
IN3020/4020 – Database Systems
Spring 2021, Week 2.2a

SQL QUERIES (SELECT and a bit more)

Egor V. Kostylev (with M. Naci Akkøk)
Based upon slides by E. Thorstensen from Spring 2019

Datatypes
o Handbook for data types (Chapters 8 and 9):

https://www.postgresql.org/docs/9.2/sql.htm

o Few hints:
o Exact vs. approximate (inexact) numeric types
o Timestamps vs. intervals (time-zones are complicated)
o Enums are not SQL-standard, will mean update if requirement is

changed
o Binary blobs are small and nice, large files should be directly on the

disk (storage) if they aren´t super important

o See also: https://wiki.postgresql.org/wiki/Don%27t_Do_This

https://www.postgresql.org/docs/9.2/sql.htm
https://wiki.postgresql.org/wiki/Don%27t_Do_This

o SQL supports arrays as data type; they are lists, actually

CREATE TABLE sal_emp (
name text, pay_by_quarter integer[4],
schedule text[][]

);

o There is quite a number of operations for arrays
o Arrays can also be used in queries:
ARRAY(X, Y, 3) creates an array

https://www.postgresql.org/docs/9.1/arrays.html

Arrays (Lists)
(more here https://www.postgresql.org/docs/9.1/arrays.html)

Array Operations
(more here https://www.postgresql.org/docs/9.2/static/functions-array.html)

o Pick an element:
SELECT codon[2] FROM genomesequence ...

o Concatenation:
g1.codon || ’ACU’, g1.codon || g2.codon

o Number of elements:
... WHERE cardinality(codon) > 100 ..

o Compare exact content:
g1.codon = g2.codon, g1.codon <> g2.codon

o Compare with every element in the array: ANY, ALL
WHERE codon[3] = ANY(array[’GGU’, ’UGG’, ’UAA’])...

o «Flatten out» an array:
SELECT Chromosomenr, unnest(codon) FROM genomesequence;

https://www.postgresql.org/docs/9.2/static/functions-array.html

Views

o Queries stored for use later

o Can be nested — a view can use other views

o Can be a spaghetti if not properly structured and
documented (like any other function, procedure or API
library, really)

Triggers

o A trigger is executed («triggered») when an event occurs in
a table.

o Think of listeners and such:
«when (or on) button pressed then execute...»

o Events are INSERT, UPDATE, DELETE (part of DML)
o Very flexible mechanism for doing a lot of good and, if not

careful, a lot of bad

Trigger example (continued)
CREATE TABLE employees(

id int4 serial primary key,
first_name varchar(40)NOT NULL,
last_name varchar(40)NOT NULL

);

CREATE TABLE employee_audits (
id int4 serial primary key,
employee_id int4 NOT NULL,
last_name varchar(40)NOT NULL,
changed_on timestamp(6)NOT NULL

)

Trigger example (continued)
CREATE OR REPLACE FUNCTION log_last_name_changes ()

RETURNS trigger AS $llnc$
BEGIN
IF NEW.last_name <> OLD.last_name THEN

INSERT INTO employee_audits(employee_id,
last_name,changed_on)

VALUES(OLD.id,OLD.last_name,now());
END IF;

RETURN NEW;
END;

$llnc$ language plpgsql;

CREATE TRIGGER last_name_changes
BEFORE UPDATE ON employees

Triggers – Hints

o Handy for logging, for complicated constraints and various
house-keeping needs

o Can be complicated with many triggers and complex logic
o Especially if a cascade (i.e., a trigger changes another table

with its own triggers): “Trigger hell” is a concept
(unfortunately)

