into several L2 frames for sending to the next node)
- Ancient history
 - dial-up networks
 - and its protocol UUCP Unix to Unix Copy
- Recent research
 - delay-tolerant networks, e.g. NASA Deep Space Network
- Properties
 - High memory requirements at the node (switching centers)
 - message size is unlimited
 - usually stored on secondary repository (harddisk)
 - Node may be used to its full capacity over a longer period of time by one message

very rare at L3 today: just for completeness

some applications on L5 operate like this

IN2140: Introduction to Operating Systems and Data Communication

Switching

more on Virtual Circuit Switching

Virtual Circuits

- Connection set-up phase
 - select a path
 - assign a VC identifier (VC number)
 - IS stores path information
 - network reserves all resources required for the connection
- Data transfer phase: all packets follow the selected path
 - every packet contains VC number
 - identification of connection, no address information
 - IS uses stored path information to determine next node
 - maybe update VC number in packet
- Disconnect phase:
 - IS releases reserved resources
 - IS forgets the VC

Implementation Virtual Circuit

- ES allocates VC number independently (no negotiation)
- Problem: the same VC identifiers may be allocated to different paths

- Solution: allocate VC numbers for virtual circuit segments
 - IS differentiates between incoming and outgoing VC-number
 - IS receives incoming VC number in CONNECT message from previous node
 - IS creates outgoing VC number (unique between IS and successor (IS))
 - IS sends outgoing VC number in CONNECT message to next node

Implementation Virtual Circuit

8 Simplex virtual circuits			
	Originating at A	Originating at B	
	0 - ABCD	0 - BCD	
	1 - AEFD	1 - BAE	
	2 - ABFD	2 - BF	
	3 - AEC		
	4 - AECDFB		

Implementation Packet Switching

- Packet passes through the network as an isolated unit
 - has complete source and destination addresses
 - individual route selection for each packet
 - generally no resource reservation
 - correct sequence not guaranteed

Packet Switching vs. Virtual Circuit

- Packet Switching: IS routing table specifies possible path(s)
 - No connection setup delay
 - Less sensible to IS and link failures
 - Route selection for each packet: quick reaction to failures
- but
 - Each packet contains the full destination and source address
 - Route selection for each packet: overhead
 - QoS guarantees hardly possible

- Virtual Circuit: destination address defined by connection
 - Packets contain short VC-number only
 - Low overhead during transfer phase
 - "Perfect" channel throughout the net
 - Resource reservation: "Quality of Service" guarantees possible
- but
 - Overhead for connection setup
 - Memory for VC tables and state information needed in every IS
 - Sensible to IS and link failures
 - Resource reservation: potentially poor utilization